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Chord Diagrams

Definition 1

A chord diagram is a collection of chords on a circle.

Abstractly, a chord diagram is a cyclic ordering of objects that are
partitioned into pairs.



Chord Diagrams as Ribbon Graphs

We can view any chord diagram as an orientable ribbon graph with
one vertex (bouquet). Conversely, any orientable bouquet can be
seen as a chord diagram.



Intersection Graphs

Definition 2

The intersection graph of a bouquet B is the simple graph I(B)
whose vertices are the edges of B such that two vertices of I(B)
are adjacent if and only if the corresponding edges of B intersect.



Signed Intersection Graphs

Definition 3

To record any half-twists of ribbon edges, we define the signed
intersection graph of a bouquet B to be the signed graph SI(B)
obtained by assigning a + or − to each vertex of I (B) according to
whether the corresponding ribbon edge is untwisted or twisted.



Partial-dual Polynomial

Definition 4

Recall that the partial-dual Euler genus polynomial of a ribbon
graph G is

∂εG (z) =
∑

A⊆E(G)

zε(G
A),

the generating function enumerating the edge subsets of G by the
Euler genus of their partial duals.



Intersection Polynomial

Theorem 5

(Yan and Jin 2022): If two bouquets B1 and B2 have the same
signed intersection graph, then ∂εB1(z) =

∂εB2(z).

Definition 6

Thus we can define the intersection polynomial IPG (z) of a
signed intersection graph G as the partial-dual Euler genus
polynomial of any bouquet whose signed intersection graph is G .



Ribbon Join

Definition 7

Let R1, R2 be disjoint ribbon graphs. The ribbon join R1 ∨ R2 is
obtained by identifying a boundary arc on a vertex disc of R1 with
an arc on a vertex disc of R2. This operation is in general not
unique.

Proposition 1

∂εR1∨R2(z) =
∂εR1(z)

∂εR2(z).



Disjoint Union

Proposition 2

Let B1 and B2 be bouquets. Then

SI(B1 ∨ B2) = SI(B1) ⊔ SI(B2).

Thus if G1 and G2 are signed intersection graphs, then

IPG1⊔G2(z) = IPG1(z) IPG2(z).



A Recurrence Relation

Theorem 8

(Yan and Jin 2022): Let G be a signed intersection graph and let
v1, v2 be adjacent vertices of G such that v1 is positive and has
degree 1. Then

IPG (z) = IPG−v1(z) + (2z2) IPG−v1−v2(z).

This allows us to recursively compute the intersection polynomial
of any positive tree.



A Recurrence Relation

Proof.

Let B be a bouquet such that SI(B) = G , and let e1, e2 be the ribbon
edges corresponding to v1, v2. Partition the edge subsets of B into τ1, τ2,
where for A ⊆ E (B), A ∈ τ1 iff A contains one of e1, e2 but not the
other, and A ∈ τ2 iff A contains both or neither of e1, e2.

Let D ⊆ E (B − e1). We consider D as a spanning subgraph of B − e1, so
that Dc = E (B − e1)− D. If e2 ∈ D then take A = D, so that
Ac = Dc ∪ e1. If e2 /∈ D then take A = D ∪ e1, so that Ac = Dc. In both
cases, ε(A) = ε(D) and ε(Ac) = ε(Dc) since the addition of an untwisted
ribbon edge that doesn’t intersect with any other edge preserves the
Euler genus. Thus ε(BA) = ε((B − e1)

D), so∑
A∈τ1

zε(B
A) = ∂εB−e1(z).



A Recurrence Relation

Proof.

Now let D ⊆ E (B − e1 − e2), considered as a spanning subgraph of
B − e1 − e2, so that Dc = E (B − e1 − e2)− D. Let A = D ∪ {e1, e2}, so
that Ac = Dc. Note that A and D have the same number of faces, so
ε(A) = ε(D) + 2 (recall that ε = 1 + e − f for bouquets). Thus
ε(BA) = ε((B − e1 − e2)

D) + 2, so∑
A∈τ2

zε(B
A) = 2

∑
{e1,e2}⊆A∈τ2

zε(B
A) = (2z2) ∂εB−e1−e2(z).



A Recurrence Relation

Proof.

Therefore

∂εB(z) =
∑
A∈τ1

zε(B
A) +

∑
A∈τ2

zε(B
A)

= ∂εB−e1(z) + (2z2) ∂εB−e1−e2(z),

i.e.,
IPG (z) = IPG−v1(z) + (2z2) IPG−v1−v2(z).



Example (n-Paths)

Let Pn be the path with n positive vertices. Then

IPP1(z) = 2, IPP2(z) = 2+2z2, IPPn+2(z) = IPPn+1(z)+2z2 IPPn(z).

For example, IPP3(z) = (2 + 2z2) + 2z2(2) = 2 + 6z2. The
two-term recurrence relation above can be solved to get the closed
form

IPPn (z) =

(
1

2
+

3

2
√
1 + 8z2

)(
1 +

√
1 + 8z2

2

)n

+

(
1

2
−

3

2
√
1 + 8z2

)(
1−

√
1 + 8z2

2

)n



Example (n-Stars)

Let Sn be the star with n + 1 positive vertices (i.e., the complete
bipartite graph K1,n). Then IPS1(z) = 2 + 2z2 and

IPSn(z) = IPSn−1(z) + 2z2(2n−1) = IPSn−1(z) + 2nz2,

so we get the closed form IPSn(z) = (2n+1 − 2)z2 + 2. In fact, Sn
are the only connected signed intersection graphs whose
intersection polynomial is of the form az2 + b for positive a, b ∈ Z.



Existence of Planar Partial Duals

Theorem 9

(Yan and Jin 2022): A bouquet B with more than one edge has a
planar partial dual if and only if B is orientable and I(B) is
bipartite.

Proof.

(of one direction): Suppose B is orientable and I (B) is bipartite.
Then there is a partition V (I (B)) = X ⊔Y such that every edge of
I (B) has one end in X and the other in Y . The corresponding
partition E (B) = X ⊔Y is such that no ribbon edge of B intersects
with a ribbon edge from the same cell. Then ε(X ) = ε(Y ) = 0, so
ε(BX ) = ε(X ) + ε(Y ) = 0, i.e. BX is planar.



Local Complementation

There is a concise classification of simple graphs that are not the
intersection graph of any chord diagram. To state it, we need the
following definition:

Definition 10

For a vertex v of a graph G , the local complementation of G at
v is obtained by replacing the induced subgraph G [N(v)] by its
complementary graph.



Classification of Intersection Graphs

Theorem 11

(Bouchet 1994): A simple graph G is an intersection graph if and
only if no graph obtained from G by successive local
complementations has an induced subgraph isomorphic to one of
the above graphs.



Specifying Ribbon Graphs by Permutations

For computer computations, it is convenient to record an orientable

ribbon graph R by two permutations σ and ρ on its set of half-edges, σ

being the product of cycles giving the cyclic order of half-edges at each

vertex, and ρ being the product of 2-cycles pairing the half-edges

belonging to the same edge.

For the above bouquet, we have σ = (1, 2, 3, 4, 5, 6, 7, 8) and
ρ = (1, 4)(2, 7)(3, 6)(5, 8).



Faces

The cycles of σρ trace out the boundary components, so the
number of faces of R is the number of cycles in σρ.

Here, we have σ = (1, 2, 3, 4, 5, 6, 7, 8), ρ = (1, 4)(2, 7)(3, 6)(5, 8),
and σρ = (1, 5)(2, 8, 6, 4)(3, 7).
I wrote some code in SageMath to calculate the partial-dual Euler
genus polynomial of orientable bouquets here.

https://gist.github.com/CharltonLi/acf35fb05e9c423ab5af563dbc1ec736
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