Chromatic Polynomials of 2-Edge-Colored Graphs

Steven Wu
June 2024

2-Edge-Colored Graphs

Definition

A 2-edge-colored graph G is a triple $\left(\Gamma, R_{G}, B_{G}\right)$, where Γ is a simple graph, $R_{G} \subseteq E(\Gamma)$, and $B_{G} \subseteq E(\Gamma)$ such that $R_{G} \cap B_{G}=\emptyset$ and $R_{G} \cup B_{G}=E(\Gamma)$.

Definition

A signed graph is a graph whose edges are labelled with signs (+ or -).

Note that if $R_{G}, B_{G} \neq \emptyset$, we call the graph bichromatic and it can also be interpreted as a signed graph.

k-coloring of a 2-Edge-Colored Graph

Definition

A k-coloring of a graph $G=(\Gamma, R, B)$ is a function
$d: V(G) \rightarrow\{1,2, \ldots, k\}$ satisfying the following two conditions:
(1) for all $y z \in E(\Gamma)$, we have $d(y) \neq d(z)$; and
(2) for all $u x \in R$ and $v y \in B$, if $d(u)=d(v)$, then $d(x) \neq d(y)$.

Definition

The chromatic number $\chi(G)$ is the least integer k such that G admits a k-coloring.

Definition

The chromatic polynomial $P(G, k)$ is a polynomial that represents the number of k-colorings of G.

Example

Mixed 2-Edge-Colored Graphs

Definition

A mixed 2-edge-colored graph is a pair $M=\left(G, F_{M}\right)$ where G is a 2-edge-colored graph with $G=\left(\Gamma, R_{G}, B_{G}\right)$ and $F_{M} \subseteq E(\Gamma)$.
F_{M} can be considered as the set of edges that belong to neither R_{G} or B_{G}.

Definition

An induced bichromatic 2-path is an induced path uvy such that $u v \in R$ and $v y \in B$ or $u v \in B$ and $v y \in R$.
θ

Mixed 2-Edge-Colored Graphs

Lemma

If uvy is an induced bichromatic 2-path, then the vertices on the ends must be different colors.

Proof.

Assume that there exists a coloring of $u v y$. Suppose for a contradiction that $d(u)=d(y)$. Then, by property $2, v$ cannot be colored. Thus, $d(u) \neq d(y)$.

Chromatic Polynomials of Mixed 2-Edge-Colored Graphs

Theorem

Let M be a mixed 2-edge-colored graph. If every pair of vertices in M are either adjacent in M or at the ends of an induced bichromatic 2-path in G, then in any coloring of M, each vertex receives a distinct color. Thus,

$$
P(M, k)=\prod_{i=0}^{n-1}(k-i)=P\left(K_{n}, k\right)
$$

Proof.

By previous lemma and property 1, every pair of vertices receive distinct colors. Thus, each vertex receives a distinct color.

Example

Contraction-Deletion

The standard contraction-deletion formula

$$
\chi_{G}=\chi_{G-e}-\chi_{G / e}
$$

does not hold because property 2 is not local.

Insertion-Contraction

Theorem

Let x and y be a pair of vertices that are neither adjacent in M nor at the ends of a bichromatic 2-path in M. Then,

$$
P(M, k)=P(M+x y, k)+P\left(M_{x y}, k\right)
$$

where $M+x y$ is the mixed 2-edge-colored graph formed from M by adding xy to F and $M_{x y}$ is the mixed 2-edge-colored graph formed from identifying vertices x and y and deleting any edge that is parallel with a colored edge.

Proof.

The k-colorings of M can be partitioned into those in which x and y are the same color and those which they are different.

Example

Example

$$
\begin{gathered}
=q(q-1)(q-2)(q-3)(q-4)+3 q(q-1)(q-2)(q-3)+q(q-1)(q-2) \\
=q^{5}-7 q^{4}+18 q^{3}-20 q^{2}+8 q
\end{gathered}
$$

References

[BCDZ] I. Beaton, D. Cox, C. Duffy, N. Zolkavich, Chromatic Polynomials of 2-Edge-Coloured Graphs, The Electronic Journal of Combinatorics 30(4) (2023), \#P4.40
https://doi.org/10.37236/9785
[Za] T. Zaslavsky, Signed graph coloring, Discrete Mathematics 39(2) (1982) 215-228.

