From the Penrose-Kauffman to the Chromatic Polynomial More on the Chromatic Bracket A application of the Chromatic Bracket Appendix

The Penrose-Kauffman Polynomial and Chromatic Bracket

Ethan Lu

The Ohio State University

June 30, 2025

Outline

- From the Penrose-Kauffman to the Chromatic Polynomial
- More on the Chromatic Bracket
- A application of the Chromatic Bracket

Previously, bracket relations to count the number of proper 3-colorings of a cubic graph were defined (O should technically be a connected component without vertices instead of a loop):

$$[O] = 3 \tag{1}$$

$$[G_1 \sqcup G_2] = [G_1] \cdot [G_2]$$
 (2)

$$[\ \ \ \ \ \ \] = [\)(\] - [\ X\] \tag{3}$$

$$[\begin{tabular}{l} \begin{tabular}{l} \begin{tab$$

A natural question to ask is what happens if we let the loop in (1) evaluate to any integer δ ?

One interesting property is that the evaluations for $\delta=3,-2$ (w.r.t. the perfect matching blow up) are proportional up to a function of the number of vertices (Penrose 1971) and (Baldridge, McCarty 2024). This polynomial is not well defined in general for a cubic graph.

Definition (Perfect Matching)

A perfect matching of a cubic graph is a set of disjoint edges that includes every vertex. Perfect matching edges are denoted by a slashed line

Definition (Penrose-Kauffman Polynomial)

The Penrose-Kauffman Polynomial PK(G, M) with respect to graph G and a perfect matching M is the polynomial defined by (1),(2),(4) with relation (3) being applied to perfect matching edges.

It is possible to define a canonical perfect matching on a "blow-up" graph.

Theorem

The Penrose-Kauffman Polynomial with respect to a perfect matching can be intepreted as the number of proper n-colorings, with each perfect matching edge being uncolored and attached to edges with only 2 colors.

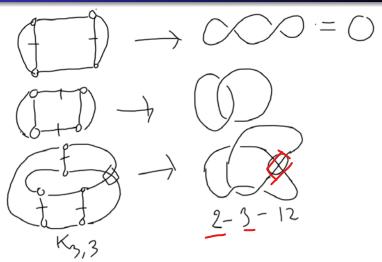
A proof can be found in (Kauffman 2025) p. 27-28. The appendix of (Baldridge, Kauffman, McCarty 2025) includes a Mathematica program to calculate the Penrose-Kauffman Polynomial.

From Perfect Matching Graphs to Knots

A perfect matching graph can be associated with a knot by the following rule:

This does not give a correspondence between multivirtual knots and graphs. (Baldridge, Kauffman, Rushworth 2022) defines a strong correspondence between cubic perfect matching graph with extra information: "Graphenes" and virtual knots.

From Perfect Matching Graphs to Knots



From Perfect Matching Graphs to Knots

One can generalize the Bracket relations for the PK Polynomial with A, B variables much like the Kauffman bracket, although this does not yield the chromatic bracket...

$$P(G,M)(\bigvee) = AP(G,M)() () + BP(G,M)(\bigvee),$$

$$P(G,M)(O) = \delta,$$

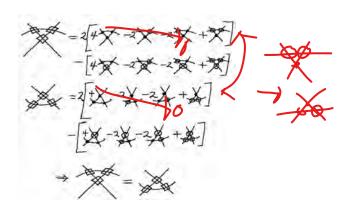
$$P(G,M)(\bigvee) = 2P(G,M)(\bigvee) - P(G,M)(\bigvee).$$
 from (Kauffman 2025)

The Chromatic Bracket was introduced previously with the following relations:

$$\begin{split} \langle \times \rangle &= A \langle \times \rangle + B \langle \rangle \langle \rangle \\ \langle O \rangle &= \delta \\ \langle \times \rangle &= 2 \langle \times \rangle - \langle \times \rangle \end{split}$$

For a topoligical specialization, invariance under classical Reidemeister moves will result in the relations $\underline{B} = A^{-1}$, $\delta = -A^2 - A^{-2}$ and normalization constant, but fused crossing moves will be needed for multi-virtual reidemeister moves.

from (Kauffman 2025)



from (Kauffman 2025)

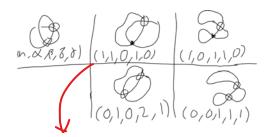
State Sum for the Chromatic Bracket

A sum states can be defined for the chromatic bracket much like the (unnormalized) Kauffman bracket (δ is now d):

$$\langle K \rangle [A, B, d] = \sum_{s} (-1)^{\gamma} 2^{n} \underline{A^{\alpha(s)} B^{\beta(s)} d^{\delta}}$$

Where n is the # of nodes, and γ is the difference between the original # of (ordinary) virtual crossings and (ordinary) virtual crossings in the state. Notice that multi-virtual knots that differ only by type of virtual crossing will have shared terms in the sum.

State Sum for the Chormatic Bracket



So
$$\langle K \rangle [A, B, d] = 2Ad + 2Bd - Ad^2 - Bd$$

State Sum for the Chromatic Bracket

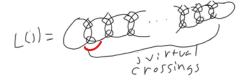
Since there are difficulties in generalizing the virtual thistlethwaite theorem through state sums, a possible alternative is to adapt the approach of (Diao, Hetyei 2010) using the tutte polynomial on colored graphs.

The tabulation of virtual knots vs. multivirtual knots

In virtual knot theory, the number of virtual knots/links for a given classical crossing number is bounded. Consequently, virtual knots/links are tabulated by classical crossing number. The following construction of (Kauffman, Mukherjee, Vojtěchovský 2025) shows that this is not the case for multivirtual knots/links:

The tabulation of virtual knots vs. multivirtual knots

The following infinite family of multivirtual links L(j):



has no classical crossings and consequently no A or B smoothings. The highest degree term for the chromatic bracket polynomial will come from the state with most connected components (j+1). Therefore the highest degree term of $\langle L(j) \rangle$ is A^{2j+2} and L(j) constitutes a infinite family of multivirtual with 0 classical crossings.

References I

- S. Baldridge, L.H. Kauffman, W. Rushworth On ribbon graphs and virtual links European J. Combin. 103 (2022)
- S. Baldridge, B. McCarty A State Sum for the Total Face Color Polynomial Journal of Graph Theory, 109 (2025): 481-491
- S. Baldridge, B. McCarty
 Quantum state systems that count perfect matchings
 arXiv:2303.12010

References II

Relative Tutte polynomials for colored graphs and virtual knot theory

Comb. Probab. Comput. 19, 343-369 (2010)

L.H. Kauffman

Multi-virtual knot theory.

Journal of Knot Theory and it's Ramifications, 2025.

L.H. Kauffman, S. Mukherjee, P. Vojtěchovský Algebraic invariants of multi-virtual links arXiv:2504.09368

References III

R. Penrose Applications of negative dimensional tensors Combinatorial Mathematics and Its Applications