Partial-Dual Genus Polynomial

Wo Wu

24/Jun/2024

문 문 문

Definition 1

A **ribbon graph** G is a surface (possibly non-orientable) with boundary, represented as the union of two sets of closed topological discs called **vertices** V (G) and **edges** E(G), satisfying the following conditions:

- these vertices and edges intersect by disjoint line segments;
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;

One can think a ribbon graph as a set of discs(vertices) and a set of rectangles(edges), with each rectangle(edge) glued to two (possibly the same) discs along two opposite sides.

Image: A matrix and a matrix

Definition 2

Let G be a ribbon graph and $A \subseteq E(G)$. Glue a disc to each boundary component of the spanning ribbon subgraph (V(G), A) and remove the interior of all vertices of G. The resulting ribbon graph is called the *dual graph with respect to the subset A*, and is denoted by G^A .

Definition 3

The **partial-dual genus polynomial** of any ribbon graph G is the generating function

$$\partial \varepsilon_G(z) = \sum_{A \subseteq E(G)} z^{\varepsilon(G^A)}$$

that enumerates partial duals by Euler-genus.

Where $\varepsilon(G^A) := \varepsilon(\widetilde{G^A})$, and $\widetilde{G^A}$ is the surface obtained by gluing a disc to each boundary component of G^A .

A **bouquet** is a ribbon graph with only one vertex.

For a connected ribbon graph G, oen can take B to be a set of edges such that $B \sqcup V(G)$ is a tree. Since $B \sqcup V(G)$ is a tree, G^B has only one vertex. Thus G^B is a bouquet. In addition, since $(G^{E_1})^{E_2} = G^{E_1 \Delta E_2}$ for any E_1 , $E_2 \subseteq E(G)$ (Property(b) of the 5th handout), we have

$${}^{\partial}\varepsilon_{G^B}(z) = \sum_{A\subseteq E(G)} z^{\varepsilon((G^B)^A)} = \sum_{A\subseteq E(G)} z^{\varepsilon(G^{B\Delta A})} = \sum_{A'\subseteq E(G)} z^{\varepsilon(G^{A'})} = {}^{\partial}\varepsilon_G(z).$$

The second last equality comes from the fact that the power set of any set is an abelian group under symmetric difference. In this sense, it suffices to study partial-dual genus polynomials for bouquets.

Propositions that Help Computations

Let v(G), e(G), f(G) be the number of vertices, the number of edges, and the number of boundary components, respectively.

Proposition 1

Let B be a bouquet. Then the Euler genus $\varepsilon(B)$ is given by the equation

$$\varepsilon(B) = 1 + e(G) - f(G)$$

Proof.
$$2 - \varepsilon(B) = v(G) - e(G) + f(G)$$
. For a bouquet, $v(G) = 1$

Proposition 2 [GMT20]2.3

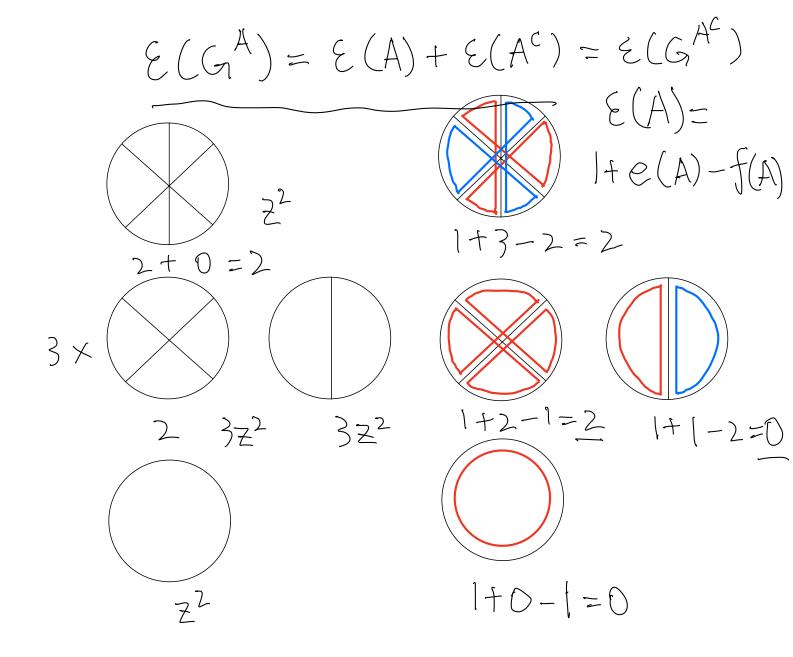
Let *B* be a bouquet, and let $A \subseteq E(B)$. Then

$$\varepsilon(B^A) = \varepsilon(A) + \varepsilon(A^c)$$

where $A^c = E(B) - A$ and $\varepsilon(A)$ is the Euler genus of the subgraph induced by A.

Wo Wu

[GMT20] J. L. Gross, T. Mansour, T. W. Tucker, *Partial duality for ribbon graphs, I: Distributions*, European Journal of Combinatorics 86 (2020) 103084, 1–20.



 $\partial_{(z)} = \{z^2\}$



