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Core Definitions
Alexander numbering: Given an oriented virtual link, assign an integer to every arc
(section of the link between two classical crossings) so that there exists some integer i
such that when each classical crossing is rotated so that both outward strands face to
the right, the labels go from i to i + 1 from bottom left to top right and from i + 1 to i from
top left to bottom right. If a virtual link has a presentation which admits an Alexander
numbering, it is called almost classical.

Figure: Alexander Numbering
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State Expansion: choose an A- or B-oriented smoothing at every classical crossing.
When there is no induced orientation, each of the resulting pieces is given a pole which
points inwards towards the location where the crossing previously existed. The result is
a collection of oriented loops with poles.

Figure: Creation of Poles in State Expansion
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Loop index: For a loop L of state S, an index ι is assigned by moving all poles past
virtual crossings onto a small semi-arc before canceling all adjacent poles on the same
side of a loop. The index is then given by ι(L) = #poles

2 .

Figure: Rules for Pole Cancellation
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Arrow Polynomial RD: After one evaluates all states of a virtual link D and finds the
index for each, the normalized Dye-Kauffman arrow polynomial RD is given by

RD(A;K1,K2, ...) = (−A3)−w(d)
∑

S

Aα(S)−β(S)(−A2 − A−2)δ(S)−1
∏
L∈S

Kι(L)

where α(S) is the number of A-splittings performed to reach state S, β(S) is the number
of B-splittings performed to reach state S, and δ(S) is the number of loops in S.
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Main Theorem
Theorem

Let D be a virtual link diagram that admits an integral Alexander numbering (i.e. D is
almost classical). Then every state in the arrow-polynomial expansion has total loop
index 0. Hence

RD
(
A ;K1,K2, . . .

)
= RD(A) ∈ Z[A±1].
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Proof
We first examine what the state expansion looks like for a crossing with Alexander
numbered arcs.

Figure: Crossings Expanded with Alexander Numbering
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In either case of pole creation, we have one of the following two cases locally around
each pole:

Figure: Local Picture Around Pole After Expansion of Crossing

We will call the first image a pole of type A and the second image a pole of type B.
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Each loop has an even number of poles, so any pole will always be adjacent to at least
one other pole. A pole of type A cannot be next to another pole of type A since the
arrows on a pole of type A point towards the pole, so the arrow between them would
have to point to both simultaneously. Similarly, two poles of type B cannot be adjacent.
Below are the two possible configurations for poles of type A and B to be adjacent:

Figure: Possibilities for Adjacent Poles
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After ignoring all pairs of the first type, the poles on a loop can all be grouped into pairs
of the second type, with some potentially upside down with reconfigured indices.
However, as seen below, a pair of the second type next to a pair of the second type
flipped cancel each other out:

Figure: Two Pairs of the Second Type with One Flipped
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After repeating the process of canceling out all adjacent pairs of the second type with
one pair flipped and the other not, we will be left with a collection of pole pairs of the
second type where every pair is flipped or every pair is not flipped. If you travel along the
loop in the correct direction (which one depends on whether the poles are flipped or
not), the label will increase by two across every pair. However, if there is at least one
pair, this means that the indices will continue to increase indefinitely as you traverse the
loop in that direction. However, assuming the original link had only finitely many
crossings, there can only be finitely many labels on the loop, leading to a contradiction.
Thus, the loop must have no poles and have index zero.
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Consequences
First, we note that every classical link admits an Alexander numbering, and thus has an
arrow polynomial with no "extra variables". To see this, we introduce the concept of the
winding number. The winding number of a curve around a point is the signed number of
counterclockwise rotations the curve makes around the point (clockwise rotations are
counted as negative).
Importantly, each point in a region with no
arcs has the same winding number and
moving across an arc from right to left
increases the winding number by 1.

Figure: Trefoil with Winding Numbers
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Now, for each arc, assign a label equal to the minimum of the two winding numbers of
the regions it borders. This is well-defined, and around each crossing the labels look like
the following, agreeing with the conditions for an Alexander numbering.

Figure: Alexander Numbering Induced by Winding Numbers
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The next consequence is that by computing the arrow polynomial of certain virtual links,
we can detect extra variables and conclude that no Alexander numbering is possible.
For example, the following virtual link (4.26) has arrow polynomial
1 + A−2K3 − A−2K1K2 + A2K1 − A2K1K2, meaning no Alexander numbering is possible.

Figure: Virtual Knot 4.26
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In this case, it is easy to verify that the result is correct after giving the graph an
orientation and choosing labels for an initial crossing as in the diagram below. However,
it could be difficult to disprove the existence of an Alexander numbering for an equivalent
presentation with more crossings. The arrow polynomial guarantees that none will be
Alexander numberable.

Figure: Virtual Knot 4.26 Oriented
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Example: classical vs. virtual
Classical trefoil

• Integral Alexander numbering
exists.

• Arrow polynomial reduces to a
Laurent polynomial in A:
Rcl.trefoil(A) ∈ Z[A±1].

Virtual trefoil
• No integral numbering.
• A state with four like-oriented

cusps yields factor K2.
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Beyond almost-classical
• Mod-m numberings: The same argument can conclude that if m is odd only

Km,K2m, . . . may appear in the arrow polynomial, and if m is even only K m
2
, Km,

K 3m
2

, ... may appear.

• Twisted links (Deng ’22): checkerboard-colourability in a non-orientable surface
also forces total cusp-index 0.

• Open question: characterize the largest class of virtual links whose arrow
polynomial is single-variable.

Levi Keck & Jason Tu (Ohio State University) Arrow polynomial June 2025 17 / 23



Take-home message
• Almost-classical links behave "classically" as far as the arrow polynomial is

concerned.
• Direct state-sum proof relies only on Alexander numbering + simple counting.
• Generalizations hint at a deeper relation between parity/colourability and

arrow-variable suppression.
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Arrow Polynomial Program
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