Revisiting the Conway Polynomial for Virtual Links

Pranav Jois

The Ohio State University
10 July 2023

A Review of the Conway Polynomial

A Review of the Conway Polynomial

Let D be a virtual link diagram with $n \geq 1$ classical crossings c_{1}, \ldots, c_{n}. Define

$$
M_{+}:=\left(\begin{array}{cc}
1-x & -y \\
-x y^{-1} & 0
\end{array}\right) \quad \text { and } \quad M_{-}=\left(\begin{array}{cc}
0 & -x^{-1} y \\
-y^{-1} & 1-x^{-1}
\end{array}\right)
$$

A Review of the Conway Polynomial

Let D be a virtual link diagram with $n \geq 1$ classical crossings c_{1}, \ldots, c_{n}. Define

$$
M_{+}:=\left(\begin{array}{cc}
1-x & -y \\
-x y^{-1} & 0
\end{array}\right) \quad \text { and } \quad M_{-}=\left(\begin{array}{cc}
0 & -x^{-1} y \\
-y^{-1} & 1-x^{-1}
\end{array}\right)
$$

For $i=1, \ldots, n$, let $M_{i}:=M_{+}$if c_{i} is positive, and let $M_{i}=M_{-}$ otherwise. Define the $2 n \times 2 n$ matrix as a block matrix by $M=\operatorname{diag}\left(M_{1}, \ldots, M_{n}\right)$.

A Review of the Conway Polynomial

Consider the graph belonging to the virtual link diagram where the virtual crossings are ignored. Subdivide the edges into two half-edges and label them at each vertex v_{i} as follows:

A Review of the Conway Polynomial

Consider the graph belonging to the virtual link diagram where the virtual crossings are ignored. Subdivide the edges into two half-edges and label them at each vertex v_{i} as follows:

A permutation of $\{1, \ldots, n\} \times\{I, r\}$ is given by the assignment $(i, a) \longmapsto(j, b)$ if the half-edges i_{a}^{+}and j_{b}^{-}belong to the same edge of the virtual diagram's graph. Let P denote the corresponding $2 n \times 2 n$ permutation matrix.

A Review of the Conway Polynomial

Consider the graph belonging to the virtual link diagram where the virtual crossings are ignored. Subdivide the edges into two half-edges and label them at each vertex v_{i} as follows:

A permutation of $\{1, \ldots, n\} \times\{I, r\}$ is given by the assignment $(i, a) \longmapsto(j, b)$ if the half-edges i_{a}^{+}and j_{b}^{-}belong to the same edge of the virtual diagram's graph. Let P denote the corresponding $2 n \times 2 n$ permutation matrix.

We can define $Z_{D}(x, y)=(-1)^{w(D)} \operatorname{det}(M-P)$ and $\tilde{Z}_{D}(x, y)=x^{-N} Z_{D}(x, y)$ where N is the lowest exponent in the variable x of $Z_{D}(x, y) . \tilde{Z}_{D}$ is an invariant of virtual links.

Invariants of Four-Regular Graphs

Invariants of Four-Regular Graphs

Definition: An Eulerian orientation of a graph is an orientation such that for each vertex v, the number of edges with initial end v equals the number of edges with terminal end v.

Invariants of Four-Regular Graphs

Definition: An Eulerian orientation of a graph is an orientation such that for each vertex v, the number of edges with initial end v equals the number of edges with terminal end v.

Let $G=(V, E)$ be a 4-regular graph provided with an Eulerian orientation. A labelling of G is any mapping $f: G \rightarrow\{1,2\}$ such that $f^{-1}(1)$ and $f^{-1}(2)$, define subgraphs which are Eulerian provided the orientation inherited from G.

Invariants of Four-Regular Graphs

Definition: An Eulerian orientation of a graph is an orientation such that for each vertex v, the number of edges with initial end v equals the number of edges with terminal end v.

Let $G=(V, E)$ be a 4-regular graph provided with an Eulerian orientation. A labelling of G is any mapping $f: G \rightarrow\{1,2\}$ such that $f^{-1}(1)$ and $f^{-1}(2)$, define subgraphs which are Eulerian provided the orientation inherited from G.

Define $\mathscr{L}(G)$ to be the set of all labellings of G.

Invariants of Four-Regular Graphs (cont.)

Divide each edge e into two half-edges e^{+}and e^{-}, where e^{+}is the incident end of e and e^{-}is the terminal end of e.

Invariants of Four-Regular Graphs (cont.)

Divide each edge e into two half-edges e^{+}and e^{-}, where e^{+}is the incident end of e and e^{-}is the terminal end of e.

Given a vertex v, a transition at v is an ordered pair $\left(e_{1}^{+}, e_{2}^{-}\right)$, where e_{1} has terminal end v and e_{2} has initial end v. Each half-edge will be arbitrarily assigned a type (left or right) s.t. at every vertex v, the two initial half-edges have opposite types and likewise for terminal edges. From this, one can define tangent and initial transitions (denoted by (type(e_{1}^{+}), type $\left(e_{2}^{-}\right)$).

Invariants of Four-Regular Graphs (cont.)

Divide each edge e into two half-edges e^{+}and e^{-}, where e^{+}is the incident end of e and e^{-}is the terminal end of e.

Given a vertex v, a transition at v is an ordered pair $\left(e_{1}^{+}, e_{2}^{-}\right)$, where e_{1} has terminal end v and e_{2} has initial end v. Each half-edge will be arbitrarily assigned a type (left or right) s.t. at every vertex v, the two initial half-edges have opposite types and likewise for terminal edges. From this, one can define tangent and initial transitions (denoted by (type $\left(e_{1}^{+}\right)$, type $\left(e_{2}^{-}\right)$).

Invariants of Four-Regular Graphs (cont.)

Divide each edge e into two half-edges e^{+}and e^{-}, where e^{+}is the incident end of e and e^{-}is the terminal end of e.

Given a vertex v, a transition at v is an ordered pair $\left(e_{1}^{+}, e_{2}^{-}\right)$, where e_{1} has terminal end v and e_{2} has initial end v. Each half-edge will be arbitrarily assigned a type (left or right) s.t. at every vertex v, the two initial half-edges have opposite types and likewise for terminal edges. From this, one can define tangent and initial transitions (denoted by (type(e_{1}^{+}), type $\left(e_{2}^{-}\right)$).

For a vertex v and $p, q \in\{l, r\}$, we can denote by $\theta_{p, q}(v)$ the transition at v of type (p, q).

Invariants of Four-Regular Graphs (cont.)

For every labelling $f \in \mathscr{L}(G)$, let $H(v, f)$ be the set of half-edges incident to v which belong to an edge e with $f(e)=1$. If $|H(v, f)|=2$, then the two elements of $H(v, f)$ form a transition at v.

Invariants of Four-Regular Graphs (cont.)

For every labelling $f \in \mathscr{L}(G)$, let $H(v, f)$ be the set of half-edges incident to v which belong to an edge e with $f(e)=1$. If $|H(v, f)|=2$, then the two elements of $H(v, f)$ form a transition at v.

Now, we can define the quantity $\langle v \mid f\rangle$. If $|H(v, f)|=0,\langle v \mid f\rangle=1$, if $|H(v, f)|=2,\langle v \mid f\rangle=\theta_{p, q}(v)$ (where $\theta_{p, q}(v)$ corresponds to the transition defined by $H(v, f)$), and if $|H(v, f)|=4,\langle v \mid f\rangle=\theta_{l, l}(v) \theta_{r, r}(v)$ $-\theta_{l, r}(v) \theta_{r, l}(v):=\Delta(v)$.

Invariants of Four-Regular Graphs (cont.)

For every labelling $f \in \mathscr{L}(G)$, let $H(v, f)$ be the set of half-edges incident to v which belong to an edge e with $f(e)=1$. If $|H(v, f)|=2$, then the two elements of $H(v, f)$ form a transition at v.

Now, we can define the quantity $\langle v \mid f\rangle$. If $|H(v, f)|=0,\langle v \mid f\rangle=1$, if $|H(v, f)|=2,\langle v \mid f\rangle=\theta_{p, q}(v)$ (where $\theta_{p, q}(v)$ corresponds to the transition defined by $H(v, f)$), and if $|H(v, f)|=4,\langle v \mid f\rangle=\theta_{l, l}(v) \theta_{r, r}(v)$ $-\theta_{l, r}(v) \theta_{r, l}(v):=\Delta(v)$.

Now, we can split each vertex of G into two vertices of degree 2 , each one being incident to the two half-edges of a tangent transition. The resultant circuits are called Seifert circuits. Let $s(G)$ be the number of these circuits, and let $s(G, f, i)$ for $i \in 1,2$ the number of Seifert circuits of the subgraph defined by $f^{-1}(i)$.

Construction of Determinantal Invariant

Construction of Determinantal Invariant

Let us consider the partitition function

$$
Z(G)=\sum_{f \in \mathscr{L}(G)}(-1)^{s(G, f, 2)} \prod_{v \in V}\langle v \mid f\rangle
$$

Construction of Determinantal Invariant

Let us consider the partitition function

$$
Z(G)=\sum_{f \in \mathscr{L}(G)}(-1)^{s(G, f, 2)} \prod_{v \in V}\langle v \mid f\rangle
$$

Let $\varepsilon_{p, q}=2 \delta_{p, q}-1$. If $n=|V|$, consider the $2 n \times 2 n$ matrix indexed by $\{1, \ldots, n\} \times\{I, r\}$ (which we can call A) given by $A=T-P$, where, for all $i, j \in\{1, \ldots, n\}$ and $p, q \in\{I, r\}$:

$$
T_{(i, p),(j, q)}=\delta_{i, j} \varepsilon_{p, q} \theta_{p, q}\left(v_{i}\right)
$$

$P_{(i, p),(j, q)}= \begin{cases}-1 & \text { if } h_{i, p}^{-}, h_{j, q}^{+} \\ 0 & \text { otherwise }\end{cases}$

Construction of Determinantal Invariant

Let us consider the partitition function

$$
Z(G)=\sum_{f \in \mathscr{L}(G)}(-1)^{s(G, f, 2)} \prod_{v \in V}\langle v \mid f\rangle
$$

Let $\varepsilon_{p, q}=2 \delta_{p, q}-1$. If $n=|V|$, consider the $2 n \times 2 n$ matrix indexed by $\{1, \ldots, n\} \times\{I, r\}$ (which we can call A) given by $A=T-P$, where, for all $i, j \in\{1, \ldots, n\}$ and $p, q \in\{I, r\}$:

$$
T_{(i, p),(j, q)}=\delta_{i, j} \varepsilon_{p, q} \theta_{p, q}\left(v_{i}\right)
$$

$P_{(i, p),(j, q)}= \begin{cases}-1 & \text { if } h_{i, p}^{-}, h_{j, q}^{+} \\ 0 & \text { otherwise }\end{cases}$
Proposition: $Z(G)=\operatorname{det}(A)$

Outline of Proof of Invariance

Outline of Proof of Invariance

We start by considering invariance of models of the form

$$
Z(G)=\sum_{f \in \mathscr{L}(G)}(-1)^{s(G, f, 2)} \prod_{v \in V}\langle v \mid f\rangle
$$

Outline of Proof of Invariance

We start by considering invariance of models of the form

$$
Z(G)=\sum_{f \in \mathscr{L}(G)}(-1)^{s(G, f, 2)} \prod_{v \in V}\langle v \mid f\rangle
$$

Recall that for a plane graph G, at any vertex v, there are six different local labelling configurations

$\theta_{p q}(v)$
$\theta_{r r}(v) \quad \theta_{r e}(v)$

$\Theta^{(v)} 1$
$\Delta(v)$

Outline of Proof of Invariance

We start by considering invariance of models of the form

$$
Z(G)=\sum_{f \in \mathscr{L}(G)}(-1)^{s(G, f, 2)} \prod_{v \in V}\langle v \mid f\rangle
$$

Recall that for a plane graph G, at any vertex v, there are six different local labelling configurations

Furthermore, in an oriented classical link diagram, each crossing is either positive or negative. So we consider transitions $\theta_{p, q}(s)$ where $s \in\{+,-\}$.

Outline of Proof of Invariance (cont.)

We can now consider the matrix $R(s)$ which compactly encodes the values of $\langle v \mid f\rangle$ for every vertex v of type s and labelling f.

Outline of Proof of Invariance (cont.)

We can now consider the matrix $R(s)$ which compactly encodes the values of $\langle v \mid f\rangle$ for every vertex v of type s and labelling f.

Index the matrix $R(s)$ by $\{1,2\} \times\{1,2\}$ and let the entries be equal to the value of $R_{i, j}^{k, l}(s)=\left\langle v \mid f_{0}\right\rangle$, where f_{0} is a labelling of G such that at the vertex v, the incident and terminating edges take on the values $i, j, k, l \in\{1,2\}$ as follows:

From this, we can deduce that

$$
R(s)=\left(\begin{array}{cccc}
\Delta(s) & 0 & 0 & 0 \\
0 & \theta_{l, l}(s) & \theta I, r(s) & 0 \\
0 & \theta_{r, l}(s) & \theta_{r, r}(s) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Outline of Proof of Invariance (cont.)

Consider the third Reidemeister move with positive crossings. Suppose i, j, k, I, m, n are fixed, and $\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ can vary.

Outline of Proof of Invariance (cont.)

Consider the third Reidemeister move with positive crossings. Suppose i, j, k, I, m, n are fixed, and $\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ can vary.

One can see that all labellings in $\mathscr{L}(G)$ that preserve the fixed edge-values outside the triangle have the same value of $s(G, f, 2)$ in both configurations. Thus, for invariance of the partition function, we require that

$$
\sum_{\alpha, \beta, \gamma} R_{j, k}^{\alpha, \beta}(+) R_{l, \gamma}^{i, \alpha}(+) R_{\gamma, \beta}^{m, n}(+)=\sum_{\alpha, \beta, \gamma} R_{l, j}^{\beta^{\prime}, \gamma^{\prime}}(+) R_{\gamma^{\prime}, k}^{\alpha^{\prime}, n}(+) R_{\beta^{\prime}, \alpha^{\prime}}^{l, m}(+)
$$

Outline of Proof of Invariance (cont.)

Note that this equation can be reduced to the matrix equation $S T S=T S T$ where S and T are cleverly defined 8×8 matrices. This is related to the Yang-Baxter equation in statistical mechanics.

Outline of Proof of Invariance (cont.)

Note that this equation can be reduced to the matrix equation $S T S=T S T$ where S and T are cleverly defined 8×8 matrices. This is related to the Yang-Baxter equation in statistical mechanics.

From here, one can check that the following assignment of $\theta_{p, q}$ in $\mathbf{Z}\left[x, y, x^{-1}, y^{-1}\right]$ satisfies the given condition:

$$
\theta_{l, l}(+)=1+x, \quad \theta_{r, r}(+)=0, \quad \theta_{l, r}(+)=y, \quad \theta_{r, l}(+)=-x y^{-1}
$$

Outline of Proof of Invariance (cont.)

Note that this equation can be reduced to the matrix equation $S T S=T S T$ where S and T are cleverly defined 8×8 matrices. This is related to the Yang-Baxter equation in statistical mechanics.

From here, one can check that the following assignment of $\theta_{p, q}$ in $\mathbf{Z}\left[x, y, x^{-1}, y^{-1}\right]$ satisfies the given condition:

$$
\theta_{l, l}(+)=1+x, \quad \theta_{r, r}(+)=0, \quad \theta_{l, r}(+)=y, \quad \theta_{r, l}(+)=-x y^{-1}
$$

Using a similar analysis of the RII move, one can deduce that

$$
\theta_{l, l}(-)=0, \quad \theta_{r, r}(-)=1+x^{-1}, \quad, \theta_{l, r}(-)=-x^{-1} y, \quad \theta_{r, l}(-)=y^{-1}
$$

is also required to satisfy the corresponding conditions that follow from performing the RII operation.

A Note on Reidemeister Move I

The polynomial as presented is not invariant under RI (This can be seen using the same technique utilized earlier). Creating a new crossing by RI multiplies the entire polynomial by a constant factor given by the following:

References

J. Sawollek, On Alexander-Conway Polynomials for Virtual Knots and Links, arXiv Preprint (2001).
F. Jaeger, L.H. Kauffman, and H. Saleur, The Conway Polynomial in R^{3} and in Thickened Surfaces: A New Determinant Formulation, J. Combin. Theory Ser. B 61 (1994), 237-259.

