
Ribbon graphs
Thistlethwaite’s Theorem [Ka1] Up to a sign and multiplication by a power of t the Jones

polynomial JL(t) of an alternating link L is equal to the Tutte polynomial TΓ(−t,−t−1).

The theorem was generalized to non-alternating links using signed graphs in [Ka2] and using the
Bollobás-Riordan polynomial for ribbon graphs in [DFKLS]; to virtual links in [ChVo, Ch]; and
to the arrow polynomial in [BBC].

Definition. A ribbon graph G is a surface (possibly non-orientable) with boundary, represented
as the union of two sets of closed topological discs called vertices V (G) and edges E(G), satisfying
the following conditions:

• these vertices and edges intersect by disjoint line segments;
• each such line segment lies on the boundary of precisely one vertex and precisely one edge;
• every edge contains exactly two such line segments.
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The Bollobás-Riordan polynomial
Reference: B. Bollobás and O. Riordan [BR].
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For signed graphs, we set

{
x+ = 1, x− = (X/Y )1/2,
y+ = 1, y− = (Y/X)1/2.
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RG(X,Y, Z) = (Y/X)1/2(XZ + 2 + Y

+X2Z + 2XZ +XY Z)
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Properties.

RG = xeRG/e + yeRG−e if e is ordinary, that is neither a bridge nor a loop,
RG = (xe +Xye)RG/e if e is a bridge.
RG1⊔G2

= RG1·G2
= RG1

·RG2



Theorem [Ch].
Let L be a virtual link diagram with e classical crossings, Gs

L be the signed ribbon graph corre-
sponding to a state s, and v := v(Gs

L), k := k(Gs
L). Then e = e(Gs

L) and

[L](A,B, d) = Ae
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Construction of a ribbon graph from a virtual link diagram
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Diagram
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Attaching planar bands
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Putting arrows

Pulling state circles apart Untwisting state circles
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Forming the ribbon graph Gs
L

[L](A,B, d) = A3

XY 2Z3(Y/X)1/2(XZ + 2 + Y +X2Z + 2XZ +XY Z)
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= A3 · B

A · B
A

(
A
B + 2 + Bd

A + A2d
B2 + 2A

B + d
)

= 3A2B + 2AB2 +B3d+A3d+AB2d

JL(t) = (−1)w(L)t3w(L)/4[L](t−1/4, t1/4,−t1/2 − t−1/2)

= −t−3/4
(
3t−1/4 + 2t1/4 + t3/4(−t1/2 − t−1/2) + t−3/4(−t1/2 − t−1/2) + t1/4(−t1/2 − t−1/2)

)
= −t−3/4

(
3t−1/4 + 2t1/4 − t5/4 − t1/4 − t−1/4 − t−5/4 − t3/4 − t−1/4

)
= −t−3/4

(
−t5/4 − t3/4 + t1/4 + t−1/4 − t−5/4

)
= t1/2 + 1− t−1/2 − t−1 + t−2
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