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Checkerboard Coloring of Link Diagram

Definition 1

Let D be a link diagram in R2. A checkerboard coloring of D
is a coloring of R2 zD by t0, 1u such that no arc has two
monochromatic sides.

Theorem 2

Every classical link is checkerboard colorable.

Proof: Jordan curve theorem.
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Checkerboard coloring of Virtual Links

Note that not all Virtual links can be checkerboard colored

Checkerboard Colorable Not Checkerboard Colorable
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Goeritz Matrix

Definition 3

The sign of a crossing ηpcq:

Definition 4

Take a checkerboard colored link diagram D with the
unbounded region shaded. Enumerate the shaded regions by
1, 2, ..., n. The pre-Goeritz matrix of D is a n ˆ n matrix pgijq:

gij “

#

ř

crossings between i , j ηpcq, i ‰ j

´
ř

k‰i gik , i “ j
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Goeritz Matrix

Definition 5

Since the sum of rows of pre-Goeritz matrix is always 0 by
definition, we can always delete one row and one column
without losing any information. What we obtain is called
Goeritz matrix G . Usually we delete the row and column
corresponding to the unbounded region.
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Example

Take the knot 819 and assign each crossing ˘1:
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Example

Its pre-Goeritz matrix is

ÝÑ
G “

»

—

—

—

—

–

4 ´1 0 ´1 ´2
´1 ´1 1 1 0
0 1 ´2 0 1

´1 1 0 ´1 1
´2 0 1 1 0

fi

ffi

ffi

ffi

ffi

fl

Delete the first row and column, we get the Goeritz matrix:

G “

»

—

—

–

´1 1 1 0
1 ´2 0 1
1 0 ´1 1
0 1 1 0

fi

ffi

ffi

fl
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Fox Coloring and Dehn Coloring

An arc in the link diagram starts and ends where it goes
underneath.

Definition 6

A Fox coloring is a coloring of a link diagram by Z {p Z (or
Z {nZ) such that at each crossing the equation x ` z “ 2y
holds:
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Fox Coloring and Dehn Coloring

Definition 7

Given an oriented link diagram D, a Dehn coloring is a coloring
of R2 zD by Z {p Z. At each crossing it follows the equation
A ` B “ C ` D:
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Fox Coloring and Dehn Coloring

Remark 1

The following properties hold for both Fox coloring and Dehn
coloring:

Any k P Z {nZ gives a monochromatic coloring.

Adding up two colorings gives a coloring.

Multiplying a coloring by k gives a coloring.

In conclusion:

Theorem 8

Every Fox/Dehn coloring of a link diagram is a Z {nZ module
(a vector space when n is prime).
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Fox Coloring and Dehn Coloring

We can quotient out the monochromatic colorings, which can
be done by setting one arc/the unbounded region to be 0.
There is a one-to-one relation between the quotients of two
colorings:

Each Dehn coloring gives a Fox coloring: assign the arc with
the sum of the colors on both sides. The coloring is well
defined and satisfies the rule x ` z “ 2y .
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Fox Coloring and Dehn Coloring
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Fox Coloring and Dehn Coloring

Each Fox coloring gives a Dehn coloring: assign 0 to the
unbounded region. For the rest region, draw a line connecting
the center of the region with the interior of the unbounded
region. Once the line enters from region R1 to region R2

crossing arc c , color R2 by color of c minus the color of R1. We
can prove the coloring is well defined and satisfying the rule
A ` B “ C ` D.
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Fox Coloring and Dehn Coloring
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Fox Coloring and Dehn Coloring

Warning

The two maps are not inverses of each other.

In fact, the Fox coloring and Dehn coloring can be given via
Goeritz matrix:

Theorem 9

The quotiented Dehn coloring, the quotiented Fox coloring,
and the solution space of Goeritz matrix are isomorphic as
Z {nZ modules.
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Alexander Numbering

Remark 2

Checkerboard coloring is a Z {2Z Dehn coloring.

Checkerboard coloring can be generalized to virtual links via
Alexander numbering(mod 2):

Definition 10

For an oriented virtual link diagram, an Alexander numbering is
a coloring of its semi-arcs(arc between two classical crossings)
given by the following relation:
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Alexander Numbering

Theorem 11

The following are equivalent:

A virtual link L has a diagram D which is Alexander
numberable(mod 2).

pΣ, Lq has a (oriented) spanning surface, where pΣ, Lq is
the embedding of L in the Carter surface corresponding to
D.

ΣzD 1 is checkerboard colorable, where D 1 is the link
diagram on the Carter surface Σ corresponding to D.

D has no “windmill” crossing.
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Pseudo Goeritz Matrix

N. Kamada has generalized Goeritz matrix to virtual link
diagrams:

Definition 12

The first and second local index η:

fist local index second local index
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Pseudo Goeritz Matrix

Definition 13

For an oriented virtual diagram D with n semi-arcs(arcs
between two classical crossings), the pseudo Goeritz matrix
G “ pgijq is an n ˆ n matrix:

gij “

#

ř

crossings between i,j η, i ‰ j

´
ř

k‰i gik , i “ j
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Example

The knot 2 ´ 1 with second indices:

Then its pseudo Goeritz matrix is

»

—

—

–

´2 0 1 1
0 2 ´1 ´1
1 ´1 0 0
1 ´1 0 0

fi

ffi

ffi

fl
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Fox coloring matrix

Definition 14

With the coloring equations we defined earlier we can form a
matrix where each row represents a crossing and each column a
arc of the link diagram. We will call this the pre-Coloring
matrix

ÝÑ
C .

Definition 15

The Coloring matrix C of a Link diagram is obtained by
deleting any row and any column of the pre-Coloring matrix

ÝÑ
C

Remark 3

Any non-constant vector x in Z{nZ such that
ÝÑ
C x “ 0

corresponds with a non-trivial fox n-coloring of the Link
diagram
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Example

The coloring equations are:

x1 ` x3 “ 2x2
x2 ` x4 “ 2x3
x3 ` x5 “ 2x4
x4 ` x1 “ 2x5
x5 ` x2 “ 2x1
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Example

These equations form the pre-Coloring matrix

ÝÑ
C “

»

—

—

—

—

–

1 ´2 1 0 0
0 1 ´2 1 0
0 0 1 ´2 1
1 0 0 1 ´2

´2 1 0 0 1

fi

ffi

ffi

ffi

ffi

fl

By deleting the first row and column we get the coloring matrix

C “

»

—

—

–

1 ´2 1 0
0 1 ´2 1
0 0 1 ´2
1 0 0 1

fi

ffi

ffi

fl
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Example

To find an example of a coloring we can see the following
equality holds in Z{5Z and leads the the 5-coloring depicted
below.

»

—

—

—

—

–

1 ´2 1 0 0
0 1 ´2 1 0
0 0 1 ´2 1
1 0 0 1 ´2

´2 1 0 0 1

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

1
2
3
4
0

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

0
0
0
0
0

fi

ffi

ffi

ffi

ffi

fl



Goeritz Matrix
and Knot
Coloring

G. Black, M.
Kikta, C. Li,
L. Wiljanen,
Y. Xuan

Link determinants

Definition 16

The Link determinant of a Link L is the determinant of the
Coloring Matrix C

Theorem 17

The Link determinant of a Link is well defined and | detpC q| is
a Knot Invariant

Theorem 18

for a prime number p a link has a nontrivial p-coloring iff p
divides the link determinate
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Example

Lets look at the pre-Coloring matrix for the knot 819

ÝÑ
C “

»

—

—

—

—

—

—

—

—

—

—

–

1 1 0 0 0 0 ´2 0
0 1 1 0 ´2 0 0 0

´2 0 1 1 0 0 0 0
0 0 0 1 1 0 ´2 0

´2 0 0 0 1 1 0 0
0 0 0 ´2 0 1 1 0
0 ´2 0 0 0 0 1 1
1 0 0 0 ´2 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Example

By deleting the top row and left column we get the Coloring
matrix:

C “

»

—

—

—

—

—

—

—

—

–

1 1 0 ´2 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 ´2 0
0 0 0 1 1 0 0
0 0 ´2 0 1 1 0

´2 0 0 0 0 1 1
0 0 0 ´2 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Taking the determinant we get detpC q “ 3. So we can conclude
the only non-trivial prime coloring of this knot is a 3-coloring.
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Knot determinant’s and the Goeritz matrix

Theorem 19

The absolute value of the determinant of the Goeritz Matrix of
a link L is equal to the absolute value of Link determinant for a
link L. | detpG q| “ | detpC q|

With this theorem we can calculate the knot determinate faster
because the Goeritz matrix is always smaller than the coloring
matrix of a knot.
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Example

We calculated the Goeritz matrix for 819 on an earlier slide
which was:

G “

»

—

—

–

´1 1 1 0
1 ´2 0 1
1 0 ´1 1
0 1 1 0

fi

ffi

ffi

fl

So when we take the determinant of this matrix we get
detpG q “ ´3. We can compare this to the determinant of the
coloring matrix we calculated earlier and we can see that we
have | detpG q| “ 3 “ | detpC q|.


	

