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Some questions that I will attempt to answer, at least partially,
are:

Where does the Potts model come from?
Why the Potts model?
How is the Potts model related to graph/knot theory?
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A little Statistical Mechanics

Time evolution is encoded in a quantity called the
Hamiltonian H (which in most cases can be thought of as
energy).
The kinetic energy term of Hamiltonians usually is not of
interest, so it is ignored leaving only the potential energy
term.
The Potts model Hamiltonian can be defined on a graph as
a sum over its edges E , with a function along each vertex
σ(vi) ∈ {1, . . . ,q} along with an exchange constant J ∈ R.

H = −J
∑

vi ,vj∈E

δ(σ(vi), σ(vj))
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A little Statistical Mechanics
We may as well label each vertex with q colors instead of q
natural numbers. The Potts Hamiltonian then becomes
−J · (#edges not properly colored by σ), where an edge E is
properly colored when σ(v1) ̸= σ(v2) for v1, v2 ∈ E .

(figure from Beaudin 2007)
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A little Statistical Mechanics
Statistical physics studies the properties of very large systems
(∼ 1023 vertices) using the partition function defined as the
following sum over all possible states S of the system:

Z =
∑

S

e−βH(S)

Where β is the inverse of temperature: 1
kbT .

In the case of the potts model, a state is a choice of
coloring for all vertices.
Since the relative probability of a system being in state S′

is e−βH(S′) the probability of a state is

P(S′) =
e−βH(S′)∑
S e−βH(S)

=
e−βH(S′)

Z

Ethan Lu The Potts Model and Graph Theory



Potts Model
Graph Theoretic Aspects

A little Statistical Mechanics
The partition function is important because it allows the
computation of the expected values for useful quantities.
Suppose a quantity A is given by the derivative of the
hamiltonian w.r.t some parameter α, A(S) = ∂H(S)

∂α :

⟨A⟩ =
∑

S

P(S)A(S) =
1
Z

∑
S

∂H(S)

∂α
e−βH(S)

=
−1
β

1
Z

∂

∂α
(
∑

S

e−βH(S)) =
−1
β

1
Z

∂

∂α
(Z) =

∂

∂α
(− ln(Z)

β
)

F := − ln(Z)
β = −kbT ln(Z) is called the free energy and

derivatives with respect to parameters gives the expected
values for quantities of interest (e.g. magnetization, energy,
moments of distribution, etc. )
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A little Statistical Mechanics

It is worth noting the asymptotic behavior of the probabilities of
each state as T → 0+ (low T ) and T → ∞ (high T ):

At low T (β → ∞), for a state of minimum energy Smin and
a state that is not a minimum S, e−βH(S)

e−βH(Smin)
→ 0

Each minimum energy state will be equiprobable and the
probability of any other state is 0, meaning the system
settles in it’s lowest energy state.
At high T (β → 0), e−βH(S) → 1 for all states. Meaning
every state is equiprobable.
This aligns with the intuitive notion that temperature
"scrambles" a system and causes disorder.
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A little Statistical Mechanics
One reason why it is useful to distinguish between J > 0
(ferromagnetic ordering) and J < 0 (antiferromagnetic ordering)
in the Potts model is that they have different qualitative behavior
as demonstrated by the T → 0 limit:

When J > 0 the energy decreases with the number of
non-properly colored edges, the minimum energy states
will have the same color at every vertex and Z(q) = q
When J < 0 the energy decreases with the number of
properly colored edges, so assuming the number of proper
colorings is non-zero Z(q) = χ(q) where χ(q) is the
chromatic polynomial.
Lattices with χ(q) = 0 are called "frustrated" and have
been heavily studied from both physical and mathematical
standpoints.
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A little Statistical Mechanics

A typical question in statistical mechanics describing sudden
changes in the behavior of matter called phase transitions
(Boiling, Freezing, etc.).

Phase transitions correspond to some kind of
non-analyticity.
Assuming H is analytic and G is finite, Z is analytic
because it is the finite sum of analytic functions.
Phase transitions are only well defined in infinite systems
and are regions of non-analyticity in the vertex averaged
free energy f in the "thermodynamic limit". (−kbT in this
context will be ignored because it is analytic)

f := lim
k→∞

ln(ZGk )

ν(Gk )
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A little Statistical mechanics

The phase transition we will be interested in is the
ferromagnetic "order-disorder" transition, discovered by Pierre
Curie in 1895. He discovered that below a certain temperature
(Curie Temperature) some materials retain a magnetization in
the absence of a magnetic field (spontaneous magnetization):
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Ising Model

The Ising model is a model for spontaneous magnetic
ordering investigated by Ernest Ising in 1924, created and
given to him by his advisor Wilhelm Lenz.
The Ising Hamiltonian on a graph is a sum over it’s edges
E , described by spins at each vertex σ(vi) ∈ {−1,1}, along
with a exchange constant J ∈ R:

H = −J
∑

vi ,vj∈E

σ(vi)σ(vj)

or with magnetic field h included:

H = −J
∑

vi ,vj∈E

σ(vi)σ(vj)− h
∑

vi

σ(vi)

Since δ(σ(vi), σ(vj)) =
1
2(1 + σ(vi)σ(vj)) the h = 0 Ising

model is equivalent to the q = 2 Potts model.
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Ising Model

The Ising model the interaction of electron "spins" and a
number of assumptions are made and effects ignored:

The electron’s "spin" is restricted to a single axis.
The atoms reside on a regular lattice/material is crystalline.
Only short range "nearest-neighbor" interactions are taken
into account. (no domain or hysterisis)
Electrons are assumed to be "tightly bound" to their atoms.
Magnetic contributions from the nucleus, electron’s orbit
and confounding effects from interaction are ignored.
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Ising Model
It is important to keep in mind the Ising model was only meant
to investigate the relationship between ferromagnetism
(magnetic ordering) and local magnetic interactions:

The model should be as simple as possible math can
actually be done.
Treating each atom individually would not lead to any
non-analyticity (trivial thermodynamic limit).
Heuristically, the nucleus is much heavier than the electron
so it "spins" slower.
By the Bohr-van Leeuwen theorem classical physics
(Newton’s laws and Electromagnetism) can’t describe
magnetism, thus some quantum effect such as spin is
necessary.
"Exchange interaction" is dominant, being proportional to
−s⃗i · s⃗j
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Ising Model

The crudeness of the model does not limit it’s usefulness and
actually part of the reason why it’s useful:

From "universality", behavior of many systems near certain
types (continuous) phase transition depend on broad
characteristics, like symmetry.
Due to possible asymmetry in crystalline lattices, it is
possible that one direction of spin is heavily favored.
Simple, yet retains the many important features of
statistical mechanical systems.
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Ising Model

Ising solved his model in the 1 dimensional lattice case
and found no phase transition. He incorrectly extrapolated
this result to higher dimension.
In 1933 Peierls gave a argument for the existence of an
order-disorder phase transition when D ≥ 2.
In 1941 Kramers and Wannier use a duality argument to
give the exact critical temperature for a 2D square lattice.
This culminated with Onsager’s celebrated closed form
solution to the 2D Ising model on a 2D square lattice with
h = 0 published in 1944.
No closed form solution to the Ising model in 2D for h ̸= 0
or for cubic lattice with D ≥ 3 has been found since then.
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Ising Model

Work on the Ising model and it’s generalizations have been
very influential:

The 2024 Nobel Prize in physics was awarded to Hopfield
and Hinton for their work involving the application of the
Sherrington-Kirkpatrick model for "spin glasses" (The Ising
model but on a symmetric graph and J is a random
variable that changes by edge) to machine learning.
The 2024 Abel Prize was awarded to Michel Talagrand
partly for his work on a rigorous solution to the
Sherrington-Kirkpatrick model.
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Ising Model

Work done on the Ising model has also had it’s impact on Knot
theory.

"Transfer matrices" introduced by Kramers and Wannier,
and used by Onsager inspired "Temperley-Lieb algebras".
Vaughan Jones found the Jones polynomial in his study of
this algebra.
Kauffman introduced Dirac’s bracket notation to knot
theory in analogy with this algebra.
The partition function is a knot invariant, and in particular
Type III Reidemeister moves correspond to the
"star-triangle" relation that Onsager suggested in his 1944
paper. (See Adam’s Knot book ch. 7)
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Potts Model
Renfrey Pott’s advisor Cyril Domb suggested a model that is
now known as the "clock" or "vector Potts" model with the
Hamiltonian:

H = −J
∑

vi ,vj∈E

cos(
2π(σ(vi)− σ(vj))

q
)

Potts had trouble finding the critical points of this model for
q > 4 so he simplified the model to what’s known today.

(Wu 1982) discusses historical details and gives a interpretation
of the Potts model using a q − 1 dimension hypertetrahedron.
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Potts Model

Experimental realizations of the Potts model in physics relies
on "universality". Applications of the model have spread outside
of physics:

Flocking of birds.
Tumor growth.
Image processing.
Foam behavior.
Social clustering.
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Dichromatic Polynomial

The relationship between the Potts Model partition function
and the Tutte polynomial was first noticed by Fortuin and
Kastelyn (1972) investigating contraction-deletion relations
on variety of systems along side the potts model (electric
resistor networks, percolation)
Fortuin and Kastelyn generalize the ferromagnetic Potts
model along with the aformentioned systems to
"Random-Cluster models"
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Dichromatic Polynomial

Recall that the dichromatic polynomial of graph G, ZG can be
defined as a sum over the q-colorings S. If we define
u(S) := {# edges that are not properly colored} then:

ZG(q, v) =
∑

S

(1 + v)u(S)

since H(S) = −Ju(S), the partition function ZG is related to the
dichromatic polynomial by the substitution v = eβJ − 1

ZG(q,eβJ − 1) =
∑

S

(eβJ)u(S) =
∑

S

eβJu(S) =
∑

S

e−βH(S) = ZG(q)

A contraction-deletion proof can be found in (Beaudin 2007,
Adam’s Knot book ch.8).
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Dichromatic Polynomial

Recall that the Dichromatic polynomial is related to the Tutte
polynomial TG(x , y) through a change of variables (with κ(G)
and r(G) being the number of connected components and rank
of G):

ZG(q, v) = qκ(G)v r(G)TG(1 + qv−1,1 + v)

This leads to the following relation between the Tutte
polynomial and the q-Potts partition function:

ZG(q) = qκ(G)(eβJ − 1)r(G)TG(1 +
q

eβJ − 1
,eβJ)
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Dichromatic Polynomial

Since x = 1 + q
eβJ−1 and y = eβJ , (x − 1)(y − 1) = q so the

Potts partition function is the specialization of the Tutte
polynomial on such hyperbola. This leads to the following table
from (Welsh and Marino 2000):
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Duality
The Tutte polynomial can be defined with the relations:

Ts= 1
TG1⊔G2 = TG1 · TG2

TG = xTG/e,e is a bridge

TG = yTG\e,e is a loop

TG = TG/e + TG\e,e is not a loop or bridge

To see how this changes under planar duality, recall deletion
and contraction are adjoint in the sense that duality
interchanges them:

(G/e)∗ = (G∗\e∗)

(G\e)∗ = (G∗/e∗)
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Duality

So the Tutte-Polynomial relations become under duality:

Ts= 1
TG∗

1⊔G∗
2
= TG∗

1
· TG∗

2

TG∗ = xTG∗\e∗ ,e∗ is a loop

TG∗ = yTG∗/e∗ ,e∗ is a bridge

TG∗ = TG∗\e∗ + TG∗/e∗ ,e∗ is not a loop or bridge

therefore:

TG(x , y) = TG∗(y , x)
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Duality

(Kazhakov 2024) makes a connection between Tutte duality
and the Kramers-Wannier duality equation, defining the dual of
β, β∗ satisfying the following equation:

TG(1 +
q

eβJ − 1
,eβJ) = TG∗(1 +

q
eβ∗J − 1

,eβ∗J)

⇒ (eβJ − 1)(eβ∗J − 1) = q

This leads to the following questions:
How is the Tutte duality connected to the duality of
Kramers and Wannier between high and low temperature
expansions?
How can generalized dualities be used with the Potts
model on non-planar graphs?
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Duality
This relation can also be applied to find the critical temperature
of a square lattice. Defining Gk as a square lattice with k × k
vertices, the free energy per vertex in the thermodynamic limit f
is:

f (β,q) = lim
k→∞

ln(ZGk (β,q))
ν(Gk )

= lim
k→∞

(κ(Gk ) ln(q) + r(Gk ) ln(eβJ − 1)

+ ln(TGk (1 +
q

eβJ − 1
,eβJ)))

Because the first 2 terms are analytic, the regions of
non-analyticity of f (β,q) are the regions of non-analyticity of:

f̃ (β,q) := lim
k→∞

ln(TGk (1 + q
eβJ−1 ,e

βJ))

ν(Gk )
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Duality

And on G∗
k (notice that limk→∞ Gk = limk→∞ G∗

k ) the reduced
free energy can be defined similiary:

f̃ ∗(β,q) := lim
k→∞

ln(TG∗
k
(1 + q

eβJ−1 ,e
βJ))

ν(G∗
k )

because of time constraints the following lemma will not be
proved:

Lemma (Kazakhov 2024)

f̃ ∗(β,q)− ln(q) = f̃ (β,q)
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Duality

By the definition of β∗:

lim
k→∞

ln(TGk (1 + q
eβJ−1 ,e

βJ))

ν(Gk )
= lim

k→∞

ν(G∗
k )

ν(Gk )

ln(TG∗
k
(1 + q

eβ∗J−1 ,e
β∗J))

ν(G∗
k )

= lim
k→∞

ln(TG∗
k
(1 + q

eβ∗J−1 ,e
β∗J))

ν(G∗
k )

so by the definitions of f̃ , f̃ ∗ and the previous lemma:

f̃ (β,q) = f̃ ∗(β∗,q) = f̃ (β∗,q) + ln(q)

so if there is a phase transition at βc , there is also one at β∗
c .
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Duality

Assuming there is only one phase transition (uniqueness
hypothesis) then βc = β∗

c meaning the critical temperature can
be calculated from:

(eβcJ − 1)2 = q

(Beffara and Duminil-Copin 2011) prove a similiar result using
random cluster models.

Can a similar result for non-planar graphs be obtained
using generalized dualities?
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Misc

A number of relationships (that I find interesting) exist between
the graph theory and the Potts model that haven’t been
mentioned. Some of them are:

Through the Lee-Yang theorem zeroes of the Dichromatic
polynomial are related to phase transitions in the Potts
model.
A specialization of the Tutte polynomial called the flow
polynomial which is related to the "random current
expansion" of the Ising model.
The colored Tutte polynomial is associated with the
Random cluster model.
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Misc

Many applications of the potts model include an external
magnetic field, the Potts-Tutte connection in this case has
been extended using the V-polynomial. What insights
come from this connection?
Penrose-Kauffman polynomial corresponds to Potts model
partition function at imaginary β. Finding implications of
this is an open question.
The presentation uses a minimally quantum approach
(because most quantum effects will not matter for
continuous phase transitions). Can the Potts model in the
full quantum mechanical formalism be used to define a
corresponding "Quantum" Tutte polynomial?
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