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A Review of the Conway Polynomial

Let D be a virtual link diagram with n ≥ 1 classical crossings c1, ..., cn.
Define

M+ :=

(
1− x −y
−xy−1 0

)
and M− =

(
0 −x−1y

−y−1 1− x−1

)

For i = 1, ..., n, let Mi := M+ if ci is positive, and let Mi = M−
otherwise. Define the 2n × 2n matrix as a block matrix by
M = diag(M1, ...,Mn).
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A Review of the Conway Polynomial

Consider the graph belonging to the virtual link diagram where the virtual
crossings are ignored. Subdivide the edges into two half-edges and label
them at each vertex vi as follows:

A permutation of {1, ..., n} × {l , r} is given by the assignment
(i , a) 7−→ (j , b) if the half-edges i+a and j−b belong to the same edge of the
virtual diagram’s graph. Let P denote the corresponding 2n × 2n
permutation matrix.

We can define ZD(x , y) = (−1)w(D)det(M − P) and
Z̃D(x , y) = x−NZD(x , y) where N is the lowest exponent in the variable x
of ZD(x , y). Z̃D is an invariant of virtual links.
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Invariants of Four-Regular Graphs

Definition: An Eulerian orientation of a graph is an orientation such that
for each vertex v , the number of edges with initial end v equals the
number of edges with terminal end v .

Let G = (V ,E ) be a 4-regular graph provided with an Eulerian
orientation. A labelling of G is any mapping f : G → {1, 2} such that
f −1(1) and f −1(2), define subgraphs which are Eulerian provided the
orientation inherited from G .

Define L (G ) to be the set of all labellings of G .
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Invariants of Four-Regular Graphs (cont.)

Divide each edge e into two half-edges e+ and e−, where e+ is the
incident end of e and e− is the terminal end of e.

Given a vertex v , a transition at v is an ordered pair (e+1 , e−2 ), where e1
has terminal end v and e2 has initial end v . Each half-edge will be
arbitrarily assigned a type (left or right) s.t. at every vertex v , the two
initial half-edges have opposite types and likewise for terminal edges. From
this, one can define tangent and initial transitions (denoted by
(type(e+1 ), type(e−2 )).

For a vertex v and p, q ∈ {l , r}, we can denote by θp,q(v) the transition at
v of type (p, q).
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Invariants of Four-Regular Graphs (cont.)

For every labelling f ∈ L (G ), let H(v , f ) be the set of half-edges incident
to v which belong to an edge e with f (e) = 1. If |H(v , f )| = 2, then the
two elements of H(v , f ) form a transition at v .

Now, we can define the quantity ⟨v |f ⟩. If |H(v , f )| = 0, ⟨v |f ⟩ = 1, if
|H(v , f )| = 2, ⟨v |f ⟩ = θp,q(v) (where θp,q(v) corresponds to the transition
defined by H(v , f )), and if |H(v , f )| = 4, ⟨v |f ⟩ = θl ,l(v)θr ,r (v)
−θl ,r (v)θr ,l(v) := ∆(v).

Now, we can split each vertex of G into two vertices of degree 2, each one
being incident to the two half-edges of a tangent transition. The resultant
circuits are called Seifert circuits. Let s(G ) be the number of these
circuits, and let s(G , f , i) for i ∈ 1, 2 the number of Seifert circuits of the
subgraph defined by f −1(i).
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Construction of Determinantal Invariant

Let us consider the partitition function

Z (G ) =
∑

f ∈L (G)

(−1)s(G ,f ,2)
∏
v∈V

⟨v |f ⟩

Let εp,q = 2δp,q − 1. If n = |V |, consider the 2n × 2n matrix indexed by
{1, ..., n}× {l , r} (which we can call A) given by A = T −P, where, for all
i , j ∈ {1, ..., n} and p, q ∈ {l , r}:

T(i ,p),(j ,q) = δi ,jεp,qθp,q(vi )

P(i ,p),(j ,q) =

{
−1 if h−i ,p, h

+
j ,qare the two half edges of the same edge

0 otherwise

Proposition: Z (G ) = det(A)
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Outline of Proof of Invariance

We start by considering invariance of models of the form

Z (G ) =
∑

f ∈L (G)

(−1)s(G ,f ,2)
∏
v∈V

⟨v |f ⟩

Recall that for a plane graph G , at any vertex v , there are six different
local labelling configurations

Furthermore, in an oriented classical link diagram, each crossing is either
positive or negative. So we consider transitions θp,q(s) where s ∈ {+,−}.
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Outline of Proof of Invariance (cont.)
We can now consider the matrix R(s) which compactly encodes the values
of ⟨v |f ⟩ for every vertex v of type s and labelling f .

Index the matrix R(s) by {1, 2}× {1, 2} and let the entries be equal to the

value of Rk,l
i ,j (s) = ⟨v |f0⟩, where f0 is a labelling of G such that at the

vertex v , the incident and terminating edges take on the values
i , j , k, l ∈ {1, 2} as follows:

From this, we can deduce that

R(s) =


∆(s) 0 0 0
0 θl ,l(s) θl , r(s) 0
0 θr ,l(s) θr ,r (s) 0
0 0 0 1


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Outline of Proof of Invariance (cont.)
Consider the third Reidemeister move with positive crossings. Suppose
i , j , k , l ,m, n are fixed, and α, β, γ, α′, β′, γ′ can vary.

One can see that all labellings in L (G ) that preserve the fixed edge-values
outside the triangle have the same value of s(G , f , 2) in both
configurations. Thus, for invariance of the partition function, we require
that ∑

α,β,γ

Rα,β
j ,k (+)R i ,α

l ,γ (+)Rm,n
γ,β (+) =

∑
α,β,γ

Rβ′,γ′

l ,j (+)Rα′,n
γ′,k (+)R l ,m

β′,α′(+)
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Outline of Proof of Invariance (cont.)

Note that this equation can be reduced to the matrix equation
STS = TST where S and T are cleverly defined 8× 8 matrices. This is
related to the Yang-Baxter equation in statistical mechanics.

From here, one can check that the following assignment of θp,q in
Z[x , y , x−1, y−1] satisfies the given condition:

θl ,l(+) = 1 + x , θr ,r (+) = 0, θl ,r (+) = y , θr ,l(+) = −xy−1

Using a similar analysis of the RII move, one can deduce that

θl ,l(−) = 0, θr ,r (−) = 1 + x−1, , θl ,r (−) = −x−1y , θr ,l(−) = y−1

is also required to satisfy the corresponding conditions that follow from
performing the RII operation.
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A Note on Reidemeister Move I

The polynomial as presented is not invariant under RI (This can be seen
using the same technique utilized earlier). Creating a new crossing by RI
multiplies the entire polynomial by a constant factor given by the following:
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