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Intersection Graphs

Definition 1

The intersection graph of a bouquet B is the simple graph I(B)
whose vertices are the edges of B such that two vertices of I(B)
are adjacent if and only if the corresponding edges of B intersect.



Signed Intersection Graphs

Definition 2

To record any half-twists of ribbon edges, we define the signed
intersection graph of a bouquet B to be the signed graph SI(B)
obtained by assigning a + or — to each vertex of /(B) according to
whether the corresponding ribbon edge is untwisted or twisted.

If all vertices of a signed intersection graph G are positive, then we
call G positive.



Partial-dual Polynomial

Definition 3

Recall that the partial-dual Euler genus polynomial of a ribbon

graph G is
A
()= 3 O,
ACE(G)

the generating function enumerating the edge subsets of G by the
Euler genus of their partial duals.



Intersection Polynomial

(Yan and Jin 2022): If two bouquets By and B, have the same
signed intersection graph, then 9¢p (z) = 9¢p,(z).

Definition 5

Thus we can define the intersection polynomial IP;(z) of a
signed intersection graph G as the partial-dual Euler genus
polynomial of any bouquet whose signed intersection graph is G.



A Recurrence Relation for Leaves

Theorem 6

(Yan and Jin 2022): Let G be a signed intersection graph and let
v1, vo be adjacent vertices of G such that vy is positive and has
degree 1. Then

IPc(2) = IP6_,(2) + (22*) IPG_y,—,(2).

This allows us to recursively compute the intersection polynomial
of any positive tree.



Cut-vertex

Let G be a graph. A vertex v of G is called a cut-vertex of G if
G — v has more connected components than G.



Cut-vertex Recurrence Relation

Let G be a signed intersection graph such that G = Gy U Gy,

G1 N Gy = {v}, v is a cut-vertex of G, and G, — v is positive.
If v is positive then
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If v is negative then
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Let G be a fixed signed intersection graph with a marked vertex v,
such that G, — v, is positive. It suffices to show that for all signed
intersection graphs Gi with a marked vertex vy, the graph G
obtained by taking the disjoint union of G; and G, and identifying
the vertices v; and v» satisfies the recursion, with v = v; = ws.

First we show that there exist polynomials @y, @> with
non-negative integer coefficients such that

IPc = Q1IPg, +Q2IPg,—y

(note that Q1, Q> depend on Gy and v).



Let B be a bouquet with signed intersection graph G, let X1, Xo be
the edge subsets corresponding to Gi, Gy, and let r be the edge
corresponding to the cut-vertex v.



We can view B as above, where all edges in X; — r have their ends
in the purple regions and all edges in X5 — r have their ends in the
green regions.



Consider the partition

{ACEB):reAy= ] T
reFCX;

where for A C E(B) with r € A, we have that A € TF if and only
if F=ANX>. In other words, we sort the edge subsets of B
containing r by their intersection with Xs.



Now, for each such F, consider the region enclosed by the dashed
lines in the ribbon subgraph of B whose edges in X5 are precisely
those in F and whose edges in X1 — r are arbitrary.

Since all the edges in X, — r are untwisted, there are only two ways
the boundary component starting in the top-left can exit.



Proof

Case 1. Within the dashed region, the two sides of r belong to the
same boundary component.

We have a one-to-one correspondence between subsets D C E(X; — r)
and A€ Trvia A= DUF (so A° = DU F¢). For bouquets we have
thate =1+ e—f, so e(A) = &(D) + e(F) — b(F), where e(F) is the
number of edges in F and b(F) is the number of boundary components
lying completely inside the dashed region.



Similarly, e(A°) = (D) + e(F¢) — b(F€), so
e(BA) = ¢(A) + (A°) = ¢((X1 — r)P) + A(F) for some constant
A(F) € Z. Thus

Z Z 2<(B%) ZZA(F Z 25(a=n?) — ZZA(F) Oex,—r(2)
F

F AcTr DCE(X1—r)

where the summation is taken over all r € F C X; falling into case 1.



Proof

Case 2: Within the dashed region, the two sides of r belong to
different boundary components.

We have a one-to-one correspondence between subsets D C E(X) that
contain r and A€ Tr via A= DU F (so A = DU F€). Then once
again, we have ¢(A) = (D) + e(F) — 1 — b(F), where e(F) is the
number of edges in F and b(F) is the number of boundary components
lying completely inside the dashed region.



Similarly, (A¢) = ¢(D¢) + e(F¢) — b(F€), so
e(BA) = (A) + g(A°) = &(XP) + A(F) for some constant A(F) € Z.

Thus
1
Z Z Se(BY) — ZZA(F) Z 2(XP) — 3 ZZA(F) 8€x1(2)
F AE€Te F reDCE(X1) F

where the summation is taken over all r € F C X, falling into case 2.



Thus

GEB(Z) -2 Z ZE(BA)

reACE(B)

PP

reFCX, AETE
= Q1 %x,(2) + Q%x_(2)

for some Q1, @2 € Z|z], so

|PG(Z) =@ |PG1(Z) + @ |PG1_V(Z).



Proof

Given the existence of @y, @, we can solve for them by plugging
in specific values for G;. First suppose v is positive. Setting
Gy = {v}, we get

IPg, =P = Q1IPG, + Q2 IPg—y = 2Q1 + Q2.

Now setting G; to be the graph with two positive vertices
connected by an edge, we get that

P = QIPG, +@IPg,_, = (222 +2)@1 + 2@
and by Yan and Jin's recursion,

IP¢ = IPg, +22°IPg,_, .



After solving the following system of equations,

2Q1 + @ = IPg,
(222 +2)Q1 + 2@ = IPg, +22%IPg,_,

we get
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Similarly, if v is negative, then we set G; = {v} to get

IPg, =IPc = Qi1IPg, +Q 1P, = (22) Q1 + Q.

If we now set Gj to be the graph with one positive vertex
connected to v, we get that

IP6 = QiIPg, + @ IPg,_, = (222 +22)Q; +2Q,
and by Yan and Jin’s recursion,

IP¢ = IPg, +222IPg,_, .



Solving the following system of equations

(22)Q1 + @ = IPg,
(222 +22)@Q1 + 2@ = IPg, +22%1Pg,_,

gives
0 — 222I1Pg,_, — IPg, 0 — 1P 222I1Pg,_, — IPg,
1= 272 — 2z 2T e z—1 ’
SO
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Divisibility Check

We proved that the formulas

222 |PG1 IPGg—v —|—222 IPGI—V |PG2 — |PG1 |PG2 —422 |P(;1_V |P(;2_V

P =

2722 -2
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are polynomials in z with integer coefficients, but is it apparent that the
numerators of each are divisible by their denominators?

Yes, because:

m The intersection polynomial of any non-empty graph has even
coefficients.

m If His a signed intersection graph then IPy(1) = 2V(") and if H is
positive then 1Py is a polynomial in z2, so IPy(—1) = IPy(1).

m [Py contains a non-zero constant term if and only if H is positive
and bipartite.



Two Trees with the same Intersection Polynomial

The two trees above have the same intersection polynomial:
2562° + 4802° + 2442* 4 4222 + 2.

So, the intersection polynomial does not distinguish trees.
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