Ribbon graphs

Thistlethwaite's Theorem [Ka1] Up to a sign and multiplication by a power of the Jones polynomial $J_{L}(t)$ of an alternating link L is equal to the Tutte polynomial $T_{\Gamma}\left(-t,-t^{-1}\right)$.
 Δ

The theorem was generalized to non-alternating links using signed graphs in [Ka2] and using the Bollobás-Riordan polynomial for ribbon graphs in [DFKLS]; to virtual links in [ChVo, Ch]; and to the arrow polynomial in [BBC].

Definition. A ribbon graph G is a surface (possibly non-orientable) with boundary, represented as the union of two sets of closed topological discs called vertices $V(G)$ and edges $E(G)$, satisfying the following conditions:

- these vertices and edges intersect by disjoint line segments;
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

(c)

The Bollobás-Riordan polynomial
Reference: B. Bollobás and O. Riordan [BR].

$$
R_{G}\left(\left\{x_{e}, y_{e}\right\}, X, Y, Z\right):=\sum_{F \subseteq G}\left(\prod_{e \in F} x_{e}\right)\left(\prod_{e \notin F} y_{e}\right) X^{r(G)-r(F)} Y^{n(F)} Z^{k(F)-\mathrm{bc}(F)+n(F)}
$$

For signed graphs, we set

$$
\begin{cases}x_{+}=1, & x_{-}=(X / Y)^{1 / 2} \\ y_{+}=1, & y_{-}=(Y / X)^{1 / 2}\end{cases}
$$

Example.

Properties.

$$
\begin{array}{ll}
R_{G}=x_{e} R_{G / e}+y_{e} R_{G-e} & \text { if } e \text { is ordinary, that is neither a bridge nor a loop, } \\
R_{G}=\left(x_{e}+X y_{e}\right) R_{G / e} & \text { if } e \text { is a bridge. } \\
R_{G_{1} \sqcup G_{2}}=R_{G_{1} \cdot G_{2}}=R_{G_{1}} \cdot R_{G_{2}} &
\end{array}
$$

Theorem [Ch].

Let L be a virtual link diagram with e classical crossings, G_{L}^{s} be the signed ribbon graph corresponding to a state s, and $v:=v\left(G_{L}^{s}\right), k:=k\left(G_{L}^{s}\right)$. Then $e=e\left(G_{L}^{s}\right)$ and

$$
[L](A, B, d)=A^{e}\left(\left.X^{k} Y^{v} Z^{v+1} R_{G_{L}^{s}}(X, Y, Z)\right|_{X=\frac{A d}{B}, Y=\frac{B d}{A}, Z=\frac{1}{d}}\right)
$$

Construction of a ribbon graph from a virtual link diagram

State s

Attaching planar bands

Untwisting state circles

References
[BR] B. Bollobás and O. Riordan, A polynomial of graphs on surfaces, Math. Ann. 323 (2002) 81-96.
[BBC] R. Bradford, C. Butler, S. Chmutov, Arrow ribbon graphs, Journal of Knot Theory and its Ramifications, 21(13) (2012) \# 1240002 (16 pages).
[Ch] S. Chmutov, Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial, Journal of Combinatorial Theory, Ser. B 99(3) (2009) 617-638; preprint arXiv:math.C0/0711.3490.
[ChVo] S. Chmutov, J. Voltz, Thistlethwaite's theorem for virtual links. Journal of Knot Theory and Its Ramifications, $\mathbf{1 7}(10)(2008)$ 1189-1198; preprint arXiv:math. GT/0704.1310.
[DFKLS] O. Dasbach, D. Futer, E. Kalfagianni, X.-S. Lin, N. Stoltzfus, The Jones polynomial and graphs on surfaces, Journal of Combinatorial Theory, Ser.B 98 (2008) 384-399; preprint math.GT/0605571.
[Ka1] L. H. Kauffman, New invariants in knot theory, Amer. Math. Monthly 95 (1988) 195-242.
[Ka2] L. H. Kauffman, A Tutte polynomial for signed graphs, Discrete Appl. Math. 25 (1989) 105-127.

