Intersection Graphs and Partial Duality

Charlton Li

July 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Chord Diagrams

Definition 1

A chord diagram is a collection of chords on a circle.

Abstractly, a chord diagram is a cyclic ordering of objects that are partitioned into pairs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Chord Diagrams as Ribbon Graphs

We can view any chord diagram as an orientable ribbon graph with one vertex (bouquet). Conversely, any orientable bouquet can be seen as a chord diagram.

Definition 2

The **intersection graph** of a bouquet *B* is the simple graph I(B) whose vertices are the edges of B such that two vertices of I(B) are adjacent if and only if the corresponding edges of *B* intersect.

(日) (四) (日) (日) (日)

Definition 3

To record any half-twists of ribbon edges, we define the **signed intersection graph** of a bouquet *B* to be the signed graph SI(B)obtained by assigning a + or - to each vertex of I(B) according to whether the corresponding ribbon edge is untwisted or twisted.

・ロト ・ 何ト ・ ヨト ・ ヨト … ヨ

Partial-dual Polynomial

Definition 4

Recall that the partial-dual Euler genus polynomial of a ribbon graph ${\cal G}$ is

$$\partial \varepsilon_G(z) = \sum_{A \subseteq E(G)} z^{\varepsilon(G^A)},$$

the generating function enumerating the edge subsets of G by the Euler genus of their partial duals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem 5

(Yan and Jin 2022): If two bouquets B_1 and B_2 have the same signed intersection graph, then ${}^{\partial}\varepsilon_{B_1}(z) = {}^{\partial}\varepsilon_{B_2}(z)$.

Definition 6

Thus we can define the **intersection polynomial** $IP_G(z)$ of a signed intersection graph G as the partial-dual Euler genus polynomial of any bouquet whose signed intersection graph is G.

Ribbon Join

Definition 7

Let R_1 , R_2 be disjoint ribbon graphs. The **ribbon join** $R_1 \vee R_2$ is obtained by identifying a boundary arc on a vertex disc of R_1 with an arc on a vertex disc of R_2 . This operation is in general not unique.

Proposition 1

$${}^{\partial}\varepsilon_{R_1\vee R_2}(z)={}^{\partial}\varepsilon_{R_1}(z)\,{}^{\partial}\varepsilon_{R_2}(z).$$

Proposition 2

Let B_1 and B_2 be bouquets. Then

$$\mathsf{SI}(B_1 \vee B_2) = \mathsf{SI}(B_1) \sqcup \mathsf{SI}(B_2).$$

Thus if G_1 and G_2 are signed intersection graphs, then

$$\mathsf{IP}_{G_1\sqcup G_2}(z) = \mathsf{IP}_{G_1}(z) \, \mathsf{IP}_{G_2}(z).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem 8

(Yan and Jin 2022): Let G be a signed intersection graph and let v_1, v_2 be adjacent vertices of G such that v_1 is positive and has degree 1. Then

$$\mathsf{IP}_{G}(z) = \mathsf{IP}_{G-v_{1}}(z) + (2z^{2}) \,\mathsf{IP}_{G-v_{1}-v_{2}}(z).$$

This allows us to recursively compute the intersection polynomial of any positive tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Recurrence Relation

Proof.

Let *B* be a bouquet such that SI(B) = G, and let e_1, e_2 be the ribbon edges corresponding to v_1, v_2 . Partition the edge subsets of *B* into τ_1, τ_2 , where for $A \subseteq E(B)$, $A \in \tau_1$ iff *A* contains one of e_1, e_2 but not the other, and $A \in \tau_2$ iff *A* contains both or neither of e_1, e_2 .

Let $D \subseteq E(B - e_1)$. We consider D as a spanning subgraph of $B - e_1$, so that $D^c = E(B - e_1) - D$. If $e_2 \in D$ then take A = D, so that $A^c = D^c \cup e_1$. If $e_2 \notin D$ then take $A = D \cup e_1$, so that $A^c = D^c$. In both cases, $\varepsilon(A) = \varepsilon(D)$ and $\varepsilon(A^c) = \varepsilon(D^c)$ since the addition of an untwisted ribbon edge that doesn't intersect with any other edge preserves the Euler genus. Thus $\varepsilon(B^A) = \varepsilon((B - e_1)^D)$, so

$$\sum_{A\in\tau_1} z^{\varepsilon(B^A)} = {}^{\partial} \varepsilon_{B-e_1}(z).$$

A Recurrence Relation

Proof.

Now let $D \subseteq E(B - e_1 - e_2)$, considered as a spanning subgraph of $B - e_1 - e_2$, so that $D^c = E(B - e_1 - e_2) - D$. Let $A = D \cup \{e_1, e_2\}$, so that $A^c = D^c$. Note that A and D have the same number of faces, so $\varepsilon(A) = \varepsilon(D) + 2$ (recall that $\varepsilon = 1 + e - f$ for bouquets). Thus $\varepsilon(B^A) = \varepsilon((B - e_1 - e_2)^D) + 2$, so

$$\sum_{A\in\tau_2} z^{\varepsilon(B^A)} = 2 \sum_{\{e_1,e_2\}\subseteq A\in\tau_2} z^{\varepsilon(B^A)} = (2z^2)^{\partial} \varepsilon_{B-e_1-e_2}(z).$$

A Recurrence Relation

Proof.

Therefore

$$\begin{split} {}^{\partial} \varepsilon_B(z) &= \sum_{A \in \tau_1} z^{\varepsilon(B^A)} + \sum_{A \in \tau_2} z^{\varepsilon(B^A)} \\ &= {}^{\partial} \varepsilon_{B-e_1}(z) + (2z^2) {}^{\partial} \varepsilon_{B-e_1-e_2}(z) \end{split}$$

i.e.,

$$\mathsf{IP}_{G}(z) = \mathsf{IP}_{G-v_{1}}(z) + (2z^{2}) \mathsf{IP}_{G-v_{1}-v_{2}}(z).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example (n-Paths)

Let P_n be the path with *n* positive vertices. Then

$$\mathsf{IP}_{P_1}(z) = 2, \ \mathsf{IP}_{P_2}(z) = 2 + 2z^2, \ \mathsf{IP}_{P_{n+2}}(z) = \mathsf{IP}_{P_{n+1}}(z) + 2z^2 \,\mathsf{IP}_{P_n}(z).$$

For example, $IP_{P_3}(z) = (2 + 2z^2) + 2z^2(2) = 2 + 6z^2$. The two-term recurrence relation above can be solved to get the closed form

$$\mathsf{IP}_{P_n}(z) = \left(\frac{1}{2} + \frac{3}{2\sqrt{1+8z^2}}\right) \left(\frac{1+\sqrt{1+8z^2}}{2}\right)^n + \left(\frac{1}{2} - \frac{3}{2\sqrt{1+8z^2}}\right) \left(\frac{1-\sqrt{1+8z^2}}{2}\right)^n$$

Example (n-Stars)

Let S_n be the star with n + 1 positive vertices (i.e., the complete bipartite graph $K_{1,n}$). Then $IP_{S_1}(z) = 2 + 2z^2$ and

$$\mathsf{IP}_{S_n}(z) = \mathsf{IP}_{S_{n-1}}(z) + 2z^2(2^{n-1}) = \mathsf{IP}_{S_{n-1}}(z) + 2^n z^2,$$

so we get the closed form $IP_{S_n}(z) = (2^{n+1}-2)z^2 + 2$. In fact, S_n are the only connected signed intersection graphs whose intersection polynomial is of the form $az^2 + b$ for positive $a, b \in \mathbb{Z}$.

Theorem 9

(Yan and Jin 2022): A bouquet B with more than one edge has a planar partial dual if and only if B is orientable and I(B) is bipartite.

Proof.

(of one direction): Suppose *B* is orientable and I(B) is bipartite. Then there is a partition $V(I(B)) = X \sqcup Y$ such that every edge of I(B) has one end in *X* and the other in *Y*. The corresponding partition $E(B) = X \sqcup Y$ is such that no ribbon edge of *B* intersects with a ribbon edge from the same cell. Then $\varepsilon(X) = \varepsilon(Y) = 0$, so $\varepsilon(B^X) = \varepsilon(X) + \varepsilon(Y) = 0$, i.e. B^X is planar. There is a concise classification of simple graphs that are not the intersection graph of any chord diagram. To state it, we need the following definition:

Definition 10

For a vertex v of a graph G, the **local complementation** of G at v is obtained by replacing the induced subgraph G[N(v)] by its complementary graph.

Classification of Intersection Graphs

Theorem 11

(Bouchet 1994): A simple graph G is an intersection graph if and only if no graph obtained from G by successive local complementations has an induced subgraph isomorphic to one of the above graphs. For computer computations, it is convenient to record an orientable ribbon graph R by two permutations σ and ρ on its set of half-edges, σ being the product of cycles giving the cyclic order of half-edges at each vertex, and ρ being the product of 2-cycles pairing the half-edges belonging to the same edge.

For the above bouquet, we have $\sigma = (1, 2, 3, 4, 5, 6, 7, 8)$ and $\rho = (1, 4)(2, 7)(3, 6)(5, 8)$.

The cycles of $\sigma \rho$ trace out the boundary components, so the number of faces of *R* is the number of cycles in $\sigma \rho$.

Here, we have $\sigma = (1, 2, 3, 4, 5, 6, 7, 8)$, $\rho = (1, 4)(2, 7)(3, 6)(5, 8)$, and $\sigma \rho = (1, 5)(2, 8, 6, 4)(3, 7)$. I wrote some code in SageMath to calculate the partial-dual Euler genus polynomial of orientable bouquets here.

References

- André Bouchet, Circle Graph Obstructions (1994)
- Gross, Mansour, and Tucker, *Partial duality for ribbon graphs, I: Distributions* (2020)
- Yan and Jin, *Partial-dual polynomials and signed intersection graphs* (2022)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00