Goeritz Matrices, Tait Graphs, Matroids, and Polynomials

Mark Kikta

Goeritz Matrix

Definition

Let $D \subset \mathbb{R}^{2}$ be a link diagram, and shade one of the checkerboard surfaces bounded by D. Label the unshaded regions of $\mathbb{R}^{2} \backslash D$ by $X_{0}, X_{1}, \ldots, X_{n}$. An unreduced Goeritz Matrix \tilde{G} of D is given by

$$
\tilde{g}_{i j}= \begin{cases}\sum_{c \text { adjacent to } x_{i} \text { and } x_{k}} \sigma(c), & i \neq j \\ -\sum_{k \neq i} g_{i k}, & i=j\end{cases}
$$

The Goeritz matrix G is obtained by deleting a row and column of \tilde{G}.

A Few Matrices

Goeritz Graphs,

Fix $g_{i j}$ with $i \neq j$.

- Let $G_{i j}^{\prime}$ be the symmetric matrix obtained from G by the following operations:

$$
\begin{aligned}
& g_{i i} \mapsto g_{i i}+g_{i j} \\
& g_{j j} \mapsto g_{j j}+g_{i j} \\
& g_{i j}, g_{j i} \mapsto 0 .
\end{aligned}
$$

A Few Matrices

Fix $g_{i j}$ with $i \neq j$.

- Let $G_{i j}^{\prime}$ be the symmetric matrix obtained from G by the following operations:

$$
\begin{aligned}
& g_{i i} \mapsto g_{i i}+g_{i j} \\
& g_{j j} \mapsto g_{j j}+g_{i j} \\
& g_{i j}, g_{j i} \mapsto 0 .
\end{aligned}
$$

■ Let $G_{i j}^{\prime \prime}$ be the symmetric matrix obtained from G by the following operations:

$$
\begin{aligned}
& g_{i i} \mapsto g_{i i}+g_{j j}+2 g_{i j} \\
& g_{i k} \mapsto g_{i k}+g_{j k}, \text { for all } k \neq i \\
& g_{k i} \mapsto g_{k i}+g_{k j}, \text { for all } k \neq i
\end{aligned}
$$

Delete the j th row and column.

A Few Matrices

Fix $g_{i j}$ with $i \neq j$.

- Let $G_{i j}^{\prime}$ be the symmetric matrix obtained from G by the following operations:

$$
\begin{aligned}
& g_{i i} \mapsto g_{i i}+g_{i j} \\
& g_{j j} \mapsto g_{j j}+g_{i j} \\
& g_{i j}, g_{j i} \mapsto 0 .
\end{aligned}
$$

■ Let $G_{i j}^{\prime \prime}$ be the symmetric matrix obtained from G by the following operations:

$$
\begin{aligned}
& g_{i i} \mapsto g_{i i}+g_{j j}+2 g_{i j} \\
& g_{i k} \mapsto g_{i k}+g_{j k}, \text { for all } k \neq i \\
& g_{k i} \mapsto g_{k i}+g_{k j}, \text { for all } k \neq i
\end{aligned}
$$

Delete the j th row and column.
■ Let G_{i}^{\prime} be the symmetric matrix obtained by deleting the i th row and column of G.

Definition

Define $\mu:\{$ symmetric integer polynomials $\} \rightarrow \mathbb{Z}\left[A^{ \pm 1}\right]$ recursively:
1 If G is empty, $\mu[G]=1$.
2 For any $g_{i j}$ with $i \neq j$

$$
\mu[G]=A^{-g_{i j}} \mu\left[G_{i j}^{\prime}\right]+P_{-g_{i j}}(A) \mu\left[G^{\prime \prime}{ }_{i j}\right] .
$$

3 If $g_{i i}$ is such that $g_{i \ell}=0$ for all $\ell \neq i$, then

$$
\mu[G]=\left(A^{g_{i i}}\left(-A^{-2}-A^{2}\right)+P_{g_{i i}}(A)\right) \mu\left[G_{i}^{\prime}\right] .
$$

Where $P_{n} \in \mathbb{Z}\left[A^{ \pm 1}\right]$ with $n \in \mathbb{Z}$ is defined by

$$
P_{n}(A)=\sum^{|n|}(-1)^{j-1} A^{\operatorname{sgn}(n)(|n|-4 j+2)}
$$

Example

$$
\begin{aligned}
\begin{array}{c}
\text { Goeritz } \\
\text { Matrices, Tait } \\
\text { Graphs, } \\
\text { Matroids, and } \\
\text { Polynomials }
\end{array} \\
\text { Mark Kikta }
\end{aligned} \quad \begin{aligned}
\text { G }
\end{aligned}
$$

Tait Graphs

Definition

Let D be a checkerboard-colorable link diagram, and let S be a checkerboard surface bounded by D. The Tait graph of D and S is the signed graph formed by assigning a vertex to each region of S and an edge to each crossing $c \in D$ that connects the vertices assigned to shaded regions adjacent to c. Assign the weight $\sigma(c)$ to the edge assigned to c.

Goeritz Matrix Revisited

Definition

Let $D \in \mathbb{R}^{2}$ be a checkerboard colorable link diagram, and let Γ be a Tait Graph of D. Label the regions of $\mathbb{R}^{2} \backslash \Gamma$ by $X_{0}, X_{1}, \ldots, X_{n}$, and let $C_{i}=\partial X_{i} \subset \Gamma$. An unreduced Goeritz matrix \tilde{G} of D is given by

$$
\tilde{g}_{i j}= \begin{cases}\sum_{e \in C_{i} \cap C_{j}} \sigma(e), & i \neq j \\ -\sum_{e \in C_{i}} \sigma(e), & i=j\end{cases}
$$

The Goeritz matrix G is obtained by deleting a row and column of \tilde{G}.

Goeritz Matrix Revisited

Definition

Let $D \in \mathbb{R}^{2}$ be a checkerboard colorable link diagram, and let Γ be a Tait Graph of D. Label the regions of $\mathbb{R}^{2} \backslash \Gamma$ by $X_{0}, X_{1}, \ldots, X_{n}$, and let $C_{i}=\partial X_{i} \subset \Gamma$. An unreduced Goeritz matrix \tilde{G} of D is given by

$$
\tilde{g}_{i j}= \begin{cases}\sum_{e \in C_{i} \cap C_{j}} \sigma(e), & i \neq j \\ -\sum_{e \in C_{i}} \sigma(e), & i=j\end{cases}
$$

The Goeritz matrix G is obtained by deleting a row and column of \tilde{G}.

- This definition is clearly equivalent to the previous.

Example

Goeritz
Matrices, Tait Graphs, Matroids, and Polynomials

Mark Kikta

Goeritz Matri

Tait Graphs
Matroids
Main Results References

Tait Graph of Trefoil Knot

Example

Goeritz
Matrices, Tait Graphs, Matroids, and Polynomials

Goeritz Matrix

Tait Graphs
Matroids
Main Results
References

Tait Graph of Trefoil Knot

$$
\begin{aligned}
& \tilde{G}=\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right] \\
& G=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

Matroids

Definition
Let E be a finite set, and $\mathcal{C} \subset \mathcal{P}(E)$ be a set such that:
$1 \emptyset \notin \mathcal{C}$.
2 If $C \in \mathcal{C}$ and $B \subsetneq C$, then $B \notin \mathcal{C}$.
3 If $C, C^{\prime} \in \mathcal{C}$ with $C \neq C^{\prime}$ and $e \in C \cap C^{\prime}$, then there exists
$D \subset\left(C \cup C^{\prime}\right) \backslash\{e\}$ such that $D \in \mathcal{C}$.
E is a ground set, C is a collection of circuits, and the pair $M=(E, \mathcal{C})$ is a matroid.

Matroids

Definition

Let E be a finite set, and $\mathcal{C} \subset \mathcal{P}(E)$ be a set such that:
$1 \emptyset \notin \mathcal{C}$.
2 If $C \in \mathcal{C}$ and $B \subsetneq \mathcal{C}$, then $B \notin \mathcal{C}$.
3 If $C, C^{\prime} \in \mathcal{C}$ with $C \neq C^{\prime}$ and $e \in C \cap C^{\prime}$, then there exists
$D \subset\left(C \cup C^{\prime}\right) \backslash\{e\}$ such that $D \in \mathcal{C}$.
E is a ground set, C is a collection of circuits, and the pair $M=(E, \mathcal{C})$ is a matroid.

Definitions

$e \in E$ is a loop if $\{e\} \in \mathcal{C}$, and e is a coloop if $e \neq C$ for all $C \in \mathcal{C}$. A maximal subset B of E such that $C \not \subset B$ for all $C \in \mathcal{C}$ is a basis of M. The dual matroid M^{*} of a matroid M is the matroid such that a set is a basis of M^{*} if and only if it is the complement of a a basis of M.

Graphic \& Cographic Matroids

Goeritz
Matrices, Tait Graphs, Matroids, and Polynomials Mark Kikta Goeritz Matrix

Tait Graphs
Matroids
Main Results
References

- Let Γ be an undirected graph.

Graphic \& Cographic Matroids

- Let Γ be an undirected graph.

Definition

The cycle matroid $M(\Gamma)$ is the matroid defined by the condition that circuits of $M(\Gamma)$ are simple cycles of Γ. A matroid that is isomoprhic to the cycle matroid of some graph is a graphic matroid.

Graphic \& Cographic Matroids

- Let Γ be an undirected graph.

Definition

The cycle matroid $M(\Gamma)$ is the matroid defined by the condition that circuits of $M(\Gamma)$ are simple cycles of Γ. A matroid that is isomoprhic to the cycle matroid of some graph is a graphic matroid.

Definition

The bond matroid $B(\Gamma)$ is the matroid defined by the condition that circuits of $B(\Gamma)$ are minimal cut-sets of Γ. A matroid that is isomorphic to the bond matroid of some graph is said to be a cographic matroid.

Graphic \& Cographic Matroids

- Let Γ be an undirected graph.

Definition

The cycle matroid $M(\Gamma)$ is the matroid defined by the condition that circuits of $M(\Gamma)$ are simple cycles of Γ. A matroid that is isomoprhic to the cycle matroid of some graph is a graphic matroid.

Definition

The bond matroid $B(\Gamma)$ is the matroid defined by the condition that circuits of $B(\Gamma)$ are minimal cut-sets of Γ. A matroid that is isomorphic to the bond matroid of some graph is said to be a cographic matroid.

- $M(\Gamma)$ and $B(\Gamma)$ are dual.

Example

Goeritz
Matrices, Tait Graphs,
Matroids, and Polynomials

Mark Kikta
Goeritz Matrix

Tait Graphs
Matroids
Main Results
References

Tait Graph of Trefoil Knot

Example

Goeritz Matrices, Tait Graphs, Matroids, and Polynomials

Mark Kikta
Goeritz Matrix

Tait Graphs
Matroids
Main Results
References

Tait Graph of Trefoil Knot

Let $\Gamma=(E, V, \sigma)$ be the Tait graph of the trefoil knot. The cut-sets of Γ are $\mathcal{C}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\},\left\{e_{1}, e_{3}\right\}\right\}$. So, $B(\Gamma)=(E, \mathcal{C})$

More about Matroids

Goeritz
Matrices, Tait Graphs, Matroids, and Polynomials Mark Kikta Goeritz Matrix

Tait Graphs Matroids

Main Results References

- Let $M=(E, \mathcal{C})$ be a matroid.

More about Matroids

Goeritz
Matrices, Tait Graphs, Matroids, and Polynomials

Mark Kikta
Goeritz Matri

Tait Graphs
Matroids
Main Results

- Let $M=(E, \mathcal{C})$ be a matroid.

Definition

A colored matroid $M=(E, \mathcal{C}, \sigma)$ is a matroid $M=(E, \mathcal{C})$ equipped with a coloring function $\sigma: E \rightarrow \mathbb{Z}$.

More about Matroids

- Let $M=(E, \mathcal{C})$ be a matroid.

Definition

A colored matroid $M=(E, \mathcal{C}, \sigma)$ is a matroid $M=(E, \mathcal{C})$ equipped with a coloring function $\sigma: E \rightarrow \mathbb{Z}$.

Definition

Let $[E]$ denote the $\mathbb{Z} / 2 \mathbb{Z}$-vector space generated by E, and for $A \subset E$ let $\bar{A} \in[E]$ be $\bar{A}=\sum_{a \in A} a$. Define the circuit space of M to be the subspace of $[E]$ generated by $\{\bar{C} \mid C \in \mathcal{C}\}$. A 2-basis is a set $\mathcal{B}=\left\{C_{1}, \ldots, C_{n}\right\} \subset \mathcal{C}$ such that $\left\{\overline{C_{1}}, \ldots, \overline{C_{n}}\right\}$ is a basis for the circuit space of M and such that for $C_{i}, C_{j}, C_{k} \in \mathcal{B}$ with $C_{i} \neq C_{j} \neq C_{k}, C_{i} \cap C_{j} \cap C_{k}=\emptyset$.

More about Matroids

- Let $M=(E, \mathcal{C})$ be a matroid.

Definition

A colored matroid $M=(E, \mathcal{C}, \sigma)$ is a matroid $M=(E, \mathcal{C})$ equipped with a coloring function $\sigma: E \rightarrow \mathbb{Z}$.

Definition

Let $[E]$ denote the $\mathbb{Z} / 2 \mathbb{Z}$-vector space generated by E, and for $A \subset E$ let $\bar{A} \in[E]$ be $\bar{A}=\sum_{a \in A} a$. Define the circuit space of M to be the subspace of $[E]$ generated by $\{\bar{C} \mid C \in \mathcal{C}\}$. A 2-basis is a set $\mathcal{B}=\left\{C_{1}, \ldots, C_{n}\right\} \subset \mathcal{C}$ such that $\left\{\overline{C_{1}}, \ldots, \overline{C_{n}}\right\}$ is a basis for the circuit space of M and such that for $C_{i}, C_{j}, C_{k} \in \mathcal{B}$ with $C_{i} \neq C_{j} \neq C_{k}, C_{i} \cap C_{j} \cap C_{k}=\emptyset$.

- All cographic matroids admit a 2-basis.

Example

Goeritz
Matrices, Tait Graphs,
Matroids, and Polynomials

Mark Kikta
■ Let $M=B(\Gamma)=(E, \mathcal{C})$ where $\left.\mathcal{C}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\},\left\{e_{1}, e_{3}\right\}\right\}\right)$, as in the previous example. It is easy to check that \mathcal{C} is a 2-basis of M.

Example

■ Let $M=B(\Gamma)=(E, \mathcal{C})$ where $\left.\mathcal{C}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\},\left\{e_{1}, e_{3}\right\}\right\}\right)$, as in the previous example. It is easy to check that \mathcal{C} is a 2-basis of M.
■ More generally, for any bond matroid $B(\Gamma)$ of a graph Γ with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$, the set $\mathcal{A}=\left\{A_{i}, \ldots, A_{n}\right\}$ where

$$
A_{i}=\left\{e \in E:\{e\} \notin M^{*}, v_{i} \text { is an endpoint of } e\right\}
$$

is a 2-basis of $B(\Gamma)$.

Goeritz Matrix Revisited (Again)

Definition

Let $M=(E, \mathcal{C}, \sigma)$ be a cographic matroid and $\mathcal{B}=\left\{C_{1}, \ldots, C_{n}\right\}$ be a 2-basis of M. A pre-Goeritz matrix \tilde{G} of M is defined by

$$
\tilde{g}_{i j}= \begin{cases}\sum_{e \in C_{i} \cap C_{j}} \sigma(e), & i \neq j \\ -\sum_{e \in C_{i}} \sigma(e), & i=j\end{cases}
$$

The Goeritz matrix G is obtained by deleting a row and column of G.

Goeritz Matrix Revisited (Again)

Definition

Let $M=(E, \mathcal{C}, \sigma)$ be a cographic matroid and $\mathcal{B}=\left\{C_{1}, \ldots, C_{n}\right\}$ be a 2-basis of M. A pre-Goeritz matrix \tilde{G} of M is defined by

$$
\tilde{g}_{i j}= \begin{cases}\sum_{e \in C_{i} \cap C_{j}} \sigma(e), & i \neq j \\ -\sum_{e \in C_{i}} \sigma(e), & i=j\end{cases}
$$

The Goeritz matrix G is obtained by deleting a row and column of G.
■ It turns out that cographic matroids are the right setting for us because every symmetric integer matrix is the Goeritz matrix of some signed cographic matroid.

Example

Goeritz Matrices, Tait Graphs,

Let $M=B(\Gamma)=(E, \mathcal{C}, \sigma)$ where $\left.\mathcal{C}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\},\left\{e_{1}, e_{3}\right\}\right\}\right)$, as in the previous two examples, and σ is induced by Γ. Recall that \mathcal{C} is a 2 -basis of M. Then,

$$
\begin{gathered}
\tilde{G}=\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right] \\
G=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] .
\end{gathered}
$$

μ is Related to The Kauffman Bracket

Theorem 1

Let D be a non-split link diagram, S be a checkerboard surface bounded by D, and G be the Goeritz matrix of D and S. Then,

$$
\langle D\rangle=(-A)^{-3 w_{0}(D, S)} \mu[G]
$$

where $w_{0}(D, S)$ is the writhe of the crossings $c \in D$ such that there exists a simple closed curve that intersects S only at c. (These crossings are called S-nugatory.)

Proof Sketch

Goeritz Matrices, Tait Graphs,

- Thistlethwaite's polynomial τ is a polynomial of matroids that is defined recursively in terms of contractions and deletions of edges in matroids, similarly to the definition of the Tutte polynomial for graphs.

Proof Sketch

Goeritz Matrices, Tait Graphs,

- Thistlethwaite's polynomial τ is a polynomial of matroids that is defined recursively in terms of contractions and deletions of edges in matroids, similarly to the definition of the Tutte polynomial for graphs.
- It is easy to track what happens to the Goeritz matrix when a contraction or deletion occurs. These moves correspond to the matrices $G_{i j}^{\prime}, G_{i j}^{\prime \prime}$, and G_{i}^{\prime} defined earlier.

Proof Sketch

- Thistlethwaite's polynomial τ is a polynomial of matroids that is defined recursively in terms of contractions and deletions of edges in matroids, similarly to the definition of the Tutte polynomial for graphs.
■ It is easy to track what happens to the Goeritz matrix when a contraction or deletion occurs. These moves correspond to the matrices $G_{i j}^{\prime}, G_{i j}^{\prime \prime}$, and G_{i}^{\prime} defined earlier.
- Let G be the Goeritz matrix of a signed cographic matroid M. Using these observations, you can prove by induction on the size of G that $\mu[G]$ is equal to $\tau[M]$ up to a power of $-A$ (which happens to be $w_{0}(D, S)$ for the bond matroid of a Tait graph).

Proof Sketch

- Thistlethwaite's polynomial τ is a polynomial of matroids that is defined recursively in terms of contractions and deletions of edges in matroids, similarly to the definition of the Tutte polynomial for graphs.
■ It is easy to track what happens to the Goeritz matrix when a contraction or deletion occurs. These moves correspond to the matrices $G_{i j}^{\prime}, G_{i j}^{\prime \prime}$, and G_{i}^{\prime} defined earlier.
- Let G be the Goeritz matrix of a signed cographic matroid M. Using these observations, you can prove by induction on the size of G that $\mu[G]$ is equal to $\tau[M]$ up to a power of $-A$ (which happens to be $w_{0}(D, S)$ for the bond matroid of a Tait graph).
- Then if Γ is a Tait graph of a non-split link diagram $D, \tau[B(\Gamma)]=\langle D\rangle$.

Recovering the Jones Polynomial

Goeritz Matrices, Tait Graphs, Matroids, and Polynomials Mark Kikta Goeritz Matri

Tait Graphs

Matroids
Main Results

- Of course if the writhe of the diagram D is known, then you can recover the Jones polynomial

$$
J_{K}(t)=\left[(-A)^{3\left(w_{0}(D, S)-w(D)\right)} \mu[G]\right]_{t^{1 / 2}=A^{-2}}
$$

Recovering the Jones Polynomial

- Of course if the writhe of the diagram D is known, then you can recover the Jones polynomial

$$
J_{K}(t)=\left[(-A)^{3\left(w_{0}(D, S)-w(D)\right)} \mu[G]\right]_{t^{1 / 2}=A^{-2}}
$$

Theorem 2

If, however, the checkerboard surface S of D is orientable, which happens to be equivalent to the condition that the diagonal entries of G are all even, then

$$
J_{k}(t)=\left[(-A)^{3\left(\sum_{i \leq j} g_{i j}\right)} \mu[G]\right]_{t^{1 / 2}=A^{-2}}
$$

- This result relies on the homology of S.

Example

We found in our first example that one of the Goeritz matrices of the left-handed trefoil knot is $G=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and that $\mu[G]=A^{7}-A^{3}-A^{-5}$. Observe that the diagonal entries of G are all even. So, we have that

$$
\begin{aligned}
J_{K}(t) & =\left[(-A)^{9}\left(A^{7}-A^{3}-A^{-5}\right)\right]_{t^{1 / 2}=A^{-2}} \\
& =\left[-A^{16}+A^{12}+A^{4}\right]_{t^{1 / 2}=A^{-2}} \\
& =t^{-1}+t^{-3}-t^{-4} .
\end{aligned}
$$

References

Goeritz
Matrices, Tait Graphs, Matroids, and Polynomials Mark Kikta

- Boninger, J. (2022). The Jones Polynomial from a Goeritz Matrix. Bulletin of the London Mathematical Society, 55(2), 732-755. https://doi.org/10.1112/blms. 12753

