Ribbon graphs

Thistlethwaite’s Theorem [Kal] Up to a sign and multiplication by a power of t the Jones

polynomial Jp(t) of an alternating link L is equal to the Tutte polynomial Tr(—t, —t=1).
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The theorem was generalized to non-alternating links using signed graphs in [Ka2] and using the
Bollobés-Riordan polynomial for ribbon graphs in [DFKLS]; to virtual links in [ChVo, Ch]; and
to the arrow polynomial in [BBC].

Definition. A ribbon graph G is a surface (possibly non-orientable) with boundary, represented
as the union of two sets of closed topological discs called vertices V(G) and edges E(G), satisfying
the following conditions:

e these vertices and edges intersect by disjoint line segments;
e each such line segment lies on the boundary of precisely one vertex and precisely one edge;

e cvery edge contains exactly two such line segments. @
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The Bollobas-Riordan polynomial
Reference: B. Bollobas and O. Riordan [BR].

Ro({e,ye}, X, Y, Z) = Z (H LL()) (H ye)XT(G)fr(F)Yn(F)Zk:(F)fbc(F)+n(F)
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For signed graphs, we set * ’ ’
BREC BT { ye =1, y- = (V/X)12
Example.
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Properties.

Rg = T'eRG/e +yeRG—c
Ra = (ze + Xye)Re /e
RG1|_|G2 = RGl*Gz = RGl : RG2

if e is ordinary, that is neither a bridge nor a loop,

if e is a bridge.




Theorem [Ch].
Let L be a virtual link diagram with e classical crossings, G, be the signed ribbon graph corre-
sponding to a state s, and v :=v(G3), k= k(G3). Then e = e(G3) and
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Construction of a ribbon graph from a virtual link diagram
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Diagram State s Attaching planar bands Putting arrows
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Pulling state circles apart Untwisting state circles Forming the ribbon graph G

[L](A,B,d) = A3 XY2Z3(Y/X)V2(XZ+2+Y + X2Z+2XZ + XY Z)

= B B(A Bd | A%d A
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= 3A2B+2AB?+ B3+ A + AB*d
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