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A knot is called alternating knot
if it has an alternating projection
diagram, which means:
As one travels along this knot, the
crossings appears under and over
alternatively.
Examples are listed on the left, all
the knots before 819 are alternating
knots.
But how can you make sure some
knots like 819 is not isotopic to
another alternating knot? Actually,
this is not easy, but the Jones
polynomial can answer it. We
would not talk about it today.
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When Tait made the atlas of knots in 19th century, he noticed an
experience law:
The diagram of an alternating knot tends to have the fewest crossings.
Let’s do some observation:

We may see that the alternating property of upper diagram implies the
same property of the lower diagram. By twisting the crossing in the
center, we can reduce one crossing. We want to rule out such irregular
cases.
We now state it mathematically the Tait conjecture:

Proposition:

Any reduced diagram of an alternating knot(link) has the fewest
possible crossings.
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Jones polynomial
A review

Denote −A3 as α, [·] as Kauffman bracket, we have

f(L)(A) = α−w(L)[L] = g(A)

where g ∈ Z[x], w(L) is the writhe of L.

The Jones polynomial J(L)(t) is defined as g(t−
1
4 ), have the following

several properties:

1) t−1J(L+)− tJ(L−) = (t
1
2 − t−

1
2 )J(L0)

2) J( ) = 1

3) Invariant under Reidemeister moves

4) J(L1#L2) = J(L1)J(L2)

5) J(L1 ⊔ L2) = −(t
1
2 − t−

1
2 )J(L1)J(L2)
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Coloring of classical diagram

Proposition:

A classical diagram can be colored by two numbers in a way that any
two connected area have different colors.

Proof: By induction on the number of crossings. Here is the gist:

(Another proof: Since we know the 3-colorability, we also have a vector
space isomorphism between 3-Fox coloring and 2-Dehn coloring.)

Lemma:

A connected diagram have n crossings, r regions, then r = n+ 2

Proof: By induction.
(Another proof: By Euler’s formula, r − e+ n = 2, where e is the
number of edges. e = 2n because an edge determine 2 crossings, and
each crossing has 4 edges.)
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Preparation

All the diagrams are connected in the following discussion.

Definition: Span

Given a polynomial f(x), span f is the highest degree of f minus the
lowest degree of f .

Suppose L is a connected, reduced, checkerboard-colored alternating
diagram.

[L] =
∑
S

Ai(S)−j(S)dδ(S)−1

where i(S), j(S), δ(S) denote the number of A-splittings and
B-splittings, and the number of circles in S, respectively, and
d = −A2 −A−2

Guess: the highest term is from the state S that j(S) = 0. This term
contributes Andδ(S)−1 to [L], then the highest term is ±An+2(δ(S)−1).
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For example, given a diagram L, we color it.

We denote the number of black areas B, the number of white areas W .
Then, in the first picture, n = 17, W = 7, B = 12, and in the second
picture, we can see δ(S) = 7 = W .
We can let all black regions connected, and making this state that all
the opened A-splittings coincide those black regions. Then this is an
alternating diagram.
Hence, the ”full-A state” has contribution:
AndW−1 = An(−A2 −A−2)W−1, whose highest term is ±An+2(W−1),
likewise, we can guess the lowest term has contribution ±A−n−2(B−1).
We will make this a theorem.

Theorem

The highest and lowest term of [L] is ±An+2(W−1) and ±A−n−2(B−1),
hence span[L] = 4n.

8 / 18



Proof: We analyze the highest term of [L]. Inheriting the notation
from above, and we denote S′, S′′ as any states.
Notice that state S′ would contribute: Ai(S′)−j(S′)(−A2 −A−2)δ(S

′)−1,
whose highest term has degree: M(S′) = i(S′)− j(S′) + 2(δ(S′)− 1).
(i). If state S′ is obtained from S′′ by changing one A-splitting to
B-splitting, then M(S′) ≤ M(S′′), because i(S′) = i(S′′)− 1,
j(S′) = j(S′′) + 1, δ(S′) = δ(S′′)± 1. If δ(S′) = δ(S′′) + 1, then
M(S′) = M(S′′); If δ(S′) = δ(S′′)− 1, then M(S′) = M(S′′)− 4.
(ii). If state S′ is obtained from S by changing one A-splitting to
B-splitting, then δ(S′) = δ(S)− 1, thus M(S′) = M(S)− 4
Thus we know that ∀S′, n+ 2(W − 1) = M(S) ≥ M(S′). Likewise, we
know the lowest degree term is of the degree −n− 2(B − 1).
Therefore, span[L] = (n+ 2(W − 1))− (−n− 2(B − 1)) =
2n+ 2(W +B − 2) = 2n+ 2(r − 2) = 4n
The last equality is by lemma: r = n+ 2.
Hence,

The highest and lowest term of [L] is ±An+2(W−1) and ±A−n−2(B−1),
hence span[L] = 4n
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We can also see spanJ(L)(t) = n, which is an immediate result.

Lemma 1

δ(S) + δ(Ŝ) ≤ n(L) + 2, where Ŝ denotes the state that different from
S totally.

Proof: Do induction on n. Since we assume the connectedness, we
know when n = 0, δ(S) = δ(Ŝ) = 1
Assume this proposition is true for n < k, then for n = k, choose any
crossing P , split it without breaking the connectedness to get a k − 1
crossings diagram L′. (This is doable.) Either or not the crossing is
A-type, we would have δ(S) + δ(Ŝ) ≤ δ(S′) + δ(Ŝ′) + 1. Because only
one of
(i). δ(S′) = δ(S′′)± 1, δ(Ŝ′) = δ(Ŝ′′)
(ii). δ(Ŝ′) = δ(Ŝ′′)± 1, δ(S′) = δ(S′′)
would happen.
Based on the inductive hypothesis, δ(S′) + δ(Ŝ′) ≤ k − 1 + 2 = k + 1,
and therefore δ(S) + δ(Ŝ) ≤ k + 1 + 1 = k + 2.
Therefore, δ(S) + δ(Ŝ) ≤ n(L) + 2.
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Theorem 2

For any L, spanJ(L) ≤ n(L).

Proof: Let S be the full-A-state. We see the highest term of [L] has its
degree ≤ n(L) + 2(δ(S)− 1), while the lowest ≥ −n(L)− 2(δ(Ŝ)− 1).
Hence, span[L] ≤ 2n(L) + 2(δ(S) + δ(Ŝ)− 2) ≤ 4n(L)
However, J(L)(t) = n.
And thus does spanJ(L) ≤ n(L).

Corollary

Any reduced diagram of an alternating link has the fewest possible
crossings.

Proof: By Theorem 1, we know spanJ(L)(t) = n(L), for reduced knot
diagram.
By Theorem 2, spanJ(L) ≤ n(L).

□
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Disclaimer

Caution!
The following materials are at a primary stage,

and may contain fatal factual errors,
therefore might not be considered as a rigorous mathematical approach.
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We can write a graph in the form of adjacent matrix, given the
relations between any two points. We can also encode the information
oriented graph into such structure, by deserting symmetry.
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Basic Algebra

Equivalent Relation

Let A be a set, we can define the relation ∼ on A×A, which satisfies
the following:

1) a ∼ a

2) If a ∼ b, then b ∼ a

3) If a ∼ b and b ∼ c, then a ∼ c

For example, = is a relation on R× R

What I want to do next is to encode the information of knot diagram
into a matrix-like stuff, and encode the Reidemeister moves into
equivalent relation.

14 / 18



Consider the free module FZ2(P × Z2 × P × Z2), where P is the set
of crossings of a knot diagram. This is a 4|P |2-dimensional Z2 vector
space.
As an analogue of the adjacent matrix, we can write the knot

diagram as a table.
We can describe the edge between two crossings by listing two

endpoints, as well as their positions.
For example, an edge between a and b can be written as

(a,m1, b,m2), where mi ∈ Z2 is used to describe the upper or lower
position of the start and end of this edge.
And, the reason I choose to generate the module over Z/2Z is

because it can describe the binary relation of Yes and No. Also, Z/2Z
is a field, and |P | < ∞, so we actually generate a finite dimensional
linear space.
Actually, the set of knot with |P | crossings do not have a one-to-one

correspondence with all the elements in this linear space. We need to
put some restrictions, but it remains undone for the time being. But
such construction is injective, an embedding into this linear space.
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Given the Reidemeister moves, we should have:

R1: (a,m1, b,m2) + (b,m2, b,m2) + (b,m2, c,m3)− (a,m1, c,m3)
R2: (a,m1, e,m2) + (e,m2, f,m2) + (f,m2, c,m3) + (b,m4, e,m2) +
(e,m2, f,m2) + (f,m2, d,m5)− (a,m1, c,m3)− (b,m4, d,m5)
R3: (a,m1, g,m2) + (g,m2, h,m2) + (h,m2, d,m3) + (b,m4, g,m2) +
(g,m2, i,m5) + (i,m5, e,m6) + (c,m7, h,m2) + (h,m2, i,m5) +
(i,m5, f,m8)− (b,m4, i,m5)− (i,m5, h,m2)− (h,m2, e,m6)−
(c,m7, i,m5)− (i,m5, g,m2)− (g,m2, f,m8)− (a,m1, g,m2)−
(g,m2, h,m2)− (h,m2, d,m3)
∀a, b, c, d, e, f, g, h, i ∈ P,mj ∈ Z2

What I want is:

P × Z2 ⊘ P × Z2 = FZ2(P × Z2 × P × Z2)/(R1, R2, R3)

Where (R1, R2, R3) is the subspace generated by R1, R2, R3 16 / 18



P × Z2 × P × Z2 P × Z2 ⊘ P × Z2

N
φ : P × Z2 × P × Z2 → N can be any knot invariant mapping.
Universal object is unique, but it is hard to prove the existence. But in
the last page, if it is correct, I construct it explicitly.
Then the P × Z2 ⊘ P × Z2 is the universal repelling object in the
category of knot invariant mapping (N,φ) that makes the diagram
commute.
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THE END
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