# Two Generalizations of Fox n-Colorability via Polynomials and Quandles 

Charlton Li

June 2023

## Recall: Fox n-Coloring

## Definition

For an integer $n \geq 3$, a knot diagram is Fox $n$-colorable if its arcs can be labelled by $\mathbb{Z} / n \mathbb{Z}$ such that at least two colors are used, and at each crossing, the equation $2 x-y-z=0$ holds.


## Polynomial Coloring

We will first investigate polynomial generalizations of the crossing equation, following the exposition in the 2022 paper by $\mathrm{He}, \mathrm{Ho}$, Kalir, Miller, and Zevenbergen.


We will work with oriented knots to distinguish between the two undercrossings and to have two equations for left- and right-handed crossings.

## Polynomial Coloring

## Definition

Let $R$ be a ring with $|R| \geq 2$ and $f, g \in R[x, y, z]$. Let D be an oriented knot diagram. We say D is $(\boldsymbol{f}, \boldsymbol{g})_{\boldsymbol{R}}$ colorable if each arc of $D$ can be labelled by elements of $R$ such that

- at least two distinct elements of $R$ are used
- at right-handed crossings, $f(x, y, z)=0$
- at left-handed crossings, $g(x, y, z)=0$
where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are the labels of the overstrand, incoming understrand, and outgoing understrand respectively.



## Reidemeister Moves for Oriented Knots

For oriented knots/links, there are 4 R1 moves, 4 R2 moves, and 8 R3 moves. Fortunately, they may be generated from a set of 4 moves:

> Theorem
> (Polyak 2010) Let D and D' be two diagrams of an oriented link L. Then $D^{\prime}$ can be obtained from $D$ using isotopy and a finite sequence of the Reidemeister moves $\Omega 1 a, \Omega 1 b, \Omega 2 a$, and $\Omega 3 a$. This set of 4 moves is also minimal.

## Sufficient Conditions for $(f, g)_{R}$ Colorability to be a Knot Invariant

## Definition

We call a pair $(f, g)_{R}$ strong if the following properties are satisfied:

- Property $\Omega 1 a_{1}: \forall \alpha \in R, f(\alpha, \alpha, \alpha)=0$
- Property $\Omega 1 a_{2}: \forall \alpha, \beta \in R, f(\alpha, \alpha, \beta)=0 \Longrightarrow \alpha=\beta$
- Property $\Omega 1 b_{1}: \forall \alpha, \beta \in R, f(\alpha, \beta, \alpha)=0 \Longrightarrow \alpha=\beta$
- Property $\Omega 2 a_{1}: \forall \alpha, \beta \in R, \exists \gamma \in R$ such that

$$
f(\alpha, \beta, \gamma)=g(\alpha, \gamma, \beta)=0
$$

- Property $\Omega 2 a_{2}: \forall \alpha, \beta, \gamma, \delta \in R$, $f(\alpha, \gamma, \delta)=g(\alpha, \delta, \beta)=0 \Longrightarrow \beta=\gamma$
■ Property $\Omega 3$ a: $\forall \alpha, \beta, \gamma, \epsilon, \mu \in R$ such that $f(\alpha, \mu, \beta)=0$, $\exists \delta \in R$ such that $f(\mu, \delta, \epsilon)=g(\alpha, \gamma, \delta)=0$ if and only if $\exists \tau \in R$ such that $f(\beta, \gamma, \tau)=g(\alpha, \tau, \epsilon)=0$


# Sufficient Conditions for $(f, g)_{R}$ Colorability to be a Knot Invariant 

## Lemma

If $(f, g)_{R}$ is strong, then $(g, f)_{R}$ satisfies properties
$\Omega 1 a_{1}, \Omega 1 a_{2}, \Omega 1 b_{1}, \Omega 2 a_{1}$, and $\Omega 2 a_{2}$ (it turns out that $(g, f)_{R}$ also satisfies $\Omega 3$ a, so $(g, f)_{R}$ is actually strong, but this requires a bit more work and is not needed for the next theorem).

## Theorem

If $(f, g)_{R}$ is strong, then $(f, g)_{R}$ colorability is a knot invariant.

## Proof.

Covered in the next slides.

Invariance Under $\Omega 1$ a Reidemeister Move

(a) By Property $\Omega 1 a_{1}$ for $(f, g), \forall \alpha \in R, f(\alpha, \alpha, \alpha)=0$.
(b) By Property $\Omega 1 a_{2}$ for $(f, g)$,

$$
\forall \alpha, \beta \in R, f(\alpha, \alpha, \beta)=0 \Longrightarrow \alpha=\beta
$$

Invariance Under $\Omega 1 b$ Reidemeister Move

(a) By Property $\Omega 1 a_{1}$ for $(g, f), \forall \alpha \in R, g(\alpha, \alpha, \alpha)=0$.
(b) By Property $\Omega 1 b_{1}$ for $(g, f)$,

$$
\forall \alpha, \beta \in R, g(\beta, \alpha, \beta)=0 \Longrightarrow \alpha=\beta
$$

## Invariance Under $\Omega 2$ a Reidemeister Move


(a) By Property $\Omega 2 a_{1}$ for $(f, g), \forall \alpha, \beta \in R, \exists \gamma \in R$ such that $f(\alpha, \beta, \gamma)=g(\alpha, \gamma, \beta)=0$.
(b) By Property $\Omega 2 a_{2}$ for $(f, g), \forall \alpha, \beta, \gamma, \delta \in R$, $f(\alpha, \gamma, \delta)=g(\alpha, \delta, \beta)=0 \Longrightarrow \beta=\gamma$. Note that if $\alpha=\beta$, then $f(\alpha, \gamma, \delta)=f(\alpha, \alpha, \delta)=0$, so by Property $\Omega 1 a_{2}$ for $(f, g), \delta=\alpha$. Hence (b) does not lead to a monochromatic coloring.

## Invariance Under $\Omega 3$ a Reidemeister Move



By Property $\Omega 3$ a for $(f, g), \forall \alpha, \beta, \gamma, \epsilon, \mu \in R$ such that $f(\alpha, \mu, \beta)=0$, $\exists \delta \in R$ such that $f(\mu, \delta, \epsilon)=g(\alpha, \gamma, \delta)=0$ if and only if $\exists \tau \in R$ such that $f(\beta, \gamma, \tau)=g(\alpha, \tau, \epsilon)=0$. Note that in either diagram, if all the colors except $\delta$ (resp. $\tau$ ) were the same, then $\delta$ (resp. $\tau$ ) would also be that same color by Properties $\Omega 1 a_{2}$ and $\Omega 1 b_{1}$.

## Classification of Linear Strong Pairs Over Fields

## Theorem

Let $\mathbb{F}$ be a field and $f, g \in \mathbb{F}[x, y, z]$ be linear. Then $(f, g)$ is strong if and only if $f(x, y, z)=a x+$ by $-(a+b) z$ and $g(x, y, z)=c f(x, z, y)$ for some $a, b, c \in \mathbb{F}$ such that $a+b, b, c \neq 0$.

## Corollary

If $f \in \mathbb{F}[x, y, z]$ is linear and $(f, f)$ is strong, then $f$ is a multiple of the Fox $n$-coloring equation $2 x-y-z$ or a multiple of $y-z$.

## A Result for Quadratics in Strong Pairs over Fields

[^0]
## Example of $(f, g)$ Coloring

Above is an $(f, f)_{\mathbb{Z} / 5 \mathbb{Z}}$ coloring of the knot $4_{1}$, where $f(x, y, z)=2 x y+2 x z+4 y z+3 x^{2}+2 y^{2}+2 z^{2}$.

## Quandles

## Definition

A quandle is a set $X$ equipped with a binary operation $*$ such that
(1) $\forall a \in X, a * a=a$
(2) $\forall b, c \in X, \exists!a \in X$ such that $a * b=c$
(3) $\forall a, b, c \in X,(a * b) * c=(a * c) *(b * c)$

Note that (2) is equivalent to the statement that for all $a \in X$, the transformation $R_{a}(x):=x * a$ for all $x \in X$ is invertible. We define the operation $\bar{*}$ on $X$ by $a \bar{\star} b=R_{b}^{-1}(a)$.

## Coloring by a Quandle

## Definition

A coloring of an oriented knot diagram $K$ by a quandle $(X, *)$ is an assignment of an element of $X$ to each arc of $K$ such that at each crossing, the below relation holds. Such a coloring is called trivial if each arc is assigned the same element.


## Quandle Colorability is a Knot Invariant

## Theorem

Let $(X, *)$ be a quandle. The existence of a nontrivial $(X, *)$ coloring is a knot invariant. Furthermore, if $X$ is finite, then the number of colorings by $(X, *)$ is a knot invariant.

## Proof.

Covered in the next slides.

Invariance Under $\Omega 1$ a Reidemeister Move

(a) $\alpha * \alpha=\alpha$.
(b) $\beta=\alpha * \alpha=\alpha$.

Invariance Under $\Omega 1 b$ Reidemeister Move

(a) $\alpha * \alpha=\alpha$, so $\alpha=\alpha \bar{*} \alpha$.
(b) $\beta=\alpha \bar{*} \beta$, so $\beta=\beta * \beta=\alpha$.

## Invariance Under $\Omega 2$ a Reidemeister Move


(a) Define $\gamma=\beta * \alpha$. Then $\beta=\gamma \bar{*} \alpha$.
(b) We have $\beta=\delta \mp \alpha$ and $\delta=\gamma * \alpha$, so $\beta=(\gamma * \alpha) \bar{*} \alpha=\gamma$.

## Invariance Under $\Omega 3$ a Reidemeister Move


$(\rightarrow)$ We have $\epsilon=\delta * \mu, \beta=\mu * \alpha, \delta=\gamma \bar{*} \alpha$. Define $\tau=\gamma * \beta$.
Then $\epsilon * \alpha=(\delta * \alpha) *(\mu * \alpha)=\gamma * \beta=\tau$, so $\epsilon=\tau \neq \alpha$.
$(\leftarrow)$ We have $\epsilon=\tau \bar{\star} \alpha, \tau=\gamma * \beta, \beta=\mu * \alpha$. Define $\delta=\gamma \bar{*} \alpha$.
Then
$\epsilon * \alpha=\tau=\gamma * \beta=[(\gamma \bar{*} \alpha) * \alpha] *[(\beta \bar{\not} \alpha) * \alpha]=[(\gamma \bar{\not} \alpha) *(\beta \bar{*} \alpha)] * \alpha$,
so $\epsilon=(\gamma \bar{*} \alpha) *(\beta \bar{*} \alpha)=\delta * \mu$.

## Linear Alexander Quandles

## Definition

For $n, m \in \mathbb{Z}_{+}$coprime, the linear Alexander quandle $\operatorname{LAQ}(n, m)$ is the set $\mathbb{Z} / n \mathbb{Z}$ with the operation $a * b=m a+(1-m) b \bmod n$.

## Proposition

$\operatorname{LAQ}(n, m)$ is a quandle.
Note that when $n \geq 3$ and $m=-1, a * b=2 b-a \bmod \mathrm{n}$ and $a \bar{*} b=2 b-a \bmod \mathrm{n}$, so $\operatorname{LAQ}(n,-1)$ is exactly Fox n -coloring.


## Relation Between LAQs and Strong $(f, g)$

## Proposition

Every linear Alexander quandle $L A Q(n, m)$ forms a strong linear pair $(f, g)_{\mathbb{Z} / n \mathbb{Z}}$, where $f(x, y, z)=(1-m) x+m y-z$ and $g(x, y, z)=\left(1-m^{-1}\right) x+m^{-1} y-z$.

## Proof.

We have $(1-m)+m=1$, so $f$ is of the form $a x+b y-(a+b) z$. Also, $-m^{-1} f(x, z, y)=\left(1-m^{-1}\right) x-z+m^{-1} y=g(x, y, z)$.
Although the classification result for strong linear polynomials was stated for fields, a technical examination of its proof shows that for the reverse implication to hold, it is enough to work over a ring and require $a+b, b$, and $c$ to have multiplicative inverses, where $g(x, y, z)=c f(x, z, y)$.
Alternatively, it is straightforward to check directly that the conditions for strongness hold.

## Example

Consider $\operatorname{LAQ}(5,3)$. For all $x, y \in \mathbb{Z} / 5 \mathbb{Z}, y * x=3 y-2 x$ and if $z=y \bar{*} x$, then $y=z * x=3 z-2 x$, so $z=2(2 x+y)=4 x+2 y$. This gives the strong pair $(f, g)_{\mathbb{Z} / 5 \mathbb{Z}}$, where $f(x, y, z)=-2 x+3 y-z$ and $g(x, y, z)=4 x+2 y-z$.

## Further Questions

- Can $(f, g)_{R}$ colorability distinguish knots that Fox n-colorability can't?
- Is strongness a necessary condition for $(f, g)_{R}$ colorability to be a knot invariant?
- Can we construct quadratic or higher-order strong $(f, g)_{R}$ pairs from quandles?


[^0]:    Theorem
    Let $\mathbb{F}$ be a field with characteristic not equal to 2 . Then if $f, g \in \mathbb{F}[x, y, z]$ and $(f, g)$ is strong, then neither $f$ nor $g$ are irreducible quadratics.

