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Core Definitions

mod m Alexander numbering: A generalization of mod m Alexander numbering. Given
an oriented virtual link diagram, assigning an integer to every semi-arc (section of the
link between two classical crossings) in the pattern of the Figure 1 along its
orientation(When passing cut points, the number also need to increase by 1). After finish
numbering along the orientation, if the start number a and end number b holds a— b =0
(mod m), then we say this diagram admits mod m Alexander numbering and shows

almost-classicality.
i y i+1 K i+ 1
i \ i+1 i / i+ 1

Figure 1: Alexander Numbering
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State Expansion: choose an A- or B-oriented smoothing at every classical crossing.
When there is no induced orientation, each of the resulting pieces is given a pole which
points inwards towards the location where the crossing previously existed. The result is
a collection of oriented loops with poles(cusps).

Figure 3: Creation of Poles in State Expansion
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Loop index : For a loop L of state S, an index 1 is assigned by moving all poles past
virtual crossings onto a small semi-arc before canceling all adjacent poles on the same
side of a loop. The index is then given by 1(L) = P2,

Figure 4: Rules for Pole Cancellation
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Arrow Polynomial Rp: After one evaluates all states of a virtual link D and finds the
index 1 for each, the normalized Dye-Kauffman arrow polynomial Rp is given by

Ro(A; Ky, Kz, ...) = (=A%) WD N~ AXE-PE (-2 — 4221 TT Ky
S LeS

where a(S) is the number of A-splittings performed to reach state S, B(S) is the number
of B-splittings performed to reach state S, and 6(S) is the number of loops in S.
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Gauss diagram: Flatten each component of D into a circle that records the traversal
order of the diagram. For every classical crossing place two points on the circle (first
encounter and second encounter along the orientation) and join them with an oriented
chord. Label each chord with the crossing sign (+/—).

Figure 5: Gauss diagram for a virtual trefoil
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Cut System

Cut points & Semi-arc: A cut point is a tiny triangle placed on a semi-arc; its arrow
shows the local direction in which the Alexander label must increase by 1. we say an
arrow point coherent if its orientation matches the direction of that semi-arc

A set of oriented cut points that allows an Alexander numbering is called a cut system.

741

Figure 6: Cut Points
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Cut-point moves

Moves I-II: Any two cut systems on the same diagram differ by a finite sequence of
these three local replacements. Each move leaves “label +1 across the arrow"
unchanged, so the existence of an Alexander numbering is preserved.

R =3 et X2 K =

Ir

Figure 7: Oriented cut-point moves
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Cut system in the Arrow Polynomial

A coherent pair of cut points is attached for a classical crossing. Each triangle marks a
place where an Alexander label must jump +1.

After performing an A or B smoothing, those two cut points survive as an inward-pointing
and an outward-pointing pole decorating the state loop. The arrow polynomial records
the difference between “forward” and “backward” poles on each loop; that count is
exactly the loop-index : we have been talking about.

R
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Introduction of The Topic

Goal for the project: Last time we generalize arrow polynomial from Alexander
numbering to mod m Alexander numbering, which is stated in Kamada (2021) Prop. 9.
He gives the only-if direction statement:

Theorem (Theorem 1)

Let D be a virtual link diagram presenting a mod m almost classical virtual link. Then,
Xp is in Z[A', dn, d%m, ...] when m is even, and it is in Z[A', dm, dom, ...] when m is odd.

So is Rp.
Interpreted by our notations, it is
mod-m numbering = 1= 0 (mod m or m/2).

Now we are trying to see if this conditioning statement can be generalized to an
equivalence.
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Why the Naive Converse Fails

Theorem (Converse for Theorem 1)

Let D be a virtual link diagram presenting a mod m almost classical virtual link. If xp
holds 1= 0 (mod m), then it admits mod-m numbering.

This converse doesn’t hold since i-index for every loop is a global indicator that
represents net sum of cusps in the circle, and only cares if the numbering matches at
the oriented cut point. In other words, 1-index ignores numbering along semi-arcs.
Numbering along the path can be modified by cut system, which is excluded by -index,
so we need to include cut system (also make statement sharper) to complete the
generalization of Theorem 1.
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Counter-example little change on a m = 2 virtual trefoil loop: Every virtual diagram
automatically has: = 0 (mod 1), yet it is not checkerboard-colorable(as shown in the
figure below), hence doesn’t admit mod-2 Alexander numbering.

(a) Mébius’s checkboard discolorability (b) -index of Mdbius
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What to Prove

Our task is therefore to prove a stronger statement:

IA cut system C such that every semi-arc of D carries k m coherent cut points, then
diagram D admits a mod-m Alexander numbering.

Why this works. As we found the reason that converse fails is that i-index doesn’t
check cut points, then we add a cut system can keep the diagram still invariant. If such a
cut system exists, label one semi-arc by 0 and walk along the orientation; each time you
cross a cut point, add 1 mod m. Because each semi-arc contains exactly km(k € R)
identical arrows, its endpoints receive the same label, so the process is well-defined
around the entire diagram.
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Gauss—-Diagram Route

Flatten each component of the virtual link into a circle and mark every classical crossing by a
chord with an arrow and a sign. The coherent cut system becomes k m identical little arrows
drawn on each interval between consecutive chord—endpoints. Starting at an arbitrary basepoint,
write 0 and walk once around the circle, adding +1 every time we cross one of those arrows.
Because every interval contains exactly k m arrows, the label returns to 0 at the end of the
circuit, so the assignment is well-defined. The two endpoints of each chord now bear the labels
required by the Alexander rule, giving the desired numbering directly inside the Gauss diagram.
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Wirtinger—Form Route

Erase all virtual crossings and regard the diagram as a 4-valent graph with the usual Wirtinger
presentation. Treat each coherent cut point as an oriented “step” that forces its generator to map
to the successive generator by +1 in Z,. Because every semi-arc carries a whole multiple k m of
such steps, the total change along any closed loop in the Wirtinger graph is 0; hence the
assignment factors through a well-defined homomorphism m1(D) — Z,. Pulling this
homomorphism back to the arcs produces exactly a mod-m Alexander numbering. Thus the
coherence condition can be verified or constructed purely in group-theoretic terms, without
leaving the plane.
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Worked Example

Figure 10: A worked example admits mod 3 Alexander numbering
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1 test

The diagram has loop—indices 11 =1 = 0 (mod 3). So it satisfies Proposition 9.
However, without extra structure, the original diagram doesn’t admit mod 3 Alexander
numbering.

The reason for the failure is that two long semi-arcs each contain a “+1,1” pair, so label
changes cancel globally but clash locally.

In this way, we insert three identical arrows on every semi-arc so that each arrow points
with the orientation of that arc. Now every semi-arc records exactly three +1 jumps.
Because 3 = 0 (mod 3), the label at the far end of every semi-arc returns to its starting
value, removing the previous contradiction.
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Why the example holds for the equivalence

Walking from an arbitrary basepoint and adding +1 at each arrow produces a consistent
labeling. In this way, this example holds for two things at once:

¢ Loop—index divisibility alone is insufficient.

e The extra “k-m coherent arrows on every semi-arc” condition is exactly what lets us
integrate the labels and complete the equivalence theorem.
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