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Review

Recall, we care about ribbon graphs and how many boundary components
they have.

Ribbon Graphs are multi-graphs (graphs and multiple edges and loops
allowed) where vertices are disks and edges are strips connecting the disks.

We are particularly interested in bouquets, ribbon graphs with exactly one
vertex (so all edges are loops).
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Subgraph Counting

Definition

A ribbon graph is a quasi-tree if it has exactly one boundary component.

Definition

For some ribbon graph G , let κ(G ) equal the number of spanning
subgraphs of G that are quasi-trees.
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Signed Rotation

One way to encode bouquets is with signed rotations.

To find a bouquet’s signed rotation:

Number each edge 1 through n (where the graph has n edges).

Pick a point along the vertex.

Go clockwise along the vertex, and each time you hit an edge, put its
number at the end of the signed rotation.

If an edge is twisted, multiply one of its edges in the signed rotation
by −1.
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Signed Rotation Example

For example, the following graph could be written as:

(1, 2, 3, 2, 1, 4, 3, 5, 4, 6, 5, 6)
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Known Recurrence Relations

Let fn denote the n-th Fibonacci Number (1, 1, 2, 3, 5, 8, 13, 21, . . .)
Let `n denote the n-th Lucas Number (1, 3, 4, 7, 11, 18, 29, 47, . . .)

There are some known sequences of ribbon graphs that ”contain” these
number sequences.

Fn = (1, 2, 1, 3, 2, 4, 3, · · · , i , i − 1, i + 1, i , · · · , n − 1, n − 2, n, n − 1, n)
F′n = (1, 2, 3, 2, 1, 4, 3, 5, 4, · · · , i , i − 1, i + 1, i , · · · , n− 1, n− 2, n, n− 1, n)
F1
n = (−1, 2, 1, 3, 2, 4, 3, · · · , i , i − 1, i + 1, i , · · · , n − 1, n − 2, n, n − 1, n)

F′1n = (−1, 2, 3, 2, 1, 4, 3, 5, 4, · · · , i , i−1, i+1, i , · · · , n−1, n−2, n, n−1, n)

With κ(Fn) = fn+1, κ(F′n) = `n−1, κ(F1
n) = fn+2, and κ(F′1n ) = fn + `n−1.

It is not a coincidence that these sequences all have the same ending and
the same recurrence relation.
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New Theorems

Now, we’ll try to understand these recurrence relations without the use of
matrices.

Lemma

Let B(G ) = the number of boundary components of G for any ribbon
graph G . For disjoint ribbon graphs P and Q, where ∨ is the
one-vertex-join operator, B(P ∨ Q) = B(P) + B(Q)− 1

Consequently,

Theorem 1

For disjoint ribbon graphs P and Q, where ∨ is the one-vertex-join
operator,

κ(P ∨ Q) = κ(P)κ(Q)
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Subgraphs with More Boundary Components

Let G = (V ,E ) be a ribbon graph, and let n be a positive integer.

Definition

Fn(G ) = {F ⊆ E | (V ,F ) has n boundary components}

Then,

Definition

fn(G ) is the cardinality of Fn(G )

Put simply, fn(G ) counts the number of spanning subgraphs of G with
exactly n boundary components (and, in particular, f1(G ) = κ(G )).
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Generalization of Theorem 1

Now, using fn rather than κ, we can generalize Theorem 1.

Theorem 2

For disjoint ribbon graphs P and Q, where ∨ is the one-vertex-join
operator,

fn(P ∨ Q) =
n∑

i=1

fi (P)fn+1−i (Q)

Given that graph P has k boundary components and that graph Q has j
boundary components, we can conclude that P ∨ Q has k + j − 1
boundary components.
So, each subgraph of P ∨ Q with n boundary components must have i
boundary components “contributed” by P, and n + 1− i boundary
components “contributed” from Q for some i .
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First Partial Duality Theorem

The next two theorems have to do with partial duality.

Theorem 3

Let G be a ribbon graph and e ∈ E (G ). Then, for any n,

fn(G ) = fn(G\e) + fn(G/e)

= fn(G\e) + fn(G δ(e)\e)

We can find an obvious 1-1 correspondence between subgraphs of G that
do not contain e and subgraphs of G\e.
There is a slightly less obvious 1-1 correspondence between subgraphs of
G that do contain e and subgraphs of G/e.
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First Partial Duality Theorem cont’d

Figure: Table of Partial Duals
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Second Partial Duality Theorem

Another theorem involving partial duality falls from the first.

Theorem 4

Let G = (V ,E ) be a ribbon graph, A ⊆ E . Then, for any n,

fn(G ) = fn(G δ(A))

It is sufficient to verify this for a single edge. Let e ∈ E . Then,

fn(G ) = fn(G\e) + fn(G/e)

= fn
(

(G δ(e))δ(e)\e
)

+ fn(G δ(e)\e)

= fn(G δ(e))
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Sequences of Graphs

Let’s remind ourselves of a few relevant sequences of ribbon graphs:

Fn = (1, 2, 1, 3, 2, 4, 3, · · · , i , i − 1, i + 1, i , · · · , n − 1, n − 2, n, n − 1, n)
F′n = (1, 2, 3, 2, 1, 4, 3, 5, 4, · · · , i , i − 1, i + 1, i , · · · , n− 1, n− 2, n, n− 1, n)
F1
n = (−1, 2, 1, 3, 2, 4, 3, · · · , i , i − 1, i + 1, i , · · · , n − 1, n − 2, n, n − 1, n)

F′1n = (−1, 2, 3, 2, 1, 4, 3, 5, 4, · · · , i , i−1, i+1, i , · · · , n−1, n−2, n, n−1, n)

Where we have:

κ(Fn) = fn+1

κ(F′n) = `n−1

κ(F1
n) = fn+2

κ(F′1n ) = fn + `n−1

Fact

Let G = (E ,V ) containing
e0, e1 ∈ E and v ∈ V s.t. the signed
rotation of v contains the sequence
(e0, e1, e0) and e0 is a loop. Then

κ(G ) = κ(G\e0) + κ(G\e0\e1)
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Figure: Table of Partial Duals
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Another Interesting Sequence

Consider the sequence,

Fr
n = (1, 2,−1, 3,−2, 4,−3, · · · i , 1−i , i+1,−i , · · · , n−1, 2−n, n, 1−n,−n)

(which is just Fn with all ribbons twisted)

An interesting result is that

Fact

κ(Fr
n) = κ(Fr

n−1) + κ(Fr
n−2) + κ(Fr

n−3)

More generally, any sequence with such an ending will follow this
recurrence relation.
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recurrence relation.
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Of course, Fr
n\n = Fr

n−1. But also, by our previous result,

κ(Fr
n/n) = κ(Fr

n/n\(n − 1)) + κ(Fr
n/n\(n − 1)\(n − 2))

= κ(Fr
n\n\(n − 1)) + κ(Fr

n\n\(n − 1)\(n − 2))

= κ(Fr
n−2) + κ(Fr

n−3)
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Characteristic Polynomial

To understand the next theorem, we must briefly mention what the
characteristic polynomial of a homogeneous linear recurrence relation is.

Let an be a sequence with the following linear recurrence relation:

an = c1an−1 + · · ·+ cman−m

where ck are constants.
Then the characteristic polynomial of an is

P(x) = xk − c1x
k−1 − · · · − ck

For example, the Fibonacci numbers have characteristic polynomial

P(x) = x2 − x − 1
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More Boundary Components

Another interesting result arises from considering fn where n > 1.

Consider Fn (or any sequence with such an ending). Then the following
turns out to be true:

Theorem

The characteristic polynomial of fm(Fn) is the characteristic polynomial of
κ(Fn) raised to the m-th power.
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Proof of Theorem

We will prove this theorem using induction. The base case is clear, as
f1(Fn) = κ(Fn). Then, our goal is to prove that increasing the subscript
on f by 1 will have the effect of multiplying the characteristic polynomial
by (x2 − x − 1), the characteristic polynomial of κ(Fn).

Recall that we had κ(Fn) = κ(Fn−1) + κ(Fn−2)κ(P2).

This does not extend directly to higher boundary component numbers
because of Theorem 2.
Rather, we have fm(Fn) = fm(Fn−1) +

∑m
i=1 fi (Fn−2)fm+1−i (P2).

Luckily, fm(P2) is non-zero for only m = 1, 2 (with f1(P2) = f2(P2) = 1),
so the above becomes simply
fm(Fn) = fm(Fn−1) + fm(Fn−2) + fm−1(Fn−2).
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Proof of Theorem, cont’d

It immediately follows that fm−1(Fn) = fm(Fn+2)− fm(Fn+1)− fm(Fn).

So, say we have the characteristic polynomial for fm−1(Fn) in terms of x
called Pm−1(x). Then, by the above equality, we can get Pm(x) by
replacing each term axb of Pm−1(x) with a(xb+2 − xb+1 − xb).

This is, of course, the same as multiplying by x2 − x − 1. So,
Pm(x) = (x2 − x − 1)Pm−1(x).

So, the inductive step is proved, and the theorem is true.
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Theorem Extended

This theorem is not only true for graphs with the ending of Fn though. It,
in fact, applies to every sequence of graphs we’ve examined thus far.

This is because each one so far has ended with the one-vertex-join of some
earlier term and P2, so a nearly identical proof will work for all of them.

How much this theorem could be generalized is an interesting question.
The following is false:

False Theorem

If Gn is a sequence of ribbon graphs such that fm(Gn) has a linear
recurrence relation ∀m ∈ Z+, then the characteristic polynomial of fm(Gn)
is equal to the characteristic polynomial of κ(Gn) raised to the m-th power.
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Counterexample

Consider F1,n
n , which is Fn with the first and last edges twisted, where we

want to find the characteristic polynomial of fm(F1,n
n ).

We have that F1,n
n \n = F1

n−1, and F1,n
n /n = F1,n−1

n−1
Then, fm(F1

n−1) = fm(F1,n
n )− fm(F1,n−1

n−1 ).

So, using we can substitute this into the recurrence relation for fm(F1
n),

which has the effect of multiplying the characteristic polynomial, and get
that the characteristic polynomial of fm(F1,n

n ) is

(x2 − x − 1)m(x − 1)

(x2 − x − 1)(x − 1) = (x3 − 2x + 1), so

κ(F1,n
n ) = 2κ(F1,n−1

n−1 )− κ(F1,n−3
n−3 )
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