Chromatic Polynomials of 2-Edge-Colored Graphs

Steven Wu

June 2024

Steven Wu Chromatic Polynomials of 2-Edge-Colored Graphs

-

Definition

A 2-edge-colored graph G is a triple (Γ, R_G, B_G) , where Γ is a simple graph, $R_G \subseteq E(\Gamma)$, and $B_G \subseteq E(\Gamma)$ such that $R_G \cap B_G = \emptyset$ and $R_G \cup B_G = E(\Gamma)$.

Definition

A signed graph is a graph whose edges are labelled with signs (+ or -).

Note that if $R_G, B_G \neq \emptyset$, we call the graph bichromatic and it can also be interpreted as a signed graph.

伺 ト イヨト イヨト

k-coloring of a 2-Edge-Colored Graph

Definition

A *k*-coloring of a graph $G = (\Gamma, R, B)$ is a function

 $d: V(G) \rightarrow \{1, 2, ..., k\}$ satisfying the following two conditions:

- for all $yz \in E(\Gamma)$, we have $d(y) \neq d(z)$; and
- 3 for all $ux \in R$ and $vy \in B$, if d(u) = d(v), then $d(x) \neq d(y)$.

Definition

The chromatic number $\chi(G)$ is the least integer k such that G admits a k-coloring.

Definition

The chromatic polynomial P(G, k) is a polynomial that represents the number of k-colorings of G.

< ロ > < 同 > < 三 > < 三 >

 $\chi(G_1) = 2, \chi(G_2) = 6$

▲御▶ ▲理▶ ▲理▶ - 理

Definition

A mixed 2-edge-colored graph is a pair $M = (G, F_M)$ where G is a 2-edge-colored graph with $G = (\Gamma, R_G, B_G)$ and $F_M \subseteq E(\Gamma)$.

 F_M can be considered as the set of edges that belong to neither R_G or B_G .

Definition

An *induced bichromatic 2-path* is an induced path *uvy* such that $uv \in R$ and $vy \in B$ or $uv \in B$ and $vy \in R$.

.

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

Lemma

If uvy is an induced bichromatic 2-path, then the vertices on the ends must be different colors.

Proof.

Assume that there exists a coloring of uvy. Suppose for a contradiction that d(u) = d(y). Then, by property 2, v cannot be colored. Thus, $d(u) \neq d(y)$.

Theorem

Let M be a mixed 2-edge-colored graph. If every pair of vertices in M are either adjacent in M or at the ends of an induced bichromatic 2-path in G, then in any coloring of M, each vertex receives a distinct color. Thus,

$$P(M,k) = \prod_{i=0}^{n-1} (k-i) = P(K_n,k)$$

Proof.

By previous lemma and property 1, every pair of vertices receive distinct colors. Thus, each vertex receives a distinct color.

The standard contraction-deletion formula

$$\chi_{G} = \chi_{G-e} - \chi_{G/e}$$

does not hold because property 2 is not local.

Theorem

Let x and y be a pair of vertices that are neither adjacent in M nor at the ends of a bichromatic 2-path in M. Then,

$$P(M,k) = P(M + xy, k) + P(M_{xy}, k)$$

where M + xy is the mixed 2-edge-colored graph formed from M by adding xy to F and M_{xy} is the mixed 2-edge-colored graph formed from identifying vertices x and y and deleting any edge that is parallel with a colored edge.

Proof.

The *k*-colorings of *M* can be partitioned into those in which x and y are the same color and those which they are different.

伺 ト イ ヨ ト イ ヨ

Example

= q(q-1)(q-2)(q-3)(q-4) + 3q(q-1)(q-2)(q-3) + q(q-1)(q-2) $= q^5 - 7q^4 + 18q^3 - 20q^2 + 8q$

< ∃ >

[BCDZ] I. Beaton, D. Cox, C. Duffy, N. Zolkavich, Chromatic Polynomials of 2-Edge-Coloured Graphs, The Electronic Journal of Combinatorics 30(4) (2023), #P4.40 https://doi.org/10.37236/9785
[Za] T. Zaslavsky, Signed graph coloring, Discrete Mathematics 39(2) (1982) 215–228.

- 3 b - 4 3 b