Ribbon Graphs and the Bollobás-Riordan polynomial

G. Black
The Ohio State University
July 14, 2023

Ribbon Graphs

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

References

Definition 1

A ribbion graph G is a surface with a boundary represented by closed topological discs called verticies $V(G)$ and edges $E(G)$, satisfying the following conditions

■ the vertices and edges intersect by disjoint line segments

- each such line segment lies on the boundary of only one vertex and only one edge
■ every edge contains 2 line segments

Orientation of Ribbons

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

References

Definition 2

An edge of a ribbon graph is orientable if the direction of rotation around a vertex is the same before and after traveling through an edge

Non-Orientable

Ribbon Graph Arrow Representation

Ribbon
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

References

Definition 3

An arrow representation is the replacement of the edges of a ribbon graph with arrows satisfying the following conditions

■ Every edge becomes 2 arrows that are on the 2 vertices the edge connects

- Each arrow is assigned a clockwise or counterclockwise orientation around the vertex it lies on
- If an edge is orientable both arrows associated to the edge have the same orientation. If an edge is non-orientable then both arrows associated with the edge have opposite orientations

Example of Arrow Representation

Ribbon
Graphs and the Bollobás-

Riordan polynomial

```
G. Black
```

Ribbon graphs Partial duality

Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

References

Ribbon Graph Partial Duality

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

References

Definition 4

Let $E^{\prime} \subset E(G)$. The partial dual $G^{E^{\prime}}$ of the graph G with respect to edges in E^{\prime} is given by letting the line segments in E^{\prime} now belong to $V\left(G^{E^{\prime}}\right)$ and adding an arrow to each side of the edges we are taking the dual of. Also, each pair of new arrows has the same orientation.

Remark 1

The following are properties of partial duality:

- If $e \notin E^{\prime}$ then $\left(G^{E^{\prime}}\right)^{\{e\}}=G^{E^{\prime} \cup e}$
- $\left(G^{E^{\prime}}\right)^{E^{\prime}}=G$
- Partial duality preserves orientability of ribbon graphs
- Partial duality conserves the number of connected components of a ribbon graph

Example 1

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive
Relationships
References

We will look at an example by calculating $G^{\{1,3\}}$ of the following ribbon graph

Partial dual of an edge

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

References

Next we will look at what happens to $G^{\{e\}}$ where e is a single edge.
Case 1: if e is an edge connecting 2 vertices

$$
\begin{aligned}
& \rightarrow \vec{e} \quad \overrightarrow{A^{\prime}}=G^{\{e\}}
\end{aligned}
$$

Case 2: if e is an orientable loop

Partial dual of an edge

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás
Riordian
polynomial
Ribbon Graphs and Knots

Recursive
Relationships
References

Case 3: if e is a non-orientable loop

Contraction-Deletion Operations

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás
Riordian
polynomial
Ribbon Graphs and Knots

Recursive
Relationships
References

Definition 5

The deletion of an edge $G-e$ is defined to be the ribbon graph without the edge e

Definition 6

The contraction of an edge $G / e=G^{\{e\}}-e$ is the deletion of edge e on the partial dual graph of G with respect to edge e.

Contraction on a Single Edge

Ribbon
Graphs and the Bollobás-

Riordan polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

References

Case 1: If e connects 2 vertices

Case 1: If e is an orientable loop

$$
G=: \vec{A} \quad \therefore \quad B: B:=G / e .
$$

Case 1: If e is a non-orientable loop

Signed Ribbon Graph

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

References

For a Ribbon graph we can assign a function $\epsilon: E(G) \rightarrow\{+1,-1\}$ which assigns a sign to each edge of the Ribbon graph

Definition 7

With a signed ribbon graph we define the following functions that depend on the sign of an edge.

$$
\begin{align*}
& x_{\epsilon}=\left\{\begin{array}{l}
x_{+}=1 \\
x_{-}=\left(\frac{X}{Y}\right)^{1 / 2}
\end{array}\right. \tag{1}\\
& y_{\epsilon}=\left\{\begin{array}{l}
y_{+}=1 \\
y_{-}=\left(\frac{Y}{X}\right)^{1 / 2}
\end{array}\right. \tag{2}
\end{align*}
$$

Bollobás-Riordian Polynomial

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

References

Definition 8

- $k(G):=\#($ connected components of $G)$
- $b c(G):=$ \#(boundary components of G)
- The rank of a ribbon graph is $r(G):=v(G)-k(G)$
- The nullity of a ribbon graph is $n(G):=e(G)-r(G)$

Definition 9

The Bollobás Riordian polynomial is defined as follows where F is a sub-graph of G with the same number of vertices.

$$
R_{G}(X, Y, Z)=\sum_{F \subseteq G}\left(\prod_{\epsilon \in F} x_{\epsilon}\right)\left(\prod_{\epsilon \notin F} y_{\epsilon}\right) X^{r(G)-r(F)} Y^{n(F)} Z^{k(F)-b c(F)+n(F)}
$$

Partial Duality and Bollobás-Rioridan Polynomial

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs Partial duality

BollobásRiordian polynomial

Ribbon Graphs and Knots

Recursive Relationships

References

Remark 2

For signed ribbon graphs we alternate the signs of the dual edges in the partial dual graph. So for $e \in E^{\prime}$ we have $\epsilon_{G}(e)=-\epsilon_{G^{\left\{E^{\prime}\right\}}}(e)$

Theorem 10

The restriction of the polynomial

$$
X^{k(G)} Y^{\vee(G)} Z^{\vee(G)+1} R_{G}(X, Y, Z)
$$

to the surface $X Y Z^{2}=1$ is invariant under partial duality. In other words, for any choice of edges E^{\prime}, if $G^{\prime}=G^{\left\{E^{\prime}\right\}}$ then

$$
\begin{aligned}
& \left.X^{k(G)} Y^{\vee(G)} Z^{\vee(G)+1} R_{G}(X, Y, Z)\right|_{X Y Z^{2}=1} \\
= & \left.X^{k\left(G^{\prime}\right)} Y^{\vee\left(G^{\prime}\right)} Z^{\vee\left(G^{\prime}\right)+1} R_{G^{\prime}}(X, Y, Z)\right|_{X Y Z^{2}=1}
\end{aligned}
$$

Ribbon Graphs and Knots

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

References

Definition 11

For a Kauffman state s of a knot K (possibly virtual) we define the ribbon graph G_{s} as follows.

1 At every A splitting add a positive signed ribbon with arrow representation as depicted below.
2 At every B splitting add a negative signed ribbon with arrow representation as depicted below.

A-split
B-split

Example

Ribbon Graphs and the BollobásRiordan polynomial G. Black

We will Look at an example of the Virtual Trefoil with the state where we take all crossings to be B-splittings so all edges are negative

Partial Dual Graphs of Ribbon Graph of a Knot

Ribbon

Theorem 12

Let $G_{s}^{\left\{E^{\prime}\right\}}$ be the dual graph with respect to the set of edges E^{\prime} of G_{s}. Let C^{\prime} be the set of classical crossings of the knot that become the edges E^{\prime} of G_{s}. if G_{s} is obtained from a Kauffman state s then $G_{s}^{\left\{E^{\prime}\right\}}=G_{s^{\prime}}$ where s^{\prime} is the Kauffman state obtained by switching all A-splittings of crossings in C^{\prime} to B-Splittings and vice versa.

Proof of Theorm

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive
Relationships
References

Proof: Because of the equation, If $e \notin E^{\prime}$ then $\left(G^{E^{\prime}}\right)^{\{e\}}=G^{E^{\prime} \cup e}$, we need to only prove this theorem for the case where $E^{\prime}=\{e\}$. Also, Since we have that $\left(G^{\{e\}}\right)^{\{e\}}=G$ if $G^{\{e\}}$ will cause an A-splitting to switch to a B-splitting then we will also have that it will cause B-splittings to switch to A-splittings. Depicted below shows this partial dual when applied to an A-splitting.

Retrieving the Kauffman Bracket

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

References

In the paper [CV], for a specific state s^{\prime} they called the Seifert state it was shown that:

$$
\langle L\rangle(A, B, d)=A^{e\left(G_{s^{\prime}}\right)}\left(\left.X^{k\left(G_{s^{\prime}}\right)} Y^{\vee\left(G_{s^{\prime}}\right)} Z^{v\left(G_{s^{\prime}}\right)+1} R_{G_{s^{\prime}}}(X, Y, Z)\right|_{X=\frac{A B}{B}, Y=\frac{B d}{A}, Z=\frac{1}{d}}\right)
$$

So from the previous 2 theorems we have for any state s of a Knot

$$
\langle L\rangle(A, B, d)=A^{e\left(G_{s}\right)}\left(\left.X^{k\left(G_{s}\right)} Y^{v\left(G_{s}\right)} Z^{\vee\left(G_{s}\right)+1} R_{G_{s}}(X, Y, Z)\right|_{X=\frac{A d}{B}, Y=\frac{B d}{A}, Z=\frac{1}{d}}\right)
$$

Recursive Relationships for the Bollobás-Riordian Polynomial

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

References

For any Bollobás-Riordian polynomial the following recursive relationships hold.

- If e is an ordinary edge. (not a loop or bridge)

$$
R_{G}=x_{\epsilon} R_{G / e}+y_{\epsilon} R_{G-e}
$$

- If e is a bridge

$$
R_{G}=\left(x_{\epsilon}+X y_{\epsilon}\right) R_{G / e}
$$

- If e is a non-orientable loop

$$
Y Z x_{\epsilon} R_{G}+y_{\epsilon} R_{G-e}
$$

Trivial loops

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Definition 13

A loop of a Ribbon Graph is trivial if there does not exist a path from one side of the loop to the other, such that the path is disjoint from the loop.

Trivial

non-Trivial

Recursive Relationships for Orientable Loops

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships
References

The following are recursive relationships for loops of the Bollobás-Riordian polynomial

- If e is a trivial orientable loop

$$
\left(R_{G}=Y x_{\epsilon}+y_{\epsilon}\right) R_{G-e}
$$

- If e is a non-trivial orientable loop

$$
\left.R_{G}\right|_{X Y Z^{2}=1}=y_{\epsilon} R_{G-e}+\left.Y^{2} Z^{2} x_{\epsilon} R_{G / e}\right|_{X Y Z^{2}=1}
$$

Kauffman bracket polynomial

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs and Knots

Recursive Relationships

Definition 14

let $\left\langle L_{G}\right\rangle(A)$ non-normalized Jones polynomial given by the Kauffman bracket of a ribbon graph and letting $B=A^{-1}$ and $d=-A^{2}-A^{-2}$

Definition 15

$$
A_{\epsilon}=\left\{\begin{array}{l}
A_{+}=A \\
A_{-}=A^{-1}
\end{array}\right.
$$

Kauffman bracket recursive relations

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian
polynomial
Ribbon Graphs
and Knots
Recursive Relationships
References

We obtain the following recursive relationships by substitution of the previous recursive relationships into the Kauffman bracket polynomial.

■ If e is a non-orientable loop, nontrivial orientable loop, or and ordinary edge.

$$
\left\langle L_{G}\right\rangle=A_{\epsilon}\left\langle L_{G-e}\right\rangle+A_{-\epsilon}\left\langle L_{G / e}\right\rangle
$$

- If e is a bridge

$$
\left\langle L_{G}\right\rangle=\left(-A_{\epsilon}\right)^{3}\left\langle L_{G / e}\right\rangle
$$

- if e is a trivial orientable loop

$$
\left\langle L_{G}\right\rangle=\left(-A_{-\epsilon}\right)^{3}\left\langle L_{G-e}\right\rangle
$$

Open Question

Ribbon

- The recursive relationships for the Kauffman bracket polynomial when restricted to planar ribbon graphs guarantee that we will never have a nontrivial or non-orientable loop.
- Also, all classical knots have a planar ribbon graph corresponding to one of their Kauffman brackets.
- The remaining recursive relationships are the exact same relationships that define Thistlethwaite's polynomial as defined in [BO]
- Is there a way to extend the Idea of [BO] to some a matrix that can recursively give the Kauffman bracket and Jones polynomial of an arbitrary ribbon graph and hence an arbitrary virtual knot?

References

Ribbon
Graphs and the Bollobás-

Riordan
polynomial
G. Black

Ribbon graphs
Partial duality
Bollobás-
Riordian polynomial

Ribbon Graphs and Knots

Recursive Relationships

References

CV S. Chmutov, J. Voltz, Thistlethwaite's theorem for virtual links, Journal of Knot Theory and Its Ramifications, 17(10) (2008) 1189-1198; preprint arXiv:math.GT/0704.1310
CH S. Chmutov, Generalized duality for graphs on surfaces and the signed Bollobás-Riordian polunimial, Journal of Combinatorial Theory, Ser. B 99(3) (2009) 617-638; preprint arXiv:math.C0/0711.3490.
BO Boninger, J. (2022). The Jones Polynomial from a Goeritz Matrix. Bulletin of the London Mathematical Society, 55(2), 732-755. https://doi.org/10.1112/blms. 12753

