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Intersection Graphs

Definition 1

The intersection graph of a bouquet B is the simple graph I(B)
whose vertices are the edges of B such that two vertices of I(B)
are adjacent if and only if the corresponding edges of B intersect.



Signed Intersection Graphs

Definition 2

To record any half-twists of ribbon edges, we define the signed
intersection graph of a bouquet B to be the signed graph SI(B)
obtained by assigning a + or − to each vertex of I (B) according to
whether the corresponding ribbon edge is untwisted or twisted.

If all vertices of a signed intersection graph G are positive, then we
call G positive.



Partial-dual Polynomial

Definition 3

Recall that the partial-dual Euler genus polynomial of a ribbon
graph G is

∂εG (z) =
∑

A⊆E(G)

zε(G
A),

the generating function enumerating the edge subsets of G by the
Euler genus of their partial duals.



Intersection Polynomial

Theorem 4

(Yan and Jin 2022): If two bouquets B1 and B2 have the same
signed intersection graph, then ∂εB1(z) =

∂εB2(z).

Definition 5

Thus we can define the intersection polynomial IPG (z) of a
signed intersection graph G as the partial-dual Euler genus
polynomial of any bouquet whose signed intersection graph is G .



A Recurrence Relation for Leaves

Theorem 6

(Yan and Jin 2022): Let G be a signed intersection graph and let
v1, v2 be adjacent vertices of G such that v1 is positive and has
degree 1. Then

IPG (z) = IPG−v1(z) + (2z2) IPG−v1−v2(z).

This allows us to recursively compute the intersection polynomial
of any positive tree.



Cut-vertex

Definition 7

Let G be a graph. A vertex v of G is called a cut-vertex of G if
G − v has more connected components than G .



Cut-vertex Recurrence Relation

Theorem 8

Let G be a signed intersection graph such that G = G1 ∪ G2,
G1 ∩ G2 = {v}, v is a cut-vertex of G, and G2 − v is positive.
If v is positive then

IPG =
2z2 IPG1 IPG2−v +2z2 IPG1−v IPG2 − IPG1 IPG2 −4z2 IPG1−v IPG2−v

2z2 − 2
.

If v is negative then

IPG =
2z2 IPG1 IPG2−v +2z2 IPG1−v IPG2 − IPG1 IPG2 −4z3 IPG1−v IPG2−v

2z2 − 2z
.



Proof

Let G2 be a fixed signed intersection graph with a marked vertex v2
such that G2 − v2 is positive. It suffices to show that for all signed
intersection graphs G1 with a marked vertex v1, the graph G
obtained by taking the disjoint union of G1 and G2 and identifying
the vertices v1 and v2 satisfies the recursion, with v = v1 = v2.

First we show that there exist polynomials Q1,Q2 with
non-negative integer coefficients such that

IPG = Q1 IPG1 +Q2 IPG1−v

(note that Q1,Q2 depend on G2 and v).



Proof

Let B be a bouquet with signed intersection graph G , let X1,X2 be
the edge subsets corresponding to G1,G2, and let r be the edge
corresponding to the cut-vertex v .



Proof

We can view B as above, where all edges in X1 − r have their ends
in the purple regions and all edges in X2 − r have their ends in the
green regions.



Proof

Consider the partition

{A ⊆ E (B) : r ∈ A} =
⋃

r∈F⊆X2

TF

where for A ⊆ E (B) with r ∈ A, we have that A ∈ TF if and only
if F = A ∩ X2. In other words, we sort the edge subsets of B
containing r by their intersection with X2.



Proof

Now, for each such F , consider the region enclosed by the dashed
lines in the ribbon subgraph of B whose edges in X2 are precisely
those in F and whose edges in X1 − r are arbitrary.
Since all the edges in X2 − r are untwisted, there are only two ways
the boundary component starting in the top-left can exit.



Proof

Case 1: Within the dashed region, the two sides of r belong to the
same boundary component.

We have a one-to-one correspondence between subsets D ⊆ E (X1 − r)

and A ∈ TF via A = D ∪ F (so Ac = Dc ∪ F c). For bouquets we have

that ε = 1 + e − f , so ε(A) = ε(D) + e(F )− b(F ), where e(F ) is the

number of edges in F and b(F ) is the number of boundary components

lying completely inside the dashed region.



Proof

Similarly, ε(Ac) = ε(Dc) + e(F c)− b(F c), so
ε(BA) = ε(A) + ε(Ac) = ε((X1 − r)D) + ∆(F ) for some constant
∆(F ) ∈ Z. Thus∑

F

∑
A∈TF

zε(B
A) =

∑
F

z∆(F )
∑

D⊆E(X1−r)

zε((X1−r)D ) =
∑
F

z∆(F ) ∂εX1−r (z)

where the summation is taken over all r ∈ F ⊆ X2 falling into case 1.



Proof

Case 2: Within the dashed region, the two sides of r belong to
different boundary components.

We have a one-to-one correspondence between subsets D ⊆ E (X1) that

contain r and A ∈ TF via A = D ∪ F (so Ac = Dc ∪ F c). Then once

again, we have ε(A) = ε(D) + e(F )− 1− b(F ), where e(F ) is the

number of edges in F and b(F ) is the number of boundary components

lying completely inside the dashed region.



Proof

Similarly, ε(Ac) = ε(Dc) + e(F c)− b(F c), so
ε(BA) = ε(A) + ε(Ac) = ε(XD

1 ) + ∆(F ) for some constant ∆(F ) ∈ Z.
Thus∑

F

∑
A∈TF

zε(B
A) =

∑
F

z∆(F )
∑

r∈D⊆E(X1)

zε(X
D
1 ) =

1

2

∑
F

z∆(F ) ∂εX1(z)

where the summation is taken over all r ∈ F ⊆ X2 falling into case 2.



Proof

Thus

∂εB(z) = 2
∑

r∈A⊆E(B)

zε(B
A)

= 2
∑

r∈F⊆X2

∑
A∈TF

zε(B
A)

= Q1
∂εX1(z) + Q2

∂εX1−r (z)

for some Q1,Q2 ∈ Z[z ], so

IPG (z) = Q1 IPG1(z) + Q2 IPG1−v (z).



Proof

Given the existence of Q1,Q2, we can solve for them by plugging
in specific values for G1. First suppose v is positive. Setting
G1 = {v}, we get

IPG2 = IPG = Q1 IPG1 +Q2 IPG1−v = 2Q1 + Q2.

Now setting G1 to be the graph with two positive vertices
connected by an edge, we get that

IPG = Q1 IPG1 +Q2 IPG1−v = (2z2 + 2)Q1 + 2Q2

and by Yan and Jin’s recursion,

IPG = IPG2 +2z2 IPG2−v .



Proof

After solving the following system of equations,{
2Q1 + Q2 = IPG2

(2z2 + 2)Q1 + 2Q2 = IPG2 +2z2 IPG2−v

we get

Q1 =
2z2 IPG2−v − IPG2

2z2 − 2
, Q2 = IPG2 −

2z2 IPG2−v − IPG2

z2 − 1
,

so

IPG =
2z2 IPG1 IPG2−v +2z2 IPG1−v IPG2 − IPG1 IPG2 −4z2 IPG1−v IPG2−v

2z2 − 2
.



Proof

Similarly, if v is negative, then we set G1 = {v} to get

IPG2 = IPG = Q1 IPG1 +Q2 IPG1−v = (2z)Q1 + Q2.

If we now set G1 to be the graph with one positive vertex
connected to v , we get that

IPG = Q1 IPG1 +Q2 IPG1−v = (2z2 + 2z)Q1 + 2Q2

and by Yan and Jin’s recursion,

IPG = IPG2 +2z2 IPG2−v .



Proof

Solving the following system of equations{
(2z)Q1 + Q2 = IPG2

(2z2 + 2z)Q1 + 2Q2 = IPG2 +2z2 IPG2−v

gives

Q1 =
2z2 IPG2−v − IPG2

2z2 − 2z
, Q2 = IPG2 −

2z2 IPG2−v − IPG2

z − 1
,

so

IPG =
2z2 IPG1 IPG2−v +2z2 IPG1−v IPG2 − IPG1 IPG2 −4z3 IPG1−v IPG2−v

2z2 − 2z
.



Divisibility Check

We proved that the formulas

IPG =
2z2 IPG1 IPG2−v +2z2 IPG1−v IPG2 − IPG1 IPG2 −4z2 IPG1−v IPG2−v

2z2 − 2

IPG =
2z2 IPG1 IPG2−v +2z2 IPG1−v IPG2 − IPG1 IPG2 −4z3 IPG1−v IPG2−v

2z2 − 2z

are polynomials in z with integer coefficients, but is it apparent that the
numerators of each are divisible by their denominators?

Yes, because:

The intersection polynomial of any non-empty graph has even
coefficients.

If H is a signed intersection graph then IPH(1) = 2V (H), and if H is
positive then IPH is a polynomial in z2, so IPH(−1) = IPH(1).

IPH contains a non-zero constant term if and only if H is positive
and bipartite.



Two Trees with the same Intersection Polynomial

The two trees above have the same intersection polynomial:

256z8 + 480z6 + 244z4 + 42z2 + 2.

So, the intersection polynomial does not distinguish trees.
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