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Definition 1

A chord diagram consists of 2n distinct points on a circle and n chords
connecting pairwise disjoint pairs of points.
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Definitions

Definition 3
A bouquet is a ribbon graph with only one vertex.
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Definitions

Definition 3
A bouquet is a ribbon graph with only one vertex.

Given a bouquet B, we can create its associated framed chord diagram
F(B). First, consider the boundary of the vertex as the circle of the
diagram. Draw a chord between the ends of each edge of B and assign it
0 iff its ribbon loop in B is orientable (untwisted).
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Given a framed chord diagram D = {{a;, b;} |1 < i < n}, we can
construct its intersection matrix A(D). For each chord {aj, b;}, arbitrarily
choose a pair: (aj, b;) or (b;, a;). Each matrix entry A; ; is 0 if its chord
{ai, bj} is assigned 0, and 1 otherwise. For i < j, entry A; j is 1 if the
corresponding chords intersect with cyclic order a;, aj, b;, bj, —1 if they

intersect with cyclic order a;, b;, b;, aj, and 0 if the chords do not intersect.
For i <], A,'J = —Aj’,'.
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Matrix Quasi-Tree Theorems

Given an orientable bouquet B with n edges,

k(B) = det(l, + A(F(B))
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Matrix Quasi-Tree Theorems

Given an orientable bouquet B with n edges,

k(B) = det(l, + A(F(B))

Theorem 2

Given a bouquet B with n edges and exactly one non-orientable loop ez,

k(B) = det(l, + A(F(B))
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Fibonacci Numbers

fn:fn—1+fn—2
i=11fH=1
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Fibonacci Numbers

fn:fn—1+fn—2
i=11fH=1

Lucas Numbers
bp="Ln1+ 4y
V=1 40,=3
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Fibonacci Numbers

fn:fn—1+fn—2
i=11fH=1

v
Lucas Numbers

En = En—l + gn—2

lh=1,6,=3 )
Relation
fn + fn—2 = Kn—l
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Special Bouquet Sequences

Vn > 0, let F,, denote the bouquet with the signed rotation
(1,2,1,3,2,4,3,....i,i —1,i+1,i,..n—1,n—2,n,n—1,n)
whose chord diagram D(F,) has pairs
{(1,3),(2,5),(4,7),...,(2n — 4,2n — 1), (2n — 2,2n) }

H(Fn) = Tn+1

Vn > 2, let IF), denote the bouquet with the signed rotation
(1,2,3,2,1,4,3,5,4,....i,i = 1,i+1,i,....n—=1,n—2,n,n—1,n)
whose chord diagram D(TF))) has pairs
{(1,5),(2,4),(3,7),(6,9),....,(2n — 4,2n — 1),(2n — 2,2n)}
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Vn > 2, k(F,) = lp_1
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Vn>2, k(F)) =1

Proof

For n =2, k(F,) =1 = {1 (the subgraph with no edges). Now, let n > 3.
1 0 1 .. 0 0 O
0 1 1 0 .. 0 O
-1 -1 1 1 .. 0 O

IL+AFE) =1 ... . .. e e .|, and by the Matrix
0 0 O 1 1 0
o o0 o .. -1 1 1
o o0 o .. 0 -1 1

Quasi-Tree Theorem, x(IF)) = det(l, + A(F(F})).
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Proof

Proof Cont.

For n =2, k(F3) = 1 = {1 (the subgraph with no edges). Now, let n > 3.
1 0 1 .. 0 0 O
0 1 1 0 .. 0 O
-1 -1 1 1 .. 0 O

I+ A(F(F) = | - . e e .|, and by the Matrix
0 0 O 1 1 0
o o0 o .. -1 1 1
o o0 o0 .. 0 -1 1

Quasi-Tree Theorem, x(FF,) = det(l, + A(F(F})).

Let M := I, + A(F(F))).

k(F)) = det(M) = det(M[1,1]) — det(M[3,1]) =

K(Fn—1) — (—1)my13mo26(Fn_3) = k(Fp_1) + £(Fp3) =fa+ fro = en—l)
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Definition
Let F'! denote the bouquet of F, with the first edge twisted
(non-orientable). Its signed rotation is

(-1,2,3,2,1,4,3,5,4,....i,i —1,i+1,i,...n—1,n—2,n,n—1,n)

whose chord diagram D(TF)) has pairs

{(1,5),(2,4),(3,7),(6,9),...,(2n —4,2n — 1), (2n — 2,2n)} and chord (1,

5) is assigned 1 while all others 0.

VYn>2, k(F}) =f+4h1
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Other Theorems

Now, we'll try to understand these recurrence relations without the use of
matrices.
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graph G. For disjoint ribbon graphs P and @, where V is the disjoint
union operator, B(PV Q) = B(P) + B(Q) — 1
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Other Theorems

Now, we'll try to understand these recurrence relations without the use of
matrices.

Let B(G) = the number of boundary components of G for any ribbon
graph G. For disjoint ribbon graphs P and @, where V is the disjoint
union operator, B(PV Q) = B(P) + B(Q) — 1

Consequently,

For disjoint ribbon graphs P and @, where V is the disjoint union operator,

R(PV Q) = r(P)r(Q)
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Subgraphs with More Boundary Components

Let G = (V, E) be a ribbon graph, and let n be a positive integer.

Definition

Fn(G)={F C E|(V,F) has n boundary components}
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Subgraphs with More Boundary Components

Let G = (V, E) be a ribbon graph, and let n be a positive integer.

Definition
Fn(G)={F C E|(V,F) has n boundary components}

Then,
Definition
fn(G) is the cardinality of F,(G)

Put simply, f,(G) counts the number of spanning subgraphs of G with
exactly n boundary components (and, in particular, f1(G) = k(G)).
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Generalization of Theorem 1

Now, using f, rather than x, we can generalize Theorem 1.
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Generalization of Theorem 1

Now, using f, rather than x, we can generalize Theorem 1.

For disjoint ribbon graphs P and @, where V is the disjoint union operator,

f(PV Q) = Zf Yr1-i(Q)

Given that graph P has k boundary components and that graph Q has j
boundary components, we can conclude that PV @ has k+j —1
boundary components.
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Generalization of Theorem 1

Now, using f, rather than x, we can generalize Theorem 1.

For disjoint ribbon graphs P and @, where V is the disjoint union operator,

PVQ Zf n+1l )

Given that graph P has k boundary components and that graph Q has j
boundary components, we can conclude that PV @ has k+j —1
boundary components.

So, each subgraph of PV @ with n boundary components must have /
boundary components “contributed” by P, and n+ 1 — i boundary
components “contributed” from @ for some i.
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First Partial Duality Theorem

The next two theorems have to do with partial duality.
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First Partial Duality Theorem

The next two theorems have to do with partial duality.

Let G be a ribbon graph and e € E(G). Then, for any n,

fa(G) = f,(G\e) + fr(G/e)
= £,(G\e) + f(G*(®)\e)
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First Partial Duality Theorem

The next two theorems have to do with partial duality.

Let G be a ribbon graph and e € E(G). Then, for any n,

fa(G) = f,(G\e) + fr(G/e)
= £,(G\e) + f(G*(®)\e)

We can find an obvious 1-1 correspondence between subgraphs of G that
do not contain e and subgraphs of G\e.

There is a slightly less obvious 1-1 correspondence between subgraphs of
G that do contain e and subgraphs of G/e.
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First Partial Duality Theorem cont'd

Non-loop Non-orientable loop Orientable loop

¢ *:(:
Gle= G\ S/*
G ﬂ

Figure: Table of Partial Duals
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Second Partial Duality Theorem

Another theorem involving partial duality falls from the first.
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Second Partial Duality Theorem

Another theorem involving partial duality falls from the first.

Theorem 4
Let G = (V, E) be a ribbon graph, A C E. Then, for any n,

fn(G) = F(GXA)
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Second Partial Duality Theorem

Another theorem involving partial duality falls from the first.

Theorem 4

Let G = (V, E) be a ribbon graph, A C E. Then, for any n,

fn(G) = F(GXA)

It is sufficient to verify this for a single edge. Let e € E. Then,

£(G) = fo(G\e) + fu(G e)
= £, (67 EN\e) + f(GT\e)
= £,(G9(®))
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Sequences of Graphs

Let’s remind ourselves of a few relevant sequences of ribbon graphs:
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Sequences of Graphs

Let’s remind ourselves of a few relevant sequences of ribbon graphs:

F,=(1,2,1,3,2,4,3,--- ,i,i—1,i+1,i,---,n—1,n—2,n,n—1,n)
F.=(1,2,3,2,1,4,3,5,4,--- ,i,i—1,i+1,i,---,n—1,n—2,n,n—1,n)
Fl=(-1,2,1,3,2,4,3,--- i,i—1,i+1,i,---,n—1,n—2,n,n—1,n)
Fl=(-1,2,3,2,1,4,3,5,4,--- ,i,i—1,i+1,i,--- ,n—1,n—2,n,n—1,n)
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Sequences of Graphs

Let’s remind ourselves of a few relevant sequences of ribbon graphs:

F,=(1,2,1,3,2,4,3,--- ,i,i—1,i+1i,--- ,n—1,n—2nn—1,n)
F.=(1,2,3,2,1,4,3,5,4,--- ,i,i—1,i+1,i,--- ,n—1,n— 2nn 1,n)
Fl=(-1,2,1,3,2,4,3,--- i,i—1,i+1,i,---,n—1,n—2,n,n—1,n)
Fl=(-1,2,3,2,1,4,3,5,4,--- ,i,i—1,i+1,i,--- ,n—1,n—2,n,n—1,n)

Where we have:

K(Fn) n+1
r(F,) =

”(F}w) n+2
K(FY) = fo+ 0,1
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Sequences of Graphs

Let’s remind ourselves of a few relevant sequences of ribbon graphs:

F,=(1,2,1,3,2,4,3,--- ,i,i—1,i+1i,--- ,n—1,n—2nn—1,n)
F.=(1,2,3,2,1,4,3,5,4,--- ,i,i—1,i+1,i,---,n—1,n—2,n,n—1,n)
Fl=(-1,2,1,3,2,4,3,--- i,i—1,i+1,i,---,n—1,n—2,n,n—1,n)

Fl=(-1,2,3,2,1,4,3,5,4,--- ,i,i—1,i+1,i,--- ,n—1,n—2,n,n—1,n)

Where we have:

K(Fp) = fort Let G = (E, V) containing .

, e, €1 € E and v € V s.t. the signed
k() = rotation of v contains the sequence
K(F}) = for2 (eo, €1, €0) and ep is a loop. Then
K(FY) = fo+ 0,1

k(G) = k(G\ey) + k(G\eo\e1)
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Non-loop Non-orientable loop Orientable loop

Ghe

Gle=G*)\e

Goie)

Figure: Table of Partial Duals
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Another Interesting Sequence

Consider the sequence,

F’ = (1,2,-1,3,-2,4,—3,---i,1—i, i+1,—i,--- ,n—1,2—n, n,1—n, —n)

n

(which is just F,, with all ribbons twisted)
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Another Interesting Sequence

Consider the sequence,

F’ = (1,2,-1,3,-2,4,—3,---i,1—i, i+1,—i,--- ,n—1,2—n, n,1—n, —n)

n

(which is just F,, with all ribbons twisted)
An interesting result is that

w(F5) = K(Fh_1) + &(F}_2) + K(F_3)
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Another Interesting Sequence

Consider the sequence,

F’ = (1,2,-1,3,-2,4,—3,---i,1—i, i+1,—i,--- ,n—1,2—n, n,1—n, —n)

n

(which is just F,, with all ribbons twisted)
An interesting result is that

w(F5) = K(Fh_1) + &(F}_2) + K(F_3)

More generally, any sequence with such an ending will follow this
recurrence relation.
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F /n

((FL) = KEN) S k(o /1)

Of course, Fr\n =TF!_,. But also, by our previous result,

r(ln/n) = K(FL/n\(n = 1)) + &(Fp/n\(n = 1)\(n = 2))
R(ELAN\(n = 1)) + s(FR\n\(n — 1)\(n = 2))
R(Fh—2) + K(F)_3)
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Final Note

Another interesting result arises from considering f,, where n > 1.
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Another interesting result arises from considering f,, where n > 1.
Consider I, (or any sequence with such an ending). We can use our
theorems to deduce that (F,) = (Fy—1) + f(Fnr—2) + A(Fp—2).
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Another interesting result arises from considering f,, where n > 1.
Consider I, (or any sequence with such an ending). We can use our
theorems to deduce that (F,) = (Fy—1) + f(Fnr—2) + A(Fp—2).
Using the recurrence relation on fi(F,), we can find that

f2(Fn) = 2f—2(Fn71) + f2(Fn72) - 2f2(an3) - fZ(}Fn74)
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Another interesting result arises from considering f,, where n > 1.
Consider I, (or any sequence with such an ending). We can use our
theorems to deduce that (F,) = (Fy—1) + f(Fnr—2) + A(Fp—2).
Using the recurrence relation on fi(F,), we can find that

f2(Fn) = 2f—2(Fn71) + f2(Fn72) - 2f2(an3) - fZ(Fn74)

Interestingly, the characteristic polynomial of this recurrence relation is
x*—2x3 = x2 4+ 2x +1= (x> —x —1)?, where x> — x — 1 is the
characteristic polynomial of f(Fp).
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