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Definitions

Definition 1

A chord diagram consists of 2n distinct points on a circle and n chords
connecting pairwise disjoint pairs of points.

The intersection graph of a
chord diagram D is the graph G (D) = (V ,E ) where V is the set of chords
and uv ∈ E iff chords u and v intersect.

Definition 2

A chord diagram is framed if each chord is assigned 0 or 1.
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Definitions

Definition 3

A bouquet is a ribbon graph with only one vertex.

Given a bouquet B, we can create its associated framed chord diagram
F (B). First, consider the boundary of the vertex as the circle of the
diagram. Draw a chord between the ends of each edge of B and assign it
0 iff its ribbon loop in B is orientable (untwisted).
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Definitions

Given a framed chord diagram D = {{ai , bi} | 1 ≤ i ≤ n}, we can
construct its intersection matrix A(D). For each chord {ai , bi}, arbitrarily
choose a pair: (ai , bi ) or (bi , ai ). Each matrix entry Ai ,i is 0 if its chord
{ai , bi} is assigned 0, and 1 otherwise. For i < j , entry Ai ,j is 1 if the
corresponding chords intersect with cyclic order ai , aj , bi , bj , −1 if they
intersect with cyclic order ai , bj , bi , aj , and 0 if the chords do not intersect.
For i < j , Ai ,j = −Aj ,i .
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Matrix Quasi-Tree Theorems

Theorem 1

Given an orientable bouquet B with n edges,

κ(B) = det(In + A(F (B))

Theorem 2

Given a bouquet B with n edges and exactly one non-orientable loop e1,

κ(B) = det(In + A(F (B))
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Notation

Fibonacci Numbers

fn = fn−1 + fn−2
f1 = 1, f2 = 1

Lucas Numbers

`n = `n−1 + `n−2
`1 = 1, `2 = 3

Relation

fn + fn−2 = `n−1
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Special Bouquet Sequences

Fn

∀n ≥ 0, let Fn denote the bouquet with the signed rotation
(1, 2, 1, 3, 2, 4, 3, ..., i , i − 1, i + 1, i , ...n − 1, n − 2, n, n − 1, n)
whose chord diagram D(Fn) has pairs
{(1, 3), (2, 5), (4, 7), ..., (2n − 4, 2n − 1), (2n − 2, 2n)}

Theorem

κ(Fn) = fn+1

F′n
∀n ≥ 2, let F′n denote the bouquet with the signed rotation
(1, 2, 3, 2, 1, 4, 3, 5, 4, ..., i , i − 1, i + 1, i , ..., n − 1, n − 2, n, n − 1, n)
whose chord diagram D(F′n) has pairs
{(1, 5), (2, 4), (3, 7), (6, 9), ..., (2n − 4, 2n − 1), (2n − 2, 2n)}
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F′6
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Theorem

Theorem

∀n ≥ 2, κ(F′n) = `n−1

Proof

For n = 2, κ(F′2) = 1 = `1 (the subgraph with no edges). Now, let n ≥ 3.

In + A(F (F′n)) =



1 0 1 ... 0 0 0
0 1 1 0 ... 0 0
−1 −1 1 1 ... 0 0
... ... ... ... ... ... ...
0 0 0 ... 1 1 0
0 0 0 ... −1 1 1
0 0 0 ... 0 −1 1


, and by the Matrix

Quasi-Tree Theorem, κ(F′n) = det(In + A(F (F′n)).
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Proof

Proof Cont.

For n = 2, κ(F′2) = 1 = `1 (the subgraph with no edges). Now, let n ≥ 3.

In + A(F (F′n)) =



1 0 1 ... 0 0 0
0 1 1 0 ... 0 0
−1 −1 1 1 ... 0 0
... ... ... ... ... ... ...
0 0 0 ... 1 1 0
0 0 0 ... −1 1 1
0 0 0 ... 0 −1 1


, and by the Matrix

Quasi-Tree Theorem, κ(F′n) = det(In + A(F (F′n)).
Let M := In + A(F (F′n)).
κ(F′n) = det(M) = det(M[1, 1])− det(M[3, 1]) =
κ(Fn−1)− (−1)m1,3m2,2κ(Fn−3) = κ(Fn−1) + κ(Fn−3) = fn + fn−2 = `n−1
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Theorem

Definition

Let F′1
n denote the bouquet of F′n with the first edge twisted

(non-orientable). Its signed rotation is
(−1, 2, 3, 2, 1, 4, 3, 5, 4, ..., i , i − 1, i + 1, i , ..., n − 1, n − 2, n, n − 1, n)
whose chord diagram D(F′n) has pairs
{(1, 5), (2, 4), (3, 7), (6, 9), ..., (2n − 4, 2n − 1), (2n − 2, 2n)} and chord (1,
5) is assigned 1 while all others 0.

Theorem

∀n ≥ 2, κ(F′1
n ) = fn + `n−1
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Other Theorems

Now, we’ll try to understand these recurrence relations without the use of
matrices.

Lemma

Let B(G ) = the number of boundary components of G for any ribbon
graph G . For disjoint ribbon graphs P and Q, where ∨ is the disjoint
union operator, B(P ∨ Q) = B(P) + B(Q)− 1

Consequently,

Theorem 1

For disjoint ribbon graphs P and Q, where ∨ is the disjoint union operator,

κ(P ∨ Q) = κ(P)κ(Q)
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Subgraphs with More Boundary Components

Let G = (V ,E ) be a ribbon graph, and let n be a positive integer.

Definition

Fn(G ) = {F ⊆ E | (V ,F ) has n boundary components}

Then,

Definition

fn(G ) is the cardinality of Fn(G )

Put simply, fn(G ) counts the number of spanning subgraphs of G with
exactly n boundary components (and, in particular, f1(G ) = κ(G )).
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Generalization of Theorem 1

Now, using fn rather than κ, we can generalize Theorem 1.

Theorem 2

For disjoint ribbon graphs P and Q, where ∨ is the disjoint union operator,

fn(P ∨ Q) =
n∑

i=1

fi (P)fn+1−i (Q)

Given that graph P has k boundary components and that graph Q has j
boundary components, we can conclude that P ∨ Q has k + j − 1
boundary components.
So, each subgraph of P ∨ Q with n boundary components must have i
boundary components “contributed” by P, and n + 1− i boundary
components “contributed” from Q for some i .

Keck, Mawalkar Quasi-Tree Subgraphs June 27, 2025 18 / 29



Generalization of Theorem 1

Now, using fn rather than κ, we can generalize Theorem 1.

Theorem 2

For disjoint ribbon graphs P and Q, where ∨ is the disjoint union operator,

fn(P ∨ Q) =
n∑

i=1

fi (P)fn+1−i (Q)

Given that graph P has k boundary components and that graph Q has j
boundary components, we can conclude that P ∨ Q has k + j − 1
boundary components.
So, each subgraph of P ∨ Q with n boundary components must have i
boundary components “contributed” by P, and n + 1− i boundary
components “contributed” from Q for some i .

Keck, Mawalkar Quasi-Tree Subgraphs June 27, 2025 18 / 29



Generalization of Theorem 1

Now, using fn rather than κ, we can generalize Theorem 1.

Theorem 2

For disjoint ribbon graphs P and Q, where ∨ is the disjoint union operator,

fn(P ∨ Q) =
n∑

i=1

fi (P)fn+1−i (Q)

Given that graph P has k boundary components and that graph Q has j
boundary components, we can conclude that P ∨ Q has k + j − 1
boundary components.

So, each subgraph of P ∨ Q with n boundary components must have i
boundary components “contributed” by P, and n + 1− i boundary
components “contributed” from Q for some i .

Keck, Mawalkar Quasi-Tree Subgraphs June 27, 2025 18 / 29



Generalization of Theorem 1

Now, using fn rather than κ, we can generalize Theorem 1.

Theorem 2

For disjoint ribbon graphs P and Q, where ∨ is the disjoint union operator,

fn(P ∨ Q) =
n∑

i=1

fi (P)fn+1−i (Q)

Given that graph P has k boundary components and that graph Q has j
boundary components, we can conclude that P ∨ Q has k + j − 1
boundary components.
So, each subgraph of P ∨ Q with n boundary components must have i
boundary components “contributed” by P, and n + 1− i boundary
components “contributed” from Q for some i .

Keck, Mawalkar Quasi-Tree Subgraphs June 27, 2025 18 / 29



First Partial Duality Theorem

The next two theorems have to do with partial duality.

Theorem 3

Let G be a ribbon graph and e ∈ E (G ). Then, for any n,

fn(G ) = fn(G\e) + fn(G/e)

= fn(G\e) + fn(G δ(e)\e)

We can find an obvious 1-1 correspondence between subgraphs of G that
do not contain e and subgraphs of G\e.
There is a slightly less obvious 1-1 correspondence between subgraphs of
G that do contain e and subgraphs of G/e.
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First Partial Duality Theorem cont’d

Figure: Table of Partial Duals
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Second Partial Duality Theorem

Another theorem involving partial duality falls from the first.

Theorem 4

Let G = (V ,E ) be a ribbon graph, A ⊆ E . Then, for any n,

fn(G ) = fn(G δ(A))

It is sufficient to verify this for a single edge. Let e ∈ E . Then,

fn(G ) = fn(G\e) + fn(G/e)

= fn
(

(G δ(e))δ(e)\e
)

+ fn(G δ(e)\e)

= fn(G δ(e))
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Sequences of Graphs

Let’s remind ourselves of a few relevant sequences of ribbon graphs:

Fn = (1, 2, 1, 3, 2, 4, 3, · · · , i , i − 1, i + 1, i , · · · , n − 1, n − 2, n, n − 1, n)
F′n = (1, 2, 3, 2, 1, 4, 3, 5, 4, · · · , i , i − 1, i + 1, i , · · · , n− 1, n− 2, n, n− 1, n)
F1
n = (−1, 2, 1, 3, 2, 4, 3, · · · , i , i − 1, i + 1, i , · · · , n − 1, n − 2, n, n − 1, n)

F′1n = (−1, 2, 3, 2, 1, 4, 3, 5, 4, · · · , i , i−1, i+1, i , · · · , n−1, n−2, n, n−1, n)

Where we have:

κ(Fn) = fn+1

κ(F′n) = `n−1

κ(F1
n) = fn+2

κ(F′1n ) = fn + `n−1

Fact

Let G = (E ,V ) containing
e0, e1 ∈ E and v ∈ V s.t. the signed
rotation of v contains the sequence
(e0, e1, e0) and e0 is a loop. Then

κ(G ) = κ(G\e0) + κ(G\e0\e1)
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Figure: Table of Partial Duals
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Another Interesting Sequence

Consider the sequence,

Fr
n = (1, 2,−1, 3,−2, 4,−3, · · · i , 1−i , i+1,−i , · · · , n−1, 2−n, n, 1−n,−n)

(which is just Fn with all ribbons twisted)

An interesting result is that

Fact

κ(Fr
n) = κ(Fr

n−1) + κ(Fr
n−2) + κ(Fr

n−3)

More generally, any sequence with such an ending will follow this
recurrence relation.
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Of course, Fr
n\n = Fr

n−1. But also, by our previous result,

κ(Fr
n/n) = κ(Fr

n/n\(n − 1)) + κ(Fr
n/n\(n − 1)\(n − 2))

= κ(Fr
n\n\(n − 1)) + κ(Fr

n\n\(n − 1)\(n − 2))

= κ(Fr
n−2) + κ(Fr

n−3)
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Final Note

Another interesting result arises from considering fn where n > 1.

Consider Fn (or any sequence with such an ending). We can use our
theorems to deduce that f2(Fn) = f2(Fn−1) + f2(Fn−2) + f1(Fn−2).
Using the recurrence relation on f1(Fn), we can find that

f2(Fn) = 2f2(Fn−1) + f2(Fn−2)− 2f2(Fn−3)− f2(Fn−4)

Interestingly, the characteristic polynomial of this recurrence relation is
x4 − 2x3 − x2 + 2x + 1 = (x2 − x − 1)2, where x2 − x − 1 is the
characteristic polynomial of f1(Fn).
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