Arrow Polynomial from a Gauss Code

Mark Kikta

Gauss Code

Arrow
Polynomial from a Gauss Code

Mark Kikta

Preliminaries

Definition

A Gauss code is a string that uniquely determines an underlying virtual knot. It may be obtained from a virtual knot diagram by fixing a starting point somewhere along then knot, fixing an orientation, and labelling the classical crossings of the diagram; then travelling along the diagram with the orientation and recording whether the strand we are on is the over- or under-crossing strand, the label of the crossing, and the sign of the crossing.

Example

Arrow
Polynomial from a Gauss

Code
Mark Kikta

Preliminaries
The Algorithm

Further

Directions
References

Positive Crossing

Negative Crossing

Example

Arrow
Polynomial from a Gauss

Code
Mark Kikta

Preliminaries
The Algorithm
Demonstration
Further
Directions
References

$\langle X\rangle$

Positive Crossing
(ג)
Negative Crossing
$\mathrm{O} 1-\mathrm{O} 2+\mathrm{U} 1-\mathrm{O} 3-\mathrm{U} 2+\mathrm{U} 4+\mathrm{U} 3-\mathrm{O} 4+$

Planar Diagrams

Arrow
Polynomial from a Gauss Code

Mark Kikta

Preliminaries The Algorithm

Definition

A signed planar diagram is a list of crossing information that uniquely determines an underlying virtual knot. It may be obtained from a virtual knot diagram by labelling the arcs and, for each crossing, recording its sign and the arcs meeting at the crossing, starting with the label on the tail of the over-crossing arc and proceeding clockwise (although this is not always the convention).

Example

Example

Arrow Polynomial from a Gauss Code

Mark Kikta

Preliminaries
The Algorithm Demonstration

$[+\mid 8,4,7,5],[-\mid 1,7,8,6],[+\mid 2,3,1,4],[-\mid 6,3,5,2]$

States of a Diagram

Arrow Polynomial from a Gauss

Code

Preliminaries The Algorithn Demonstration

Definition
A state of a diagram is a choice of an A-splitting or B-splitting at every crossing.

Some States of $4 _19$

Arrow Polynomial

Arrow
Polynomial from a Gauss

Code
Mark Kikta

Preliminaries
The Algorithm
Demonstratior

Let L be an oriented diagram. If an arc splitting disagrees with the orientation on L, put an arrow on each arc of the splitting, oriented counterclockwise.

Then on each state, remove all sets of two adjacent arrows pointing in the same direction.

Arrow Polynomial

Arrow Polynomial

Arrow
Polynomial from a Gauss Code

Arrow Polynomial

The arrow polynomial of a knot K is

$$
[K]_{A}\left(A, B, d, k_{i}\right)=\sum_{s \in S} A^{\alpha(s)} B^{\beta(s)} d^{\delta(s)-1}\langle s\rangle
$$

where $i(c)=$ half the number of remaining arrows on the circle c, $\langle s\rangle=\prod_{c \in s} k_{i(c)}, \alpha(s)=\#$ A-splittings in $s, \beta(s)=\#$ B-splittings in s, and $\delta(s)=\#$ circles in s.

Normalized Arrow Polynomial

$$
\langle K\rangle_{A}=[L]_{A}\left(A, A^{-1},\left(-A^{2}-A^{-2}\right), k_{i}\right)
$$

Gauss Code to Planar Diagram

Arrow
Polynomial from a Gauss Code

We need a data structure for Gauss codes and a data structure for planar diagrams:

■ We represent a Gauss code as a list of tuples (isOver, label, sign), where isOver is true iff the strand we are on is an over-crossing strand, label is the label of the crossing, and sign is true iff the crossing is positive.

Gauss Code to Planar Diagram

We need a data structure for Gauss codes and a data structure for planar diagrams:

- We represent a Gauss code as a list of tuples (isOver, label, sign), where isOver is true iff the strand we are on is an over-crossing strand, label is the label of the crossing, and sign is true iff the crossing is positive.
■ We represent a planar diagram as a list of tuples (sign, labels), where sign is true iff the crossing is positive and labels is an ordered list of the labels on the arcs around the crossing.

Gauss Code to Planar Diagram

Arrow
Polynomial from a Gauss

Code
Mark Kikta

Preliminaries The Algorithm

For each code in a Gauss code:
1 If this label has not yet been encountered, add a new crossing to the planar diagram. Record its sign and label the arcs on the strand we are travelling along.

2 If this label has already been encountered, add labels to the strand that has not yet been travelled along.

Example

Arrow
Polynomial from a Gauss

Code
Mark Kikta

Preliminaries
The Algorithm

Further

Directions
References

O1-O2+U1-O3-U2+U4+U3-O4+

Example

Arrow Polynomial from a Gauss Code Mark Kikta

Preliminaries The Algorithm Demonstration

Further

Directions

References

O1-O2+U1-O3-U2+U4+U3-O4+

 $[+\mid 8,4,7,5],[-\mid 1,7,8,6],[+\mid 2,3,1,4],[-\mid 6,3,5,2]$
Pseudocode

Arrow Polynomial from a Gauss Code

Mark Kikta

Preliminaries
The Algorithm Demonstration

Further

 DirectionsReferences

```
function GaussCodeToPlanarDiagram(gaussCode)
    crossings }\leftarrow{
    arcNumber }\leftarrow
    for code in gaussCode do
    nextArcNumber }\leftarrow(\mathrm{ arcNumber + 1)%|gaussCode 
    if code.label not in crossings then
            if code.isOver then
                crossings[code.label]}\leftarrowcrossing(code.sign, nextArcNumber,None, arcNumber,None
            else if code.sign then
            crossings[code.label] \leftarrow crossing(code.sign,None, arcNumber, None, nextArcNumber)
            else crossings[code.label]}\leftarrow crossing(code.sign, None, nextArcNumber,None, arcNumber
            end if
        else
            if code.isOver then
            crossings[code.label].labels[0] \leftarrow nextArcNumber
            crossings[code.label.labels[2] \leftarrowarcNumber
            else if code.sign then
                    crossings[code.label].labels[1] \leftarrow arcNumber
                    crossings[code.label.labels[3] \leftarrow nextArcNumber
            else
                        crossings[code.label].labels[1] \leftarrow nextArcNumber
            crossings[code.label.labels[3] \leftarrow arcNumber
            end if
        end if
    arcNumber }\leftarrow\mathrm{ arcNumber +1
    end forreturn crossings
end function
```


Crossing Expansion

Arrow
Polynomial from a Gauss Code

We need a data structure to represent an arc created from a splitting and a data structure to represent a state with arrows:

- The two arcs created from a splitting will be represented as tuples (isOriented, labelOne, labelTwo), where isOriented is true iff the arc has an arrow and labels one and two are inherited from the labels on the crossing.

Crossing Expansion

Arrow
Polynomial from a Gauss Code

We need a data structure to represent an arc created from a splitting and a data structure to represent a state with arrows:

- The two arcs created from a splitting will be represented as tuples (isOriented, labelOne, labelTwo), where isOriented is true iff the arc has an arrow and labels one and two are inherited from the labels on the crossing.
■ We represent a state as a tuple (weight, arcs), where weight is the power of A associated with the state and arcs is a list of arcs in the state.

Crossing Expansion

Arrow
Polynomial from a Gauss Code Mark Kikta Preliminaries The Algorithm Demonstration

We can recursively find each state by expanding crossings and updating the weight of the state at each step.

Crossing Expansion

Arrow
Polynomial from a Gauss Code Mark Kikta

Preliminaries The Algorithm

We can recursively find each state by expanding crossings and updating the weight of the state at each step.

$[$ True, $0,1,2,3]=A\left[\left(\right.\right.$ False, 1, 0), $($ False , 2, 3) $]+A^{-1}[($ True, 2, 1), $($ False, 0, 3) $]$
$[$ False, $0,1,2,3]=A\left[\left(\right.\right.$ True, 3, 2), $($ True , 1, 0) $]+A^{-1}[($ False, 2, 1), $($ False, 3, 0)

Pseudocode

Arrow Polynomial from a Gauss Code

Mark Kikta
reliminaries
The Algorithm
Demonstration
Further
Directions
References

```
function EXPANDCrossINGS(state)
    states }\leftarrow [
    function EXPANDCROSSING(i, state)
        if i=|state | then
            append state to states return
        end if
        crossing \leftarrow state[i]
        branchOne }\leftarrow\mathrm{ copy of state
        branchTwo }\leftarrow\mathrm{ copy of state
        if crossing.sign then
            branchOne.weight }\leftarrow\mathrm{ branchOne.weight * A
            append arc(False, crossing.labels[1], crossing.labels[0]) to branchOne
            append arc(False, crossing.labels[2], crossing.labels[3]) to branchOne
            branchTwo.weight }\leftarrow\mathrm{ branchTwo.weight/A
            append arc(True, crossing.labels[2], crossing.labels[1]) to branchOne
            append arc(True, crossing.labels[0], crossing.labels[3]) to branchOne
        else
            branchOne.weight }\leftarrow\mathrm{ branchOne.weight * A
            append arc(True, crossing.labels[3], crossing.labels[2]) to branchOne
            append arc(True, crossing.labels[1], crossing.labels[0]) to branchOne
            branchTwo.weight }\leftarrow\mathrm{ branchTwo.weight/A
            append arc(False, crossing.labels[2], crossing.labels[1]) to branchOne
            append arc(False, crossing.labels[3], crossing.labels[0]) to branchOne
        end if
        expandCrossing(i+1, branchOne)
        expandCrossing(i+1, branchTwo)
    end function
    expandCrossing(0, state(1, []))
end function
```


State Reduction

Arrow
Polynomial from a Gauss

Code
Mark Kikta
We need to cancel adjacent arrows oriented in the same direction, and we can reduce the number of arcs in the process to simplify further calculation. There are five possible cases:

Preliminaries The Algorithm

State Reduction

Arrow
Polynomial from a Gauss

Code
Mark Kikta The Algorithm

Preliminaries

We need to cancel adjacent arrows oriented in the same direction, and we can reduce the number of arcs in the process to simplify further calculation. There are five possible cases:

$[($ False, 1, 2), (False, 2, 3)] $\rightarrow($ False, 1, 3)
$[($ True , 1, 2), (True, 2, 3)] $\rightarrow($ False, 1, 3)

State Reduction

Arrow Polynomial from a Gauss

Code

$[($ True , 1, 2), (False , 2, 3)] $\rightarrow($ True , 1, 3)
$[($ False, 1, 2), (True , 2, 3)] $\rightarrow($ True , 1, 3)

Cannot be reduced!

Pseudocode I

Arrow Polynomial from a Gauss Code

Mark Kikta reliminaries The Algorithm Demonstration
Further
Directions
References

```
function REDUCESTATE(state)
    function FINDREDUCTION
        for i=0 to |state| do
            for }j=0\mathrm{ to |state| do
            if i\not=j then
                    if not state[i].isOriented and not state[j].isOriented and state[i].labelTwo = state[j].labelOne then
                        state[i].labelTwo \leftarrow state[j].labelTwo
                            state.pop(j) return True
                            else if not state[i].isOriented and not state[j].isOriented and state[i].labelTwo = state[j].labelTwo then
            state[i].labelTwo \leftarrow state[j].labelOne
                state.pop(j) return True
                    else if state[i].isOriented and state[j].isOriented and state[i].labelTwo = state[j].labelOne then
            state[i].labelTwo \leftarrow state[j].labelTwo
            state[i].isOriented }\leftarrow\mathrm{ False
            state.pop(j) return True
                    else if state[i].isOriented and not state[j].isOriented and state[i].labelTwo = state[j].labelOne then
                state[i].labelTwo \leftarrow state[j].labelTwo
                state.pop(j) return True
            else if state[i].isOriented and not state[j].isOriented and state[i].labelTwo = state[j].labelTwo then
                state[i].labelTwo \leftarrow state[j].labelOne
                state.pop(j) return True
            else if state[i].isOriented and not state[j].isOriented and state[i].labelOne = state[j].labelTwo then
                state[i].labelOne \leftarrow state[j].labelTwo
                state.pop(j) return True
            else if state[i].isOriented and not state[j].isOriented and state[i].labelOne = state[j].labelOne then
                state[i].labelOne \leftarrow state[j].labelTwo
                state.pop(j) return True
```


Pseudocode II

$\left.\begin{array}{|c|c|}\hline \text { Arrow } \\ \text { Polynomial } \\ \text { from a Gauss } \\ \text { Code }\end{array}\right)$

Evaluating States

We count the number of circles and the powers of the k_{i} in a state:
1 First, we count the number of circles that consist of only one arc. They have no k_{i}.

2 Choose an arc and search the remaining arcs for an adjacent arc. Combine them into a long arc and repeat this reduction process until a circle is made. Save the number of arrows(arcs) in the circle and increment the count of circles. (Note that every arc in this circle has an arrow, otherwise it would have been reduced. So there is no need to check for arrows.)
3 Repeat step 2 until all arcs have been counted.
We store the results in a list, where the first entry is the number of loops and the following entries are the exponents of the k_{i}.

Example

Arrow Polynomial from a Gauss Code

Mark Kikta

$$
\longrightarrow[1,1]
$$

Pseudocode I

Arrow
Polynomial from a Gauss Code

Mark Kikta

Preliminaries

```
function DETERMINELOOPSANDSTATES(state)
    result \leftarrow []
    i
    while i< |state| do
        if state[i].labelOne = state[i].labelTwo then
            result[0]}\leftarrow\mathrm{ result [0] + 1
            state.pop(i)
        else i}\leftarrowi+
        end if
    end while
    while 0< |state | do
        first }\leftarrow\mathrm{ state[0].labelOne
        last }\leftarrow\mathrm{ state[0].labelTwo
        arrowCount }\leftarrow
        state.pop(0)
        while first }\not=\mathrm{ last do
            if first = state[i].labelOne then
            first }\leftarrow\mathrm{ state[i].labelTwo
            state.pop(i)
            arrowCount }\leftarrow\mathrm{ arrowCount +1
            else if first = state[i].labelTwo then
            first }\leftarrow\mathrm{ state[i].labelOne
            state.pop(i)
            arrowCount }\leftarrow\mathrm{ arrowCount +1
            else if last = state[i].labelOne then
            last }\leftarrow\mathrm{ state[i].labelTwo
            state.pop(i)
```


Pseudocode II

Arrow
Polynomial from a Gauss

Code
Mark Kikta

Preliminaries
The Algorithm
arrowCount \leftarrow arrowCount +1 else if last $=$ state[i].labelTwo then
last \leftarrow state $[i]$.labelOne
state.pop(i)
arrowCount \leftarrow arrowCount +1 else
$i \leftarrow i+1$
end if

end while

result $[0] \leftarrow$ result $[0]+1$
if $1 \leq$ arrowCount/ 2 then
result[arrowCount/2] \leftarrow result[arrowCount/2] +1
end if
end whilereturn result
end function

Summary

Arrow
Polynomial from a Gauss Code

Mark Kikta

Preliminaries The Algorithm Demonstration

The final step is to compute

$$
\langle K\rangle_{A}=\sum_{s \in S} A^{\alpha(s)-\beta(s)}\left(-A^{2}-A^{-2}\right)^{\delta(s)-1}\langle s\rangle .
$$

$A^{\alpha(s)-\beta(s)}$ is the weight we have associated with state $s, \delta(s)$ is the number of circles in s we calculated on the previous page, and $\langle s\rangle=\prod_{c \in s} k_{i(c)}$ which we also calculated on the previous page.

Putting It All Together

Arrow
Polynomial from a Gauss

Code
Mark Kikta

Preliminaries The Algorithm Demonstration

1 Convert Gauss code to signed planar diagram.
2 Calculate all states of planar diagram.
3 Reduce the crossings of each state.
4 Count the circles and number of arrows on each loop in each state.
5 Assemble the normalized arrow polynomial.

Demonstration

Demonstration Time!

Further Directions

■ Modify the algorithm to calculate the arrow polynomial of virtual links. The program could take in a list of Gauss codes for the link components. Implementing this would not require changing any of the algorithm after states have been calculated.

Further Directions

■ Modify the algorithm to calculate the arrow polynomial of virtual links. The program could take in a list of Gauss codes for the link components. Implementing this would not require changing any of the algorithm after states have been calculated.

- Modify the program to enable the user to make substitutions. The initial motivation for this program was to help find specializations of the arrow polynomial that lead to the two Jones-type polynomials in (Boninger, 2022). This modification would be useful for exploring that direction.

References

- Bhandari, K. (2009). Computing the Arrow Polynomial. Rose-Hulman Undergraduate Mathematics Journal, 10(1). https://scholar.rose-hulman.edu /rhumj/vol10/iss1/2
■ Boninger, J. (2022). The Jones Polynomial from a Goeritz Matrix. Bulletin of the London Mathematical Society, 55(2), 732-755. https://doi.org/10.1112/ blms. 12753
■ Chmutov, S. (2023). The Jones, HOMFLYPT, and Arrow Polynomials[Lecture Notes]. https://people.math.osu.edu/chmutov.1/wor-gr-su23/jones-HOMFLY-arrow\ 2023.pdf

