
Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Arrow Polynomial from a Gauss Code

Mark Kikta

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Gauss Code

Definition

A Gauss code is a string that uniquely determines an underlying virtual knot. It
may be obtained from a virtual knot diagram by fixing a starting point somewhere
along then knot, fixing an orientation, and labelling the classical crossings of the
diagram; then travelling along the diagram with the orientation and recording
whether the strand we are on is the over- or under-crossing strand, the label of the
crossing, and the sign of the crossing.

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Example

O1-O2+U1-O3-U2+U4+U3-O4+

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Example

O1-O2+U1-O3-U2+U4+U3-O4+

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Planar Diagrams

Definition

A signed planar diagram is a list of crossing information that uniquely determines
an underlying virtual knot. It may be obtained from a virtual knot diagram by
labelling the arcs and, for each crossing, recording its sign and the arcs meeting at
the crossing, starting with the label on the tail of the over-crossing arc and
proceeding clockwise (although this is not always the convention).

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Example

[+|8, 4, 7, 5], [−|1, 7, 8, 6], [+|2, 3, 1, 4], [−|6, 3, 5, 2]

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Example

[+|8, 4, 7, 5], [−|1, 7, 8, 6], [+|2, 3, 1, 4], [−|6, 3, 5, 2]

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

States of a Diagram

Definition

A state of a diagram is a choice of an A-splitting or B-splitting at every crossing.

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Some States of 4 19

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Arrow Polynomial

Let L be an oriented diagram. If an arc splitting disagrees with the orientation on
L, put an arrow on each arc of the splitting, oriented counterclockwise.

Then on each state, remove all sets of two adjacent arrows pointing in the same
direction.

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Arrow Polynomial

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Arrow Polynomial

Arrow Polynomial

The arrow polynomial of a knot K is

[K]A(A,B, d , ki) =
∑
s∈S

Aα(s)Bβ(s)dδ(s)−1⟨s⟩,

where i(c) = half the number of remaining arrows on the circle c ,
⟨s⟩ =

∏
c∈s ki(c), α(s) = #A-splittings in s, β(s) = #B-splittings in s, and

δ(s) = #circles in s.

Normalized Arrow Polynomial

⟨K ⟩A = [L]A(A,A
−1, (−A2 − A−2), ki)

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Gauss Code to Planar Diagram

We need a data structure for Gauss codes and a data structure for planar diagrams:

We represent a Gauss code as a list of tuples (isOver , label , sign), where
isOver is true iff the strand we are on is an over-crossing strand, label is the
label of the crossing, and sign is true iff the crossing is positive.

We represent a planar diagram as a list of tuples (sign, labels), where sign is
true iff the crossing is positive and labels is an ordered list of the labels on the
arcs around the crossing.

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Gauss Code to Planar Diagram

We need a data structure for Gauss codes and a data structure for planar diagrams:

We represent a Gauss code as a list of tuples (isOver , label , sign), where
isOver is true iff the strand we are on is an over-crossing strand, label is the
label of the crossing, and sign is true iff the crossing is positive.

We represent a planar diagram as a list of tuples (sign, labels), where sign is
true iff the crossing is positive and labels is an ordered list of the labels on the
arcs around the crossing.

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Gauss Code to Planar Diagram

For each code in a Gauss code:

1 If this label has not yet been encountered, add a new crossing to the planar
diagram. Record its sign and label the arcs on the strand we are travelling
along.

2 If this label has already been encountered, add labels to the strand that has
not yet been travelled along.

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Example

O1-O2+U1-O3-U2+U4+U3-O4+

[+|8, 4, 7, 5], [−|1, 7, 8, 6], [+|2, 3, 1, 4], [−|6, 3, 5, 2]

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Example

O1-O2+U1-O3-U2+U4+U3-O4+

[+|8, 4, 7, 5], [−|1, 7, 8, 6], [+|2, 3, 1, 4], [−|6, 3, 5, 2]

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Pseudocode

function gaussCodeToPlanarDiagram(gaussCode)
crossings ← {}
arcNumber ← 0
for code in gaussCode do

nextArcNumber ← (arcNumber + 1)%|gaussCode|
if code.label not in crossings then

if code.isOver then
crossings[code.label]← crossing(code.sign, nextArcNumber,None, arcNumber,None)

else if code.sign then
crossings[code.label]← crossing(code.sign,None, arcNumber,None, nextArcNumber)

else crossings[code.label]← crossing(code.sign,None, nextArcNumber,None, arcNumber)
end if

else
if code.isOver then

crossings[code.label].labels[0]← nextArcNumber
crossings[code.label.labels[2]← arcNumber

else if code.sign then
crossings[code.label].labels[1]← arcNumber
crossings[code.label.labels[3]← nextArcNumber

else
crossings[code.label].labels[1]← nextArcNumber
crossings[code.label.labels[3]← arcNumber

end if
end if
arcNumber ← arcNumber + 1

end forreturn crossings
end function

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Crossing Expansion

We need a data structure to represent an arc created from a splitting and a data
structure to represent a state with arrows:

The two arcs created from a splitting will be represented as tuples
(isOriented , labelOne, labelTwo), where isOriented is true iff the arc has an
arrow and labels one and two are inherited from the labels on the crossing.

We represent a state as a tuple (weight, arcs), where weight is the power of A
associated with the state and arcs is a list of arcs in the state.

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Crossing Expansion

We need a data structure to represent an arc created from a splitting and a data
structure to represent a state with arrows:

The two arcs created from a splitting will be represented as tuples
(isOriented , labelOne, labelTwo), where isOriented is true iff the arc has an
arrow and labels one and two are inherited from the labels on the crossing.

We represent a state as a tuple (weight, arcs), where weight is the power of A
associated with the state and arcs is a list of arcs in the state.

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Crossing Expansion

We can recursively find each state by expanding crossings and updating the weight
of the state at each step.

[True, 0, 1, 2, 3] = A[(False, 1, 0), (False, 2, 3)] + A−1[(True, 2, 1), (False, 0, 3)]

[False, 0, 1, 2, 3] = A[(True, 3, 2), (True, 1, 0)] + A−1[(False, 2, 1), (False, 3, 0)

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Crossing Expansion

We can recursively find each state by expanding crossings and updating the weight
of the state at each step.

[True, 0, 1, 2, 3] = A[(False, 1, 0), (False, 2, 3)] + A−1[(True, 2, 1), (False, 0, 3)]

[False, 0, 1, 2, 3] = A[(True, 3, 2), (True, 1, 0)] + A−1[(False, 2, 1), (False, 3, 0)

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Pseudocode

function expandCrossings(state)
states ← []
function expandCrossing(i, state)

if i = |state| then
append state to states return

end if
crossing ← state[i]
branchOne ← copy of state
branchTwo ← copy of state
if crossing.sign then

branchOne.weight ← branchOne.weight ∗ A
append arc(False, crossing.labels[1], crossing.labels[0]) to branchOne
append arc(False, crossing.labels[2], crossing.labels[3]) to branchOne
branchTwo.weight ← branchTwo.weight/A
append arc(True, crossing.labels[2], crossing.labels[1]) to branchOne
append arc(True, crossing.labels[0], crossing.labels[3]) to branchOne

else
branchOne.weight ← branchOne.weight ∗ A
append arc(True, crossing.labels[3], crossing.labels[2]) to branchOne
append arc(True, crossing.labels[1], crossing.labels[0]) to branchOne
branchTwo.weight ← branchTwo.weight/A
append arc(False, crossing.labels[2], crossing.labels[1]) to branchOne
append arc(False, crossing.labels[3], crossing.labels[0]) to branchOne

end if
expandCrossing(i + 1, branchOne)
expandCrossing(i + 1, branchTwo)

end function
expandCrossing(0, state(1, []))

end function

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

State Reduction

We need to cancel adjacent arrows oriented in the same direction, and we can
reduce the number of arcs in the process to simplify further calculation. There are
five possible cases:

[(False, 1, 2), (False, 2, 3)] → (False, 1, 3)

—————————————————

[(True, 1, 2), (True, 2, 3)] → (False, 1, 3)

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

State Reduction

We need to cancel adjacent arrows oriented in the same direction, and we can
reduce the number of arcs in the process to simplify further calculation. There are
five possible cases:

[(False, 1, 2), (False, 2, 3)] → (False, 1, 3)

—————————————————

[(True, 1, 2), (True, 2, 3)] → (False, 1, 3)

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

State Reduction

[(True, 1, 2), (False, 2, 3)] → (True, 1, 3)

—————————————————

[(False, 1, 2), (True, 2, 3)] → (True, 1, 3)

—————————————————

Cannot be reduced!

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Pseudocode I

function reduceState(state)
function findReduction

for i = 0 to |state| do
for j = 0 to |state| do

if i ̸= j then
if not state[i].isOriented and not state[j].isOriented and state[i].labelTwo = state[j].labelOne then

state[i].labelTwo ← state[j].labelTwo
state.pop(j) return True

else if not state[i].isOriented and not state[j].isOriented and state[i].labelTwo = state[j].labelTwo then
state[i].labelTwo ← state[j].labelOne
state.pop(j) return True

else if state[i].isOriented and state[j].isOriented and state[i].labelTwo = state[j].labelOne then
state[i].labelTwo ← state[j].labelTwo
state[i].isOriented ← False
state.pop(j) return True

else if state[i].isOriented and not state[j].isOriented and state[i].labelTwo = state[j].labelOne then
state[i].labelTwo ← state[j].labelTwo
state.pop(j) return True

else if state[i].isOriented and not state[j].isOriented and state[i].labelTwo = state[j].labelTwo then
state[i].labelTwo ← state[j].labelOne
state.pop(j) return True

else if state[i].isOriented and not state[j].isOriented and state[i].labelOne = state[j].labelTwo then
state[i].labelOne ← state[j].labelTwo
state.pop(j) return True

else if state[i].isOriented and not state[j].isOriented and state[i].labelOne = state[j].labelOne then
state[i].labelOne ← state[j].labelTwo
state.pop(j) return True

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Pseudocode II

end if
end if

end for
end for

end function
while findReduction do

nothing
end while

end function

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Evaluating States

We count the number of circles and the powers of the ki in a state:

1 First, we count the number of circles that consist of only one arc. They have
no ki .

2 Choose an arc and search the remaining arcs for an adjacent arc. Combine
them into a long arc and repeat this reduction process until a circle is made.
Save the number of arrows(arcs) in the circle and increment the count of
circles. (Note that every arc in this circle has an arrow, otherwise it would
have been reduced. So there is no need to check for arrows.)

3 Repeat step 2 until all arcs have been counted.

We store the results in a list, where the first entry is the number of loops and the
following entries are the exponents of the ki .

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Example

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Pseudocode I

function determineLoopsAndStates(state)
result ← []
i ← 0
while i < |state| do

if state[i].labelOne = state[i].labelTwo then
result[0]← result[0] + 1
state.pop(i)

else i ← i + 1
end if

end while
while 0 < |state| do

first ← state[0].labelOne
last ← state[0].labelTwo
arrowCount ← 1
state.pop(0)
while first ̸= last do

if first = state[i].labelOne then
first ← state[i].labelTwo
state.pop(i)
arrowCount ← arrowCount + 1

else if first = state[i].labelTwo then
first ← state[i].labelOne
state.pop(i)
arrowCount ← arrowCount + 1

else if last = state[i].labelOne then
last ← state[i].labelTwo
state.pop(i)

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Pseudocode II

arrowCount ← arrowCount + 1
else if last = state[i].labelTwo then

last ← state[i].labelOne
state.pop(i)
arrowCount ← arrowCount + 1

else
i ← i + 1

end if
end while
result[0]← result[0] + 1
if 1 ≤ arrowCount/2 then

result[arrowCount/2]← result[arrowCount/2] + 1
end if

end whilereturn result
end function

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Summary

The final step is to compute

⟨K ⟩A =
∑
s∈S

Aα(s)−β(s)(−A2 − A−2)δ(s)−1⟨s⟩.

Aα(s)−β(s) is the weight we have associated with state s, δ(s) is the number of
circles in s we calculated on the previous page, and ⟨s⟩ =

∏
c∈s ki(c) which we also

calculated on the previous page.

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Putting It All Together

1 Convert Gauss code to signed planar diagram.

2 Calculate all states of planar diagram.

3 Reduce the crossings of each state.

4 Count the circles and number of arrows on each loop in each state.

5 Assemble the normalized arrow polynomial.

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Demonstration

Demonstration Time!

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Further Directions

Modify the algorithm to calculate the arrow polynomial of virtual links. The
program could take in a list of Gauss codes for the link components.
Implementing this would not require changing any of the algorithm after states
have been calculated.

Modify the program to enable the user to make substitutions. The initial
motivation for this program was to help find specializations of the arrow
polynomial that lead to the two Jones-type polynomials in (Boninger, 2022).
This modification would be useful for exploring that direction.

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

Further Directions

Modify the algorithm to calculate the arrow polynomial of virtual links. The
program could take in a list of Gauss codes for the link components.
Implementing this would not require changing any of the algorithm after states
have been calculated.

Modify the program to enable the user to make substitutions. The initial
motivation for this program was to help find specializations of the arrow
polynomial that lead to the two Jones-type polynomials in (Boninger, 2022).
This modification would be useful for exploring that direction.

Arrow
Polynomial
from a Gauss

Code

Mark Kikta

Preliminaries

The Algorithm

Demonstration

Further
Directions

References

References

Bhandari, K. (2009). Computing the Arrow Polynomial. Rose-Hulman
Undergraduate Mathematics Journal, 10(1). https://scholar.rose-hulman.edu
/rhumj/vol10/iss1/2

Boninger, J. (2022). The Jones Polynomial from a Goeritz Matrix. Bulletin of
the London Mathematical Society, 55(2), 732-755. https://doi.org/10.1112/
blms.12753

Chmutov, S. (2023). The Jones, HOMFLYPT, and Arrow Polynomials[Lecture
Notes]. https://people.math.osu.edu/chmutov.1/wor-gr-su23/jones-
HOMFLY-arrow%202023.pdf

	Preliminaries
	The Algorithm
	Demonstration
	Further Directions
	References

