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Chapter 1
Introduction

The progress in the biological sciences over the last several decades has been rev-
olutionary, and it is reasonable to expect that this pace of progress, facilitated by
huge advances in technology, will continue in the following decades. Mathematics
has historically contributed to, as well as benefited from, progress in the natural sci-
ences, and it can play the same role in the biological sciences. For this reason we
believe that it is important to introduce students very early, already at the freshman
or sophomore level, with just basic knowledge in Calculus of one variable, to the
interdisciplinary field of mathematical biology. A typical case study in mathemati-
cal biology consists of several steps. The initial step is a description of a biological
process which gives rise to several biological questions where mathematics could be
helpful in providing answers. The second step is to develop a mathematical model
that represents the relevant biological process. The next step is to use mathemati-
cal theories and computational methods in order to derive mathematical predictions
from the model. The final step is to check that the mathematical predictions provide
answers to the biological question. One can then further explore related biological
questions by using the mathematical model.

This book is based on one semester course that we have been teaching for sev-
eral years. We chose two sets of case studies. The first set includes chemostat mod-
els, predator-prey interaction, competition among species, the spread of infectious
diseases, and oscillations arising from bifurcations. In developing these topics we
also introduced the students to the basic theory of ordinary differential equation,
and taught them how to work and program with MATLAB without any prior pro-
gramming experience. The students also learned how to use codes to test biological
hypotheses,

The second set of case studies were cases adapted from recent and current re-
search papers to the level of the students. We selected topics that are of great pub-
lic health interest. These include the risk of atherosclerosis associated with high
cholesterol level, cancer and immune interactions, cancer therapy, and tuberculo-
sis. Throughout these case studies the student will experience how mathematical
models and their numerical simulations can provide explanations that may actually
guide biological and biomedical research. Toward this goal we have also include
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2 1 Introduction

in our course “projects” for the students. We divide the students into small groups,
and each group is assigned a research paper which they are to present to the entire
class at the end of the course. Another special feature of this book is that in addi-
tion to teach students how to use MATLAB to solve differential equations, we also
introduce some very basic numerical methods to familiarize the students with some
numerical techniques. That will greatly help their understanding in using different
MATLAB functions, and can further help them when they try to use other computer
languages in the future. Overall, our book is different from traditional mathematical
biology textbooks in many aspects.

We hope the book will help demonstrate to undergraduate students, even those
with little mathematical background and no biological background, that mathemat-
ics can be a powerful tool in furthering biological understanding, and that there are
both challenge and excitement in the interface of mathematics and biology.

This book is the undergraduate companion to the more advanced book “Mathe-
matical Modeling of Biological Process” by A. Friedman and C.-Y. Kao (Springer,
2014), and there is some overlap with Chapters 1, 4-6 of that book. We would like to
thank Chiu-Yen Kao who taught the very first version of this undergraduate course.



Chapter 2
Bacterial Growth in Chemostat

A chemostat, or bioreactor, is a continuous stirred-tank reactor (CSTR) used for
continuous production of microbial biomass. It consists of a fresh water and nu-
trient reservoir connected to a growth chamber (or reactor), with microorganism.
The mixture of fresh water and nutrient is pumped continuously from the reservoir
to the reactor chamber, providing feed to the microorganism, and the mixture of
culture and fluid in the growth chamber is continuously pumped out and collected.
The medium culture is continuously stirred. Stirring ensures that the contents of
the chamber is well mixed so that the culture production is uniform and steady. If
the steering speed is too high, it would damage the cells in culture, but if it is too
low it could prevent the reactor from reaching steady state operation. Figure 2 is a
conceptual diagram of a chemostat.

Chemostats are used to grow, harvest, and maintain desired cells in a controlled
manner. The cells grow and replicate in the presence of suitable environment with
medium supplying the essential nutrient growth. Cells grown in this manner are
collected and used for many different applications.

These application include:
Pharmaceutical: for example in analyzing how bacteria respond to different an-

tibiotics, or in production of insulin (by the bacteria) for diabetics.
Food industry: for production of fermented food such as cheese.
Manufacturing: for fermenting sugar to produce ethanol.
A question which arises in operating the chemostat is how to adjust the effluent

rate, that is, the rate of pumping out the mixture. In order to operate the chemostat
efficiently, the effluent rate should not be too small. But if this rate is too large, then
the bacteria in the growth chamber may wash out. In order to determine the optimal
rate of pumping out the mixture we need to use mathematics. In this chapter, we
develop a simple mathematical model in order to determine the optimal effluent
rate. A more comprehensive model will be developed in Chapter 8.

We first need to develop a mathematical model describing the growth of bacteria.
The density x of bacteria is defined as the number of bacteria per unit volume. If the
bacteria grow at a fixed rate r, then

3



4 2 Bacterial Growth in Chemostat

Fig. 2.1 Stirred bioreactor operated as a chemostat, with a continuous inflow (the feed) and outflow
(the effluent). The rate of medium flow is controlled to keep the culture volume constant.

x(t +∆ t)− x(t) = rx(t)∆ t,

or
x(t +∆ t)− x(t)

∆ t
= rx(t),

and, taking ∆ t→ 0, we get
dx
dt

= rx. (2.1)

The explicit formula for the growth of x is then

x(t) = x(0) ert .

The doubling time T is defined by x(T ) = 2x(0), and it is given by

2 = erT , or T =ln2 /r.

If a colony of bacteria, or other microoganism, is dying at rate s, then its density x
satisfies

dx
dt

=−sx, (2.2)

and
x(t) = x(0)e−st .

The population density is halved at time T̄ , called the half-life, given by

T̄ =
ln2

s
.

When bacteria are confined to a bounded chamber, they cannot grow exponen-
tially forever, according to (2.1). There is going to be a carrying capacity B of the
medium which the bacterial density cannot exceed. This is modeled by replacing



2 Bacterial Growth in Chemostat 5

the exponential growth (2.1) by the logistic growth

dx
dt

= rx(1− x
B
). (2.3)

The solution of (2.3) with an initial condition

x(0) = x0

is given by

x(t) =
B

1+( B
x0
−1)e−rt

. (2.4)

Indeed, to derive (2.3), we rewrite (2.1) in the form

dx
x(1− x

B )
= rdt,

or
(

1
x
+

1
B

1
1− x

B
)dx = rdt,

and integrate to obtain

lnx− ln
1

1− x
B
= rt + const.

Then x
1− x

B
=Cert ,

yielding

x(t) =
Cert

1+ C
B ert

=
B

1+ B
C e−rt

.

Substituting t = 0,x(0) = x0, we get

1+
B
C

=
B
x0
, or C =

x0

1− x0
B
.

Equation (2.1) is a special differential equation. Later on we shall encounter other
differential equations that model biological processes.

Consider a general differential equation
dx
dt

= f (x) (2.5)

where f (x) is a continuous function together with its first derivative. We wish to
solve (2.5) with an initial condition

x(0) = x0. (2.6)
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Theorem 2.1. There exists a unique solution of (2.5), (2.6) for some interval 0 ≤
t ≤ t1.

The soution can actually be continued for all t > 0 as long as f (x(t)) remains
bounded. Similarly, the solution can be continued to all t < 0 as long as x(t) re-
mains bounded. One often refers to a solution of (2.5), x(t) for 0 ≤ t < ∞, as a
trajectory.

If x0 is a point such that f (x0) = 0, then the unique solution of (2.5), (2.6) is
clearly x(t)≡ x0. Such a point x0 is called an equilibrium point, a steady state or
a stationary point. By Taylor’s formula,

f (x) = f (x0)+ f ′(x0)(x− x0)+(x− x0)ε(x− x0)

where ε(x− x0)→ 0 if x→ x0.
Suppose x0 is an equilibrium point such that f ′(x0) < 0. Setting y = x− x0, we

then have

dy
dt

= f ′(x0)y+ yε(y).

If |y| is small enough so that |ε(y)|< | 12 f ′(x0)|, then, for y > 0,

dy
dx

< f ′(x0)y+
1
2
| f ′(x0)|y = f ′(x0)y−

1
2

f ′(x0)y =
1
2

f ′(x0)y,

so that
dy
dt

< 0 if y > 0.

Hence y = y(t) is decreasing toward y = 0. Similarly

dy
dt

> 0 if y < 0,

so that y = y(t) is increasing toward y = 0.
Hence the solution x(t), starting near x0, moves toward x0 as t increases; in fact,

x(t)→ x0 as t → ∞. We therefore call x0 a stable equilibrium (or more precisely
asymptotically stable equilibrium). Similarly, if

f ′(x0)> 0

then solutions initiating near x0 move away from x0, as long as they are within a
small distance from x0. We call such a point x0 an unstable equilibrium.

In the logistic growth equation (2.3), x = B is a stable equilibrium. From (2.4),
we see that x = B is actually a globally (asymptotically) stable stable point of (2.3)
in the sense that no matter what x0 is, x(t)→ B as t→ ∞.
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Modeling the chemostat

Figure 2 shows a schematics of a chemostat with a stock of nutrient C0 pumped into
the chamber of the bacterial culture. We assume that the chemostat chamber is well
stirred so that the nutrient concentration is constant at each time t. We then model
the bacterial growth by the logistic equation (2.3), where r depends on the constant
nutrient concentration C0. If we denote by s the rate of the bacterial outflow from
the chamber, then the balance between growth and outflow is given by

dx
dt

= rx(1− x
B
)− sx. (2.7)

We shall denote by [X ] the dimension of any quantity X . For example,

[x] =
number
volume

, [B] =
number
volume

,

[r] =
1

time
, [s] =

1
time

.

There are two equilibrium points to (2.7), namely, x = 0, and x = (1− s
r )B. Note

that if s < r, then x = 0 is an unstable equilibrium, whereas x = (1− s
r )B is a stable

equilibrium. If s > r, then x = 0 is a stable equilibrium, whereas the equilibrium
point x = (1− s

r )B is not biologically relevant since it is negative.
Consider the case s < r and x(0) < (1− s

r )B. Since (1− s
r )B is a stable equilib-

rium, if x(0) is near (1− s
r )B, it will remain smaller than (1− s

r )B and will converge
to it as t→ ∞. We can actually solve x(t) explicitly: writing

1
rx(1− x

B )− sx
=

1
r− s

(
1
x
+

r/B
(r− s)− rx/B

)

we have
1

r− s

[
dx
x
+

r/B
(r− s)− rx/B

dx
]
= dt.

By integration
1

r− s
[lnx− ln((r− s)− rx/B)] = t + const,

or x
(r− s)− rx/B

= ce(r−s)t (c is constant).

Hence
(

1
c

e−(r−s)t +
r
B
)x = r− s,

or
x(t) =

r− s
r
B + 1

c e−(r−s)t
. (2.8)
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We see that x(t)→ (1− s
r )B as t → ∞, whenever x(0) < (1− s

r )B. Note that the
formula (2.8) is valid also when x(0)> (1− s

r )B and that c is determined by

x(0) =
r− s
r
B + 1

c

, or
1
c
=

r− s
x(0)

− r
B
.

C
0

Flow of nurient 

Out!ow of bacteria 

              and nutrient 

Bacterial 

Culture Chamber 

Fig. 2.2 The chemostat device.

The chemostat operator would like to adjust the outflow rate s so as to get the
largest output of bacteria. The mathematical model we developed can determine the
optimal rate. Indeed, at steady state the outflow rate s is to be multiplied by the
steady state of the bacteria, which is, x = (1− s

r )B. The function s(1− s
r )B takes its

maximum at s = r
2 , and with this outflow rate the maximum outflow per unit time is

1
2 rB.
Summary. The chemostat operates most efficiently when s = r

2 , that is, when the
outflow rate is half the inflow rate.

Problem 2.1. Find the general solution of the differential equation

dx
dt

= ax+b

where a,b are constants.

Problem 2.2. Prove the following statements:
(i) If dx

dt ≤ b−µx (b > 0,µ > 0) for all t > 0, then, for any ε > 0,

x(t)≤ b
µ
+ ε if t is large enough;

(ii) If dx
dt ≥ b−µx (b > 0,µ > 0) for all t > 0, then, for any ε > 0,

x(t)≥ b
µ
− ε if t is large enough.

[Hint: Rewrite the inequality in (i) in the form d
dt (xeµt) = ( dx

dt +µx)eµt ≤ beµt .]
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Problem 2.3. Consider the equation

dx
dt

= x(x−a)(x−2), 0 < a < 2.

It has three steady points, x = 0, x = 2 and x = a. Determine which of them are
stable points.

Problem 2.4. Consider the equation

dx
dt

= xα , x(0) = 1

where 0 < α < ∞. Show that (i) if α > 1 then the solution exists for 0 < t < 1
α−1 and

x(t)→∞ as t→ 1
α−1 . (ii) if α < 1 then the solution exists for all t > 0 and x(t)→∞

as t→ ∞.

Problem 2.5. Consider the equation

dx
dt

= (x−a)(2− x) x(0)< a,

where a < 2. Find the solution explicitly in either the form t = t(x), or x = x(t), and
use it to prove the following:
(i) If x(0)> a then the solution exists for all t > 0 and x(t)→ 2 as t→ ∞;
(ii) If x(0) < a then the solution exists for t < T , where T = 1

2−a ln | a−x(0)
2−x(0) |, and

x(t)→−∞ as t→ T .

2.1 Numerical Simulations – Introduction to MATLAB

MATLAB is a software developed by MathWorks, and it is widely used in science
and engineering. MATLAB is a high-level language and interactive environment
for numerical computation, symbolic calculation and visualization. It is also known
for its easy handling of matrices and vectors. To access this software, in many uni-
versities, students can install licensed MATLAB software (you can request from
the schools’ IT department), and individual licenses can also be purchased through
MathWorks website.

We will refer the readers to MathWorks’ website for details of installation and
launching of the software. In this chapter, we will introduce some basics of MAT-
LAB and prompt to solving an ODE problem with MATLAB. The codes and expla-
nations about MATLAB is based on the version MATLAB R2014b.

The introduction here is elementary and not comprehensive, but it will give the
readers the basic idea of how MATLAB operates and how to use this software to
solve our models.
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2.1.1 Scalar calculations

Once we launch MATLAB, the default window will have several compartments: a
panel with function buttons, and main columns “Current folder”, “Command Win-
dow” and “Workspace”. We can change to the directory that we would like to work
in, and the corresponding folders and subfolders will show in the “Current Folder”
part. The “Command Window” is for us to enter commands and do some calcu-
lations, and the “Workspace” will save the variables that have been used in our
calculations.

MATLAB can do basic calculations as in regular calculators. MATLAB recog-
nizes the usual arithmetic operation: + (addition), - (subtraction), * (multiplication),
/ (division), ˆ (power). In the Command Window, we will see the prompt sign (>>),
and we can type after prompt sign and press enter.

For example, >> (5*2+3.5) / 5
ans =
2.7000
If we do not want to see the the display of the answer, we can add a semicolon to

suppress the display. We can also store the result into a variable that the user assigns,
for example:

>> x = (5*2+3.5) / 5
x =
2.7000
If we check the Workspace column, you will see x is stored and the value is also

shown in that column. If we didn’t not specify the name of the variable, the result
will be store in ans in the Workspace. It is worth noting that a valid variable name
starts with a letter, followed by letters, digits, or underscores. MATLAB is case
sensitive, so B and b are not the same variable. We should avoid creating variable
names that conflict with function names (functions will be introduced later).

MATLAB recognizes different types of numbers: (1) Integer (example: 112, -
2185); (2) real number (example: 2.452, -100.448); (3) complex (example:−0.11+
4.4i, i =

√
−1); (4) Inf (infinity); (5) NaN (not a number).

All the calculation in MATLAB are done in double precision, which means that
the numbers are accurate up to 15 significant figures. However, we may not see that
many digits on the display window, and that is because the default output format
is to display 4 decimal places. If you type format long, you will see the full
display of all the digits. To know about more format, type help format. This
help command is very useful when we would like to know how to use a command
or a function; we simply type help xx, in which xx is the command of interest.

MATLAB has some built-in trigonometric function and elementary functions.
We choose some commonly used ones to list in Table 2.1.

It is convenient and important to make comments in the codes, for future refer-
ence. In MATLAB, we use the percentage sign (%), and MATLAB will take all the
characters after (%) as comments and those will not be executed, for example: >> x
= (5*2+3.5) / 5ˆ2 % store the result in variable z, and show
the result on the screen.
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MATLAB build-in functions descriptions
abs(x) absolute value of x
sqrt(x) square root of x
sin(x) sine of x in radians
sind(x) sine of x in degrees
cos(x) cosine of x in radians
cosd(x) cosine of x in degrees
tan(x) tangent of x in radians
cot(x) cotangent of x in radians
sec(x) secant of x in radians
csc(x) cosecant of x in radians
asin(x) inverse sine of x in radians
acos(x) inverse cosine of x in radians
atan(x) inverse tangent of x in radians
sinh(x) hyperbolic sine of x in radians
cosh(x) hyperbolic cosine of x in radians
exp(x) exponential of x
log(x) natural logarithm of x
log2(x) base 2 logarithm of x
log10(x) base 10 logarithm of x
ceil(x) round x toward infinity
floor(x) round x toward minus infinity
round(x) round x to the nearest integer

Table 2.1 Commonly used MATLAB built-in functions.

If the operation is too long, one can use (...) to extend the command to the next
line, for example:

>> z = 10*sin(pi/3)*...
>> sin(piˆ2/4)

2.1.2 Vector and matrix operations

In previous examples, we have discussed how to use MATLAB to do the usual scalar
calculations. In fact, MATLAB is very powerful when it comes to calculations of
vectors and matrices, and it is a vector oriented program. For this reason, we should
maximize the use of vector-matrix operations in design of our codes.

In the previous section, variables are used to store scalars. Here we show that
they can also be used to store vectors. The following is an example to assign vectors
in a variable:

>> s = [1 3 5 2]; % note the use of [], and the spaces
between the numbers; one can also use comma (,) to separate
the numbers

>> t = 2*s + 1 % 1 will be added to all the entries of
2*s
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t =
3 7 11 5
In the above example, MATLAB uses [] to establish a row vector [1 3 5 2] and

stores it in the variable s, and does operation on it to make a new row vector [3 7 11
5] and stores it in the variable t. To extract one element from the vector or part of
the vector to do operations, we type:

>> t(3) % display third entry of vector t
ans =
11
>> t(3) = 2 % assign another value to the third entry of

vector t
t =
3 7 2 5
>> 2*t - 5*s
ans =
1 -1 -21 0

As we learn in linear algebra, in order to add or subtract, two vectors need to
have the same length.

>> a = [1 2 3]; b = [5 6];
>> a + b
Error using +
Matrix dimensions must agree.

When we see the above message, that means we have inconsistent matrix or vector
dimensions, so we need to go back to check the dimensions of our matrices or
vectors. Although we cannot add or subtract a and b, we can put them together
in a vector, such as

>> cd = [-b, 3*a]
cd =
-5 -6 3 6 9

Sometimes, we need vectors whose entries are part of an arithmetic sequence, a
convenient way to define it is to use the colon notation:

>> 1:2:6 % this will generate a row vector, starting at
1, ending at 6, with increment 2

ans =
1 3 5

>> 3:10 % without specifying the increment, it will be
set as 1

ans =
3 4 5 6 7 8 9 10

Knowing this shortcut, we can easily extract sections in a vector, and do operations:
>> t(2:4) - 1 % this will be the same as typing t([2 3

4])-1
ans =
6 1 4
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We have learned how to define and use row vectors, and the operations are similar
for column vectors. The only difference is that the entries of a column vector are
separated by semicolon (;) or making a new line.

>> cv = [-1; pi; exp(2)]
cv =
1.0000
3.1416
7.3891
>> cv2 = [1
2
3]
cv2 =
1
2
3

The row and column vectors can be transposed to become column and row vec-
tors, respectively.

>> cv’, t’
ans =
1.0000 3.1416 7.3891
ans =
3
7
2
5

Similarly to making vectors, users can make a m× n matrix, by adding a semi-
colon ; after the end of each row. Next we define matrices. Similar to row and col-
umn vectors, entries in a row are separated by spaces or commas, while different
rows are made by using semicolon or a new line. For example:

>> A = [1 2 3 4; 5 6 7 8; 9 10 11 12]
A =
1 2 3 4
5 6 7 8
9 10 11 12

We can extract or change any single entry in the matrix
>> A(2,3) = 5; % change the (2,3) entry of A to 5

or extract part of the matrix
>> B = A(2,1:3) % take the second row, the first to third

column, store as a new matrix B
>> B =
>> 5 6 7
We can combine matrices, as long as the dimensions are consistent. >> A =[A

B’] % transpose B, make it as the last column vector and
merge with A

A =
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1 2 3 4 5
5 6 7 8 6
9 10 11 12 7

We can extract the whole row or colon by using semicolon
>> A(:,3)
A =
3
7
11

>> A(1,:)
A =
1 2 3 4 5

Then we can redefine or delete a row or a column:
>> A(:,2) = [] % delete the second row of A (: represents

all the rows, [] is an empty vector
>> A = [A; 4 3 2 1; 0 -1 -2 -3]; % adding the fourth and

fifth row in the matrix A
To obtain the size of a matrix, we use the command “size”.
>> size(A’)
ans =
4 5

To obtain the length of a vector, we use “length”.
>>length(A(1,:))
ans =
4

There are some built-in special matrices,
>> ones(2,3) % this generates a 2x3 matrix with ones
>> zeros(4,4) % this generates a 4x4 matrix with zeros
>> eye(5) % this generates a 5x5 identity matrix
>> diag([1 3 5]) % this generates a matrix with 1 3 5 on

its diagonal
Next, let us about matrix-matrix or matrix-vector multiplication. When we use

* in the matrix operations, it will operates as the matrix multiplication, what we
learned in linear algebra. For example,

>> X = [1 2 3; 0 2 4]; Y = [5 2; 1 1; 10 7]; W = X*Y
W =
37 25
42 30

If we try
>> X*X

then we will see an error message about the matrix dimension, because an m× n
matrix can only by multiplied by an n× k matrix. Sometime we do not perform
component-by-component operations, but not matrix-matrix multiplications, for
that purpose we need to use .* instead of *. The following commands will give
different result:

>> W.* W % component by component operation
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>> W* W % matrix-matrix multiplication
and we will find that X.*Xworks because it is component-by-component operation.

2.1.3 Numerical algorithms of solving ODE

Most of the time, the solution of an ODE problem does not have a closed-form
solution. In this case, one looks for numerical solutions that approximate the real
solution. Since numerical solutions are just approximations, it is important to un-
derstand the accuracy of the numerical method and robustness of it.

Suppose a scalar ODE is

dy
dt

= f (y, t) y(0) = y0, t ≥ 0.

Let t0 be some time point with t0 ≥ 0, then by integrating the ODE, one gets

y(t) = y(t0)+
∫ t

t0
f (x,τ)dτ ≈ y(t0)+(t− t0) f (y(t0), t0).

As long as t is sufficiently close to t0, this provides a good approximation. Define h
as the step size, we then define the numerical solution by

Yn+1 = Yn +h f (Y (tn), tn).

This is call forward Euler Method, named after Leonhard Euler (1707-1783). The
error of this scheme is O(h), which can be formally derived from Taylor expansion.
Generally, a numerical scheme is called kth order accurate if the error is O(hk),
where h is the discretization size. Therefore, Euler method is first order accurate.
Nowadays, there are many high order accurate schemes to solve ODE, but Euler
method is still a classical one as one first learn numerical methods. We will revisit
the details about Euler methods in Chapter 6. In MATLAB, we have some options
of using Runge-Kutta methods to solve ODE systems, which will be introduced in
the following.

Using MATLAB to solve ODE

When solving ODE with MATLAB, we need to represent f (y, t) as a “FUNCTION”
in MATLAB, with the input t and y, and output dy. If we call teh FUNCTION file as
“odefile.m”, the format of ODE is as follows: [t,y]=solver(’odefile’,[t0,t1],y0),
where [t0, t1] is the time interval of interest, and y0 is the initial conditions. The op-
tions for the solver can be found be look up “help” in MATLAB. For example:

>>[t,y]=ode45(’odefile’,[1,3],2)
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The above solves ODE with the prescibed f (y, t) in odefile.m, within the time
range [0,1] and initial data y(1) = 2. Let us find out what is in that file:

>> type odefile.m
function dy = odefile(t,y)
dy = yˆ2 + t;

Problem 2.6. Try the following command to generate a vector x.

>> x = 0:0.01:2
What is x , explain what you see in MATLAB. Then use the command
>> y = sin(x)
to generate another vector y, what is y?
Using the above commands to plot the figure of f (x) = 2sinx2 for 0 ≤ x ≤ 3,

with x incremented by 0.05 in the discretization.

Problem 2.7. Write a code to solve the ODE

dN
dt

= N
(

1− N
2

)
, 0≤ t ≤ 5,

with initial condition N(0) = 0.5. Plot the numerical solution and the exact solution
on the same figure with different markers and different colors (refer to the numerical
section of Chapter 3 for plotting).

Problem 2.8. Solve the equation in Problem 2.5 with a = 1 numerically in the form
x = x(t) when (i) x(0) = 1

2 , (ii) x(0) = 3
2 .



Chapter 3
Linear Differential Equations

In order to use mathematics to answer biological questions we need to develop fur-
ther the theory of differential equations. In this chapter we introduce linear differ-
ential equations of the second order, and a system of two first-order differential
equations.

Consider a second order differential equation

a
d2x
dt2 +b

dx
dt

+ cx = 0 (3.1)

where a, b, c are real constants and a 6= 0. The general solution is

x(t) = c1eλ1t + c2eλ2t , c1,c2 are constants, (3.2)

where λ1,λ2 are the solutions of the quadratic equation

aλ
2 +bλ + c = 0,

namely,

λ1,2 =
1
2a

(−b±
√

b2−4ac) (3.3)

provided λ1 6= λ2. If λ1 = λ2 =− b
2a , then teλ 1t is another solution of (3.1), and the

general solution of (3.1) is

x(t) = c1eλ1t + c2teλ1t . (3.4)

We can use the general solution to solve Eq. (3.1) subject to initial conditions

x(0) = α, x′(0) = β . (3.5)

Problem 3.1. Consider the equation (3.1) with initial conditions (3.5). Prove that
there is a unique solution of the form (3.2) if λ1 6= λ2, and of the form (3.4) if
λ1 = λ2.

17
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If b2−4ac is negative, then λ1 and λ2 are complex numbers,

λ1,2 =
1

2a
(−b± i

√
4ac−b2) = µ± iν (3.6)

and
eλ1,2t = eµt(cosνt± isinνt).

Then the general solution can be written in the form

x(t) = c1eµt cosνt + c2eµt sinνt.

Consider next a 2×2 linear system

dx1
dt = a11x1 +a12x2

dx2
dt = a21x1 +a22x2

(3.7)

We try to solve it in the form

x1 = v1eλ t , x2 = v2eλ t .

Then

a11v1 +a12v2 = v1λ

a21v1 +a22v2 = v2λ .

We can rewrite this system in matrix form(
a11−λ a12

a21 a22−λ

)(
v1
v2

)
=

(
0
0

)
, (3.8)

or (A−λ I)v = 0 where

A =

(
a11 a12
a21 a22

)
, I =

(
1 0
0 1

)
, v =

(
v1
v2

)
.

A nonzero solution v exists if and only if λ satisfies the characteristic equation

det(A−λ I) = 0. (3.9)

A solution λ of (3.9) is called an eigenvalue of A and a corresponding v is called
eigenvector. Eq. (3.9) can be written explicitly as

λ
2−λ (a11 +a22)+(a11a22−a12a21) = 0. (3.10)

If the two eigenvalues λ1,λ2 are different, then the general solution of Eq. (3.7)
is

x(t) = c1w1eλ1t + c2w2eλ2t , (3.11)
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where w1 and w2 are the eigenvectors corresponding to λ1 and λ2, respectively.
More precisely,

Theorem 3.1. If λ1 6= λ2 then for any initial values

x(0) = b where b =

(
b1
b2

)
, (3.12)

there is a unique solution of (3.7), (3.12) in the form (3.11).

Proof. We first claim that w1,w2 are linearly independent, that is,

if α1w1 +α2w2 = 0, then α1 = α2 = 0.

Indeed this relation implies that

α1λ1w1 +α2λ2w2 = α1Aw1 +α2Aw2 = A(α1w1 +α2w2) = 0.

Since also α1w1 +α2w2 = 0, we get, by subtraction,

α2λ2w2−λ1α2w2 = 0, or (λ2−λ1)α2w2 = 0.

If follows that α2 = 0, and then also α1 = 0.
Setting

w1 =

(
v11
v12

)
, w2 =

(
v21
v22

)
we conclude that

if
2

∑
i=1

vi jαi = 0 for j = 1,2, then α1 = α2 = 0.

Hence, det(vi j) = 0. But then, by linear algebra, for any (b1,b2) there is a unique
solution (c1,c2) of the system

2

∑
i=1

vi jci = bi ( j = 1,2),

and the function x(t) in (3.11) is the solution asserted in the theorem.

Consider now the case where λ1 is a complex number, λ1 = µ + iν . Then the
components of the eigenvector w1 are also complex numbers. But we are interested
only in real-valued solutions. So in order to construct real-valued solutions we write

w1eλ1t =

(
v11 + iv12
v21 + iv22

)
eµt(cosνt + isinνt) (3.13)

where vi j are real numbers. We note that the complex conjugate of w1eλ1t is also a
solution of (3.7) and, hence, so are the real and imaginary parts of (3.13). It follows
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that

eµt
(

v11 cosνt− v12 sinνt
v21 cosνt− v22 sinνt

)
and eµt

(
v11 sinνt + v12 cosνt
v21 sinνt + v22 cosνt

)
(3.14)

are two solutions.

Problem 3.2. Prove that the two solutions in (3.14) are linearly independent.

From Problem 3.2 it follows, as in the proof of Theorem 3.1, that any solution of
(3.7) is a linear combination of the two solutions in (3.14).

By writing the roots λ1,λ2 of (3.10) in the form (3.3) or (3.6), we see that Reλ1 <
0 and Reλ2 < 0 if and only if

trace of A≡ a11 +a22 < 0,
determinant of A≡a11a22−a12a21 > 0. (3.15)

If λ1 = λ2, then in addition to a solution w1eλ1t of Eq. (3.7) where w1 is an
eigenvector of (3.8) there is another solution of the form w1teλ t + ŵ2eλ t where ŵ2
is an appropriate vector. Setting w2 = w1 + ŵ2, the general solution of Eq. (3.7) is

x(t) = c1w2eλ1t + c2w1teλ1t .

Set x = (x1,x2). The proint x = 0 is called an equilibrium point of (3.7), since
the solution x(t) with x(0) = 0 is x(t)≡ 0. We define the phase space for Eqs. (3.7)
as the (x1,x2)-space, and we want to draw the portrait of the trajectories in this space
near x = 0, at least qualitatively. This can be done with the aid of the form (3.11) of
the general solution. The protrait will depend on the eigenvalues λ1,λ2 as follows.

Figures 3.1(B) and 3.1(E) show that when both eigenvalues have negative real
parts, all the trajectories converge to x = 0; we say that x = 0 is a stable equilibrium
(or more precisely, asymptotically stable equilibrium). On the other hand, when at
least one of the eigenvalues has positive real part, there are always trajectories that
go away from x = 0 even if they start initially near x = 0; we say that x = 0 is an
unstable equilibrium.

In order to solve an inhomogeneous linear equation

a
d2x
dt2 +b

dx
dt

+ cx = f (t) (3.16)

with a given function f (t), we first find a special solution x̃(t) and, then, the general
solution is a sum of x̃(t) and the general solution of the homogeneous equation. The
same procedure applies to inhomogeneous linear systems.

Problem 3.3. Find the general solution of x′′+ x′− x = t2.

Problem 3.4. Find the solution of x′′−4x′+3x = e−t with x(0) = 1
8 ,x
′(0) = 1

4 .
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Fig. 3.1 Phase portrait

Problem 3.5. Find the general solution of

dx1

dt
= −2x1 +7x2

dx2

dt
= 2x1 +3x2.

Problem 3.6. Find the general solution of

dx1

dt
= x1−2x2

dx2

dt
= 2x1 + x2.

3.1 Numerical Simulations

3.1.1 Solving a second order ODE

In previous chapters, we have simulated scalar first order ODEs with MATLAB. A
natural question is that whether we need additional MATLAB functions to simulate
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higher oder equations? The answer is no. What we need to do is to convert higher
order equations into systems of ODEs, and then we will simulate the ODE systems.
Let’s take a second order ODE as an example:

u
′′
(t)+16u

′
(t)+192u(t) = 0

can be converted to {
x
′
1 = x2

x
′
2 = −16x2−192x1

by letting x1 = u and x2 = u′. In general, a system of two first order ordinary differ-
ential equations has the form {

x
′
1 = F1(x1,x2, t)

x
′
2 = F2(x1,x2, t)

(3.17)

For example, given an ODE system

d
dt

(
x1
x2

)
=

(
1 2
2 3

)(
x1
x2

)
+

(
0
t2

)
, 0≤ t ≤ 1,

with initial condition
(

x1(0)
x2(0)

)
=

(
2
3

)
, we can solve with MATLAB as follows.

First, we create the main script file, named main.m, in which we type
x ini = [2,3]’;
[t,x] = ode45(’odefile’, [0,1], x ini); This file is the file we

execute in MATLAB, which may call other functions. Now we have defined the
initial condition, and we need to define F1(x1,x2, t) and F2(x1,x2, t). To do that, we
create another script file called define.m, which is a function file that will be called
while MATLAB is running ode45. In odefile.m, we type

function dx = odefile(t,x)
A = [1,2; 2,3];
dx = A*x + [0, tˆ2]’;

By running main.m, we end up with MATALB variables t and x, which are column
vectors. Variable t has components as the discrete time that MATLAB uses to in the
simulation, and the components of x are approximated values for the corresponding
component in t.

3.1.2 Plotting figures

Suppose x = [x1,x2,x3, · · · ,xn] is a vector representing sampling points on x−axis
and y = [y1,y2,y3, · · · ,yn] represents the corresponding function values of compo-
nents of x (note that x and y must be of the same length), then to plot x versus y, one
uses
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>> plot(x,y)
To label the axis, we can use
>> xlabel(’x’), ylabel(’y’)
One can also specify the color and marker by addtng an option in the “plot”

function
>> plot(x,y,’r o’) % this marks those point values by red

circles
If we would like to overlay two curves, x versus y and x versus z, where z =

[z1,z2,z3, · · · ,zn], we can use
>> plot(x,y,’r’,x,z,’b’) % mark the first y(x) function

in red and the second z(x) in blue.
or
>> plot(x,y,’r’), hold on
>> plot(x,z,’b’)
The “hold on” command holds the first figure data and the second will be plotted

on top of the first one. Without this command, the previous data in the figure will be
overwritten.

Problem 3.7. (a) Rewrite Problem 3.4 into first order systems. (b) Take the initial
condition to be x(0) = 1,x′(0) = 0, and the time interval 0 ≤ t ≤ 3. Use MATLAB
to solve the system you get in (a), and plot the two variables on the same figure.

Problem 3.8. Solve y′′− 5y′ = 0, y(0) = 1, y′(0) = 2, first explicitly, and then nu-
merically. Compare the two graphs of y(t) for 0≤ t ≤ 3.

Problem 3.9. Solve

dx1

dt
= x1− x2

dx2

dt
= x1 + x2

with x1(0) = 1,x2(0) = 5, first explicitly and then numerically and compute the two
graphs of x1(t) for 0≤ t ≤ 2.





Chapter 4
Systems of two differential equations

The system (3.7) is linear. In this chapter we study general systems of two differen-
tial equations has the form

dx1

dt
= f1(x1,x2),

dx2

dt
= f2(x1,x2), (4.1)

where f1(x1,x2), f2(x1,x2) are any given functions, not necessarily linear. A point
(a,b) such that

f1(a,b) = 0, f2(a,b) = 0

is called an equilibrium point, a stationary point or a steady point of the system
(4.1). The x1-nullcline of (4.1) is the curve consisting of points satisfying the equa-
tion

f1(x1,x2) = 0.

Similarly, the x2-nullcline is the curve defined by

f2(x1,x2) = 0.

The equilibrium points of the system (4.1) are the points where the two nullclines
intersect. To get an idea how trajectories behave near a stationary point (a,b), we
linearize the system.

We set
X1 = x1−a, X2 = x2−b.

Then, by Taylor’s formula,

fi(x1,x2) = fi(a+X1,b+X2) = fi(a,b)+
∂ fi

∂x1
X1 +

∂ fi

∂x2
X2 + small terms,

where
∂ fi

∂x1
=

∂ fi

∂x1
(a,b),

∂ fi

∂x2
=

∂ fi

∂x2
(a,b).

If we define

25
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ai j =
∂ fi

∂x j
(a,b)

then the system (4.1) near (a,b) has the form

dXi

dt
= ai1X1 +ai2X2 + small terms (i = 1,2)

when X1,X2 are near 0. Hence the trajectories of (4.1) are expected to behave ap-
proximately like the trajectories of

dXi

dt
= ai1X1 +ai2X2, i = 1,2. (4.2)

Accordingly, the equilibriun point (a,b) of (4.1) is said to be stable if the equi-
librium point x = 0 of (4.2) is stable, that is, if the real parts of eigenvalues of the
matrix A = (ai j) are negative.

We conclude that the equilibrium point (a,b) of the system (4.1) is stable if and
only if the following inequalities hold at (a,b):

∂ f1
∂x1

+ ∂ f2
∂x2

< 0,
∂ f1
∂x1

∂ f2
∂x2
− ∂ f1

∂x2

∂ f2
∂x1

> 0.
(4.3)

i.e., trace of
(

∂ fi
∂x j

)
< 0 and determinant of

(
∂ fi
∂x j

)
> 0. The matrix ( ∂ fi

∂x j
(a,b)) is

called the Jacobian matrix at the equilibrium point (a,b).

Problem 4.1. The system

dx
dt

= x2− y2

dy
dt

= x(1− y)

has two nonzero equilibrium points (1,1),(−1,1). Find the eigenvalues of the Jaco-
bian matrix for each of these points, and determine the behavior of the trajectories
in terms of the classification described in the graphs in Fig. 3.1.

Problem 4.2. Do the same for the system

dx
dt

= x− xy2,
dy
dt

= y+ xy2 +1

with its steady points (0,−1),(−2,1).
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4.1 Numerical Simulations

As mentioned in the previous chapter. In general, a system of two first order ordinary
differential equations has the form{

x
′
1 = F1(x1,x2, t)

x
′
2 = F2(x1,x2, t)

(4.4)

If it is a linear system, the general form can be written as{
x
′
1 = a11(t)x1 +a12(t)x2 +b1(t)

x
′
2 = a21(t)x1 +a22(t)x2 +b2(t),

(4.5)

which can be written concisely as

x′ = A(t)x+b(t)

where

x =
(

x1(t)
x2(t)

)
,b(t) =

(
b1(t)
b2(t)

)
,A(t) =

(
a11(t) a12(t)
a21(t) a22(t)

)
When A is a constant matrix and b = 0, the solution can be easily carried out via

eigenvalue and eigenfunction computation.
Example 1:

x
′
=

(
1 1
4 1

)
x (4.6)

x = c1

(
1
2

)
e3t + c2

(
1
−2

)
e−t

The origin is a saddle point and is unstable (Figure 4.1).

Fig. 4.1 Unstable saddle point.
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In MATLAB, this is a simple one-line command to compute eigenvalue and
eigenvector.

>> A=[1 1;4 1];
>> [V,D]=eig(A)
V =
0.4472 -0.4472
0.8944 0.8944
D =
3.0000 0 0 -1.0000
Example 2:

x
′
=

(
−3
√

2√
2 −2

)
x

x = c1

(
1√
2

)
e−t + c2

(
−
√

2
1

)
e−4t

The original is a stable node (Figure 4.2). (Figure 4.1).

Fig. 4.2 Stable saddle point.

Example 3:

x
′
=

(
− 1

2 1
−1 − 1

2

)
x

x = c1

(
cos(t)
−sin(t)

)
e−t/2 + c2

(
sin(t)
cos(t)

)
e−t/2

The origin is a spiral point and is asymptotically stable (Figure 4.3).
Example 4:

x
′
=

(
1 −1
1 3

)
x
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Fig. 4.3 Stable spiral.

x = c1

(
1
−1

)
e2t + c2

[(
1
−1

)
te2t +

(
0
−1

)
e2t
]

Fig. 4.4 Unstable steady state.

The origin is an improper mode, and is unstable (Figure 4.4).

Problem 4.3. Give a 2 by 2 linear system that the origin is (a) unstable node, real
eigenvalues and λ1 > 0, λ2 > 0 (b) stable node, real eigenvalues and λ1 < 0, λ2 < 0
(c) saddle point, real eigenvalues and λ1λ2 < 0 (d) unstable spiral, complex eigen-
values λ = α + iβ and α > 0 (e) stable spiral, complex eigenvalues λ = α + iβ
and α < 0 (f) center, λ = α + iβ and α = 0. For all the above systems, plot the
directional fields for −3≤ x≤ 3,−3≤ y≤ 3.
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Problem 4.4. Solve numerically

ẋ = xy− y, ẏ = xy+ x

with x(0) = 1, y(0) = 1, for 0≤ t ≤ 3.

Problem 4.5. Solve numerically

ẋ = x− xy2, ẏ = y+ xy2 +1

with x(0) = 1, y(0) = 1, for 0≤ t ≤ 3.

Problem 4.6. 3.6. Solve numerically

ẋ =−xy, ẏ = (1− x)(1+ y)

with x(0) = 2, y(0) = 0, for 0≤ t ≤ 4.



Chapter 5
Predator-Prey Models

A predator is an organism that eats another organism. A prey is an organism that a
predator eats. In ecology, a predation is a biological interaction where a predator
feeds on a prey. Predation occurs in a wide variety of scenarios, for instance in
wild life interactions (lions hunting zebras, foxes hunting rabbits), in herbivore-plant
interactions (cows grazing), and in parasite-host interactions.

If the predator is to survive over many generations, it must ensure that it con-
sumes sufficient amount of prey, otherwise its population will decrease over time
and will eventually disappear. At the same time the predator must not over-consume
the prey, for if the prey population will decrease and disappear, then also the preda-
tors will die out, from starvation.

Thus the question arises: what is the best strategy of the predator that will ensure
its survival. This question is very important to ecologists who are concerned with
biodiversity. But it is also an important question in the food industry; for example,
in the context of fishing, what is the sustainable amount of fish harvesting?

In this chapter we use mathematics to provide answers to these questions.
We begin with a simple predator-prey example.
We denote by x the density of a prey, that is, the number of prey animals per unit

area on land (or volume in sea) and by y the density of predators. We denote by a
the net growth rate in x (birth minus natrual death), and by c the net death rate of
predators. The growth of predators is assumed to depend only on the prey as food.
Predation occurs when predator comes into close contact with prey, and we take this
encounter to occur at an average rate b. Hence

dx
dt

= ax−bxy. (5.1)

The growth of predators is proportional to bxy, so that

dy
dt

= dxy− cy. (5.2)

In terms of dimensions,
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[a] =
1

time
, [b] =

1
density of predator

1
time

,

and
[c] =

1
time

, [d] =
1

density of prey
1

time
.

The system (5.1), (5.2) has two equilibrium points. The first one is (0,0); this
corresponds to a situation where both species die. This equilibrium point is unstable.
Indeed the Jacobian matrix at (0,0) is(

a 0
0 −c

)
and one of the eigenvalues, namely a, is positive.

The second equilibrium point is ( c
d ,

a
b ) and the Jacobian matrix at this point is(
0 −bc

d
ad
b 0

)
The corresponding eigenvalues are λ = ±i

√
ac. According to Fig. 3.1 the phase

portrait is a circle. We conclude: The predator and prey can both survive forever,
and their population will undergo periodic (seasonal) oscillations.

Eqs. (5.1), (5.2) are examples of what is known as Lotka-Volterra equations.
One can introduce various variants into these equations. For example, if the prey
population is quite conjested, we may want to use the logistic growth, and write

dx
dt

= ax(1− x
B
)−bxy. (5.3)

More general models of predator-prey are written in the form

dx
dt

= x f (x,y),
dy
dt

= yg(x,y)

where x is the prey and y is the predator, ∂ f/∂y < 0,∂g/∂x > 0, and ∂ f/∂x < 0
for large x, ∂g/∂y < 0 for large y. The first two inequalities mean that the prey
population is depleted by the predator and the predator population is increased by
feeding on the prey. The last two inequalities represent natural death due to the
logistic growth model.

We next consider a plant-herbivore model. The herbivore N feeds on plant P. We
take the consumption rate of the plant to be

σP
1+P

N;

this means that, at small amount of P, N consumes P at a linear rate σP, but the rate
of consumption by N is limited and cannot exceed σN. Thus,
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dP
dt

= rP−σ
P

1+P
N. (5.4)

The equation for the herbivore is

dN
dt

= λσ
P

1+P
N−dN. (5.5)

Here d is the death rate of N, and λ is the yield constant, that is,

λ =
mass of herbivore formed

mass of plant used
;

naturally λ < 1. Note that if λσ < d then dN
dt < 0 and the herbivore will die out.

Problem 5.1. Show that in the model (5.2), (5.3), if B > c
d then the point (x,y) =

( c
d ,

a
b (1−

c
Bd )) is a stable equilibrium point.

In both models (5.1), (5.2) and (5.3), (5.2), the consumption rate of the prey by
the predator is proportional to the density of the prey. In both models the predator
and prey co-exist, either as stable steady state for model (5.3), (5.2) and as periodic
solution for model (5.1), (5.2). The situation is quite different for the model model
(5.4), (5.5), since the herbivore consumption is not proportional to the density of the
plant, but is rather limited by the parameter σ . In this case, since (0,0) is unstable
equilibrium, we expect herbivore and plant to co-exist but their dynamics is quite
complicated.

We conclude that if the prey undergoes logistic growth then the populations of
predator and prey will survive and stabilize at fixed levels, rather than survive with
seasonal oscillation (as was the case in the model (5.1), (5.2)).

Factorization rule

Consider a system (4.1) where the fi can be factored as follows:

f1(x1,x2) = x1g1(x1,x2), f2(x1,x2) = x2g2(x1,x2),

so that
dx1

dt
= x1g1(x1,x2),

dx2

dt
= x2g2(x1,x2)

In this case there are equilibrium points P1 = (0,0),P2 = (0, x̄2) if g2(0, x̄2) = 0,
P3 = (x̄1,0) if g1(x̄1,0) = 0, and P4(x̃1, x̃2) if g1(x̃1, x̃2) = 0, g2(x̃1, x̃2) = 0. We can
then quickly compute the Jacobian matrix J(Pi) at each point Pi. For example, to
compute J(P4) when x̃1 > 0, x̃2 > 0, we notice that since g1 = g2 = 0 at P4,

J(P4) =

(
x1

∂g1
∂x1

x1
∂g1
∂x2

x2
∂g2
∂x1

x2
∂g1
∂x2

)
(x̃1,x̃2)

.
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Similarly,

J(P1) =

(
g1(0,0) 0

0 g2(0,0)

)
,

J(P2) =

(
g1 0

x2
∂g2
∂x1

x2
∂g1
∂x2

)
(0,x̄2)

and

J(P3) =

(
x1

∂g1
∂x1

x1
∂g1
∂x2

0 g2

)
(x̄1,0)

where x̃1 > 0.

We shall refer to these shortcuts in the computation of the Jacobian matrix as the
factorization rule.

Use the factorization rule to solve Problems 5.2, 6.3.

Problem 5.2. Show that in the plant-herbivore model (5.4)-(5.5), the equilibrium
point (0,0) is unstable.

Problem 5.3. Assume that in the model (5.4)-(5.5), λσ > d. Prove that there is a
second equilibrium point (P2,N2) where

P2 =
d

λσ −d
, N2 =

λ r
λσ −d

, (5.6)

and that it is unstable.

The Allee effect refers to the biological fact that increased fitness correlates pos-
itively with higher population, or that “undercrowding” decreases fitness. More
specifically, if the size of a population is below a threshold then it is destined for
extinction. Endangered species are often subject to the Allee effect.

Consider a predator-prey model where the prey is subject to the Allee effect,

dx
dt

= rx(x−α)(1− x)−σxy, (0 < α < 1), (5.7)

that is, if the population x(t) decreases below the threshold x = α , then x(t) will
decrease to zero as t→ ∞. The predator y satisfies the equation

dy
dt

= λσxy−σy (5.8)

where λ is the yield constant. The point (0,0) is an equilibrium point of the system
(6.14)-(6.15).

Problem 5.4. Show that if α < δ

λσ
< 1, then the system (6.14)-(6.15) has a second

equilibrium point (x̄, ȳ) = ( δ

λσ
,r( δ

λσ
−α)(1− δ

λσ
)), and it is stable if

δ

λσ
>

1+α

2
.
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This result shows that for the predator to survive, the prey must be allowed to
survive, and the predator must adjust its maximum eating rate, σ , so that

δ

λ
< σ <

δ

λ

2
1+α

.

If the Allee threshold, α , deteriorates and approaches 1, the predator must then
decrease its rate of consumption of the prey and bring it closer to δ/λ , otherwise it
will become extinct.

5.1 Numerical Simulations

The following algorithms code (5.1)-(5.2). These codes also demonstrate how to im-
plement nonlinear systems (see fun predator prey.m). Also note that in model predator prey.m,
when we plot both x and y variables, we use “subplot” command. The “subplot” al-
lows one to plot more than one subfigures in one plot. Its argument (m,n,k) stands
for total number of rows, total number column and the place of the subfigurem re-
spectively. You can type

>> help subplot
to see how to use it.

Algorithm 1 model predator prey.m
% This code simulates model (5.1)-(5.2).
close all,
clear all,
% define global parameters
global a b c d
% starting and final time
t0 = 0; tfinal = 5;
% paramters
a = 5; b = 2; c = 9; d = 1;
% initial conditions
v0 = [10,5];
[t,v] = ode45(’fun predator prey’,[t0,tfinal],v0);
subplot(1,2,1)
plot(t,v(:,1)) % plot the evolution of x
xlabel t, ylabel x
subplot(1,2,2)
plot(t,v(:,2)) % plot the evolution of y
xlabel t, ylabel y

Problem 5.5. Plot the time evolution of model of equations (5.1)-(5.2) with a =
5,b = 2,c = 9,d = 1 starting from (10,5), for time from 0 to 5.
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Algorithm 2 fun predator prey.m
% This is the function file called by model predator prey.m
function dy = ffun predator prey(t,v)
global a b c d
dy = zeros(2,1);
dy(1) = a*v(1) - b*v(1)*v(2);
dy(2) = -c*v(2) + d*v(1)*v(2);

Problem 5.6. Draw the phase portrait for (5.1), (5.2) with a = 5,b = 2,c = 9,d = 1
starting from several points near (9,5/2).

Problem 5.7. The only nonzero steady point of (5.2), (5.3) is ( c
d ,

a
b −

ac
bdB ); it is

biologically meaningful only if 1− c
dB > 0, and it is a stable spiral. Draw several

trajectories when a = b = c = d,B = 2.

Problem 5.8. Draw the phase diagram for (5.2), (5.3) in case a = b = c = d,B = 1
2 .

Problem 5.9. Change the codes (adding one more global parameter B, and change
dy(1) in fun predator prey.m) to implement (5.2)-(5.3). Plot the time evolutionwith
a = 5,b = 5,c = 5,d = 5,B = 0.5 starting from (2,3), for time from 0 to 5.



Chapter 6
Two competing populations

Competition is an interaction between organisms, or species, sharing resources that
are in limited supply. This is an important topic in ecology. The ‘competitive ex-
clusion principle’ asserts that species less suited to compete will either adapt or die
out. In aggressive competition one species may attempt to kill the other. This situ-
ation occurs, for example, among some species of ants, and some species or yeast.
When enough data is known about the history of a specific competition between two
species, mathematics can then be used to predict whether both species will survive
and co-exist or whether one of them will die out.

In this chapter we consider some examples of competing populations and deter-
mine, using mathematics, whether one or both species will survive. We begin with
the following model:

dx
dt

= r1x(1− x
k1
)−b1xy, (6.1)

dy
dt

= r2x(1− y
k2
)−b2xy, (6.2)

In Eq. (6.1), r2 is the growth rate of species x, k1 is the carrying capacity which
limits its growth, and b1 is the rate by which the competitor y kills x. Eq. (6.2) has
similar interpretation.

The system (6.1)-(6.2) has equilibrium points

(0,0), (k1,0), (0,k2). (6.3)

Note that the equilibrium point (k1,0) means that the second population becomes
extinct. Similarly, (0,k2) corresponds to a situation where the first population be-
comes extinct.

In order to determine whether there exist additional equilibrium points, we must
solve the equations

37
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r1(1−
x
k1
)−b1y = 0,

r2(1−
y
k2
)−b2x = 0.

The solution is given by

(
β1k2− k1

β1β2−1
,

β2k1− k2

β1β2−1
) where βi =

kibi

ri
, (i = 1,2). (6.4)

This steady point is of biological relevance only if the two components are posi-
tive, which occurs only when either

k1 >
r2

b2
, k2 >

r1

b1

or
k1 <

r2

b2
, k2 <

r1

b1
.

Problem 6.1. Determine whether the equilibrium points in (6.3) are stable.

Problem 6.2. Show that the steady point defined in (6.4) is the unique equilibrium
point (x,y) of (6.1) with x 6= 0,y 6= 0, and show that it is stable if k1 <

r2
b2

and k2 <
r1
b1

.

The result means that both species will co-exist provided that rate of killing by
b j is less than the rate ri/ki of growth rate divided by the carrying capacity, for
j = 1, i = 2 and for j = 2, i = 1.

In the next example two species are competing for space. Consider for example
grass (x) and weed (y) growing in the same field. They share some resources, e.g.,
nutrients from the ground. But they also receive resources independently from each
other, e.g., sunshine and rain. Thus they only partially infringe upon each other in
terms of the medium carrying capacity which supports their growth. We can model
their dynamics as follows:

dx
dt

= r1x(1− x+αy
K

)−µ1x, (6.5)

dy
dt

= r2y(1− βx+ y
K

)−µ2y, (6.6)

where 0 < α < 1,0 < β < 1. Assuming that r1 = r2 = r, µ1 = µ2 = µ and r > µ ,
there is a steady state, (x̄, ȳ), where they co-exist:

r(1− x̄+α ȳ
K

)−µ = 0,

r(1− β x̄+ ȳ
K

)−µ = 0.

Problem 6.3. Show that the steady state of co-existence is given by
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(
K(1− µ

r )(1−α)

1−αβ
,

K(1− µ

r )(1−β )

1−αβ
).

and that this steady point is stable.

Problem 6.4. The model (6.5), (6.6) with α > 1,β > 1 represents the growth of two
species under fierce competition for resources. In this case, the steady point of co-
existence is given by the same expression as in Problem 6.3. Show that this steady
state is unstable.

The results of Problems 6.3 and 6.4 show that when two species are using the
same resources, they both will stably co-exist if they do not infringe significantly
upon each other, but they cannot stably co-exist if the competition is too aggressive.

Cancer model

Recall that logistic growth for a population with density x was modeled by

dx
dt

= rx(1− x
K
)−µx

where r is the growth rate, µ is the death rate, and K is the medium carrying capacity
which is determined by the resources available to support the population. If µ > r
then dx

dt +(µ− r)x≤ 0 so that

x(t)≤ x(i)e−(µ−r)t → 0, as t→ ∞.

We are interested in cases where populations persist, so we shall take µ < r.
If two populations x and y co-exist in the same medium and follow a logistic

growth, then

dx
dt

= r1x(1− x+ y
K

)−µ1x,

dy
dt

= r2y(1− x+ y
K

)−µ2y.

where r1 and r2 are the growth rates of the populations x and y, respectively, and
µ1 and µ2 are their respective death rates. Note that the two population share the
medium, hence the term (x+ y)/K represents the load of the total population x+ y
on the medium carrying capacity K. We shall apply this model to cancer in a human
tissue, where x represents the density of normal healthy cells and y represents the
density of cancer cells in the same tissue. Since cancer cells proliferate faster than
normal healthy cells, we take

r2 > r1

. For simplicity we assume that µ1 = µ2 = µ . Writing
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dx
dt

= x[r1(1−
x+ y

K
)−µ], (6.7)

dy
dt

= y[r2(1−
x+ y

K
)−µ], (6.8)

we observe that there cannot be a steady point (x̄, ȳ) with x̄ > 0, ȳ > 0. On the other
hand there are steady points

((1− µ

r1
)K,0), (0,(1− µ

r2
)K).

Problem 6.5. Prove that (0,(1− µ

r2
)K) is stable, and ((1− µ

r1
)K,0) is unstable.

This result means that cancer-free state is unstable whereas the steady state where
all cells are cancer cells is stable.

It is interesting to explore the dynamics of the system (6.16), (6.8). We have

d
dt

ln
y
x
=

1
y

dy
dt
− 1

x
dx
dt

= (r2− r1)(1−
x+ y

K
). (6.9)

To make use of this formula we first show that if x(0) + y(0) < K then for any
sufficiently small ε > 0 with x(0)+ y(0)+ ε < K, there holds:

x(t)+ y(t)< K− ε for all t > 0. (6.10)

Indeed, suppose this claim is not true, then there is a smallest t̄ such that (6.10) holds
for all t < t̄ but

x(t̄)+ y(t̄) = K− ε. (6.11)

It follows that
d
dt
(x(t)+ y(t))t=t̄ ≥ 0. (6.12)

However, form Eqs. (6.16), (6.8) and (6.11), we get

d
dt
(x(t)+ y(t))t=t̄ ≤ (K− ε)r1(1−

K− ε

K
)−µx(t̄)

+(K− ε)r2(1−
K− ε

K
)−µy(t̄)

< K(r1 + r2)
ε

K
−µ(K− ε)< 0

if ε is sufficiently small, which is a contradiction to (6.12). Hence the assertion
(6.10) is valid.

Substituting (6.10) into (6.9) we get

d
dt

ln
y
x
≥ (r2− r1)(1−

K− ε

K
) =

(r2− r1)ε

K
≡ δ .

It follows that
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ln
y(t)
x(t)
≥ ln

y(0)
x(0)

+δ t

if y(0)> 0,x(0)> 0, so that, with C = y(0)/x(0),

y(t)
x(t)
≥Ceδ t .

But since, by (6.10), y(t)< K for all t > 0, we conclude that

x(t)≤ K
C

e−δ t → 0, as t→ ∞. (6.13)

From (6.8) and (6.13) we deduce that if y(t)> (1− µ

r2
)K and t is large, then dy(t)

dt < 0,

whereas if y(t)< (1− µ

r2
)K and t is large then dy(t)

dt > 0. Hence y(t)→ (1− µ

r2
)K as

t→ ∞.
We have thus proved:

Theorem 6.1. The steady cancer-only state (0,(1− µ

r2
)K) is globally asymptotically

stable.

Thus, the model (6.16), (6.8) predicts that, without treatment, the cancer cells will
fill the entire tissue.

6.1 Numerical Simulations

6.1.1 Revisiting Euler method for solving ODE – consistency and
convergence

Suppose the system of ODEs we would like to solve is

dx
dt

= f (x, t), t ≥ t0, x(t0) = x0 (6.14)

where f is a Lipschitz function in x and t and the initial condition x0 is a given
value in R. Note that even now we consider a single equation where x is a scalar, the
discussion in the following can be easily generalized to systems in which x and f
represent vectors. There are various ways to derive Euler method, here we give one
derivation based on linear interpolation.

Integrating Eq. (6.14) from t1 to t1 +h, with t1 > t0, one abtains

x(t1 +h) = x(t1)+
∫ t1+h

t1
f (x(τ),τ)dτ.

If we approximate the integral by h f (x(t1), t1), which would be a good approxima-
tion given h sufficiently small, then
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x(t1 +h)≈ x(t1)+h f (x(t1), t1).

Thus, we have the forward Euler method by denoting X j as the numerical solution at
time tn, j = 1, · · · ,N, where tn are equi-distanced grid points with t0 < t1 < · · ·< tN
and h = tn+1− tn,

Xn+1 = Xn +h f (Xn, tn). (6.15)

This type of scheme is call explicit scheme because the solution Xn+1 is explicitly
defined in function of Xn. In other words, knowing Xn, one can explicitly compute
Xn+1. Furthermore, it is called a single step method because it requires only solution
at one time step in order to compute the solution at the following time step.

In order to understand how good the numerical solution is, we define local trun-
cation error to measure how closely the difference operator approximates the dif-
ferential operator, for Euler method:

dn =
x(tn+1)− x(tn)

h
− f (x(tn), tn) =

h
2

x′′(t̄n)+O(h2).

where t̄n is some point in the interval [tn, tn+1]. If a method has the local truncation
error O(hp), we say that the method is pth order accurate.

However, the real goal is not consistency but convergence. Assume Nh is
bounded independent of N. The method is said to be convergent of order p if
the global error en, where en = Xn− x(tn), e0 = 0, satisfies

en = O(hp), n = 1,2, · · · ,N.

Problem 6.6. Consider the scalar problem

y′ =−5ty2 +
5
t
− 1

t2 , y(1) = 1.

(a) Verify that y(t) = 1
t is a solution to the problem. (b) Use forward Euler method

until t = 10. Compute the error between the numerical solution and exact solution
using h = 0.002,0.004,0.008,0.016. From the errors, what can you say about the
order of the scheme?

6.1.2 Backward Euler Method

While forward Euler method allows one to compute the numerical solution explic-
itly, backward Euler method is an implicit method in which one may have to solve
a system of nonlinear equations. Given the equation

dx
dt

= f (x, t), t ≥ t0, x(t0) = x0,
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if we denote X j as the numerical solution at time tn, j = 1, · · · ,N, where tn are equi-
distanced grid points with t0 < t1 < · · · < tN and h = tn+1− tn, the backward Euler
Method is

Xn+1 = Xn +h f (Xn+1, tn+1). (6.16)

Note that the difference between forward Euler and backward Euler is that we are
using unknown Xn+1 in function f of Eq. (6.16). To solve Eq. (6.16), one needs to
solve

Xn+1−h f (Xn+1, tn+1) = Xn,

which may require a nonlinear solver to solve this system. Recall that in the forward
Euler method, Xn+1 is directly computed from the right-hand-side using Xn.

Why would we want to use an implicit method which involves time consuming
nonlinear solvers? The reason is “stability”. Consider the test equation y′ = λy, the
backward Euler for that equation is

Xn+1 = Xn +hλXn+1,

therefore
(1−hλ )Xn+1 = Xn,

and
Xn+1 =

Xn

1−hλ
.

Because we assume λ < 0, we have |Xn+1| < |Xn| regardless of the choice of h. In
other word, this scheme is stable for every h! We call this scheme “unconditionally
stable”. This scheme is very useful if one requires a very small time step h to obtain
a stable numerical solution with explicit scheme. In that case, solving nonlinear
systems will pay off by gaining stability.

Problem 6.7. Consider

dy
dt

=−10y, y(0) = 1, 0≤ t ≤ 3.

(i) Impliment backward Euler method, use h = 0.01,0.05,0.1,0.2. Compare those
solutions with the exact solution. (ii) Use h = 0.21 in forward Euler and backward
Euler methods, and compare both numerical solutions with exact solutions in one
figure. (iii) Use h = 0.3 in forward Euler and backward Euler methods, what do you
see. Plot your numerical solutions if possible.

Problem 6.8. Implement the backward Euler method for

dy
dt

=−y+ t, y(0) = 1, 0≤ t ≤ 1.

Compare your numerical solution with the exact solution (you need to derive your-
self).
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In MATLAB, there are also implicit methods that would efficiently and robustly
calculate stiff problems. The widely used function is called “ode15s”. Consider a
stiff problem

d
dt

[
x1
x2

]
=

[
−1 −1
1 −5000

][
x1
x2

]
(6.17)

with initial conditions [
x1
x2

]
=

[
1
1

]
.

Problem 6.9. (a) Solve (6.8) with the initial condition with “ode45” in matlab. Com-
pute the CPU time with “tic” and “toc”. (b) Repeat (a) with “ode15s”.



Chapter 7
General systems of differential equations

In this chapter, we develop a theory for a system of differential equations that will
be used to study models with many species. We write the system either as

dxi

dt
= fi(x1,x2, · · · ,xn), i = 1,2, · · · ,n (7.1)

or, in vector notation,
dx
dt

= f(x) (7.2)

where x = (x1, · · · ,xn), f = ( f1, · · · , fn).
A point x0 = (x01, · · · ,x0n) such that f(x0) = 0 is called an equilibrium point, a

stationary point or a steady point, of the system (7.1). The unique trajectory x(t)
with x(0) = x0 is then x(t)≡ x0, for all t ≥ 0.

Writing

fi(x) = fi(x0)+
n

∑
j=1

(x j−x j0)

[
∂ fi

∂x j
+ ε j(|x−x0|)

]
where ε j(s)→ 0 if s→ 0, we see that the linear system of differential equations

dxi

dt
=

n

∑
j=1

ai j(x j− x j0), (ai j =
∂ fi(x0)

∂x j
) (7.3)

is a good approximation to (7.1) near x = x0. As in the analysis in Chapters 2 and
3, we wish to determine under what conditions all solutions of (7.3) converge to x0
as t→ ∞, and in this case we call x0 a stable equilibrium point, or, more precisely,
asymptotically stable equilibrium point.

We try to find solutions of (7.3) in the form veλ t where v = (v1,v2, · · · ,vn). Then
λ and v must satisfy the equations

n

∑
j=1

(ai j−λδi j)v j = 0, j = 1, · · · ,n (7.4)
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or, in matrix form,
(J−λ I)v = 0 (7.5)

where I is the unit matrix, with elements δi j = 0 if i 6= j, δii = 1, and the matrix J is
given by

J =


∂ f1
∂x1

∂ f1
∂x2
· · · ∂ f1

∂xn
...

∂ fn
∂x1

∂ fn
∂x2
· · · ∂ fn

∂xn


where ∂ fi

∂x j
is computed at x0; we also write J = ( ∂ fi

∂x j
). The matrix J is called the

Jacobian matrix at x0.
The system (7.4) has a solution v 6= 0 if and only if λ satisfies the equation

det(ai j−λδi j) = 0. (7.6)

This polynomial equation is called the characteristic equation, and the solutions λ

are called eigenvalues. A solution v of (7.5) is called an eigenvector corresponding
to λ .

Equation (7.6) is a polynomial equation of order n,

λ
n +a1λ

n−1 + · · ·+an−1λ +an = 0. (7.7)

It is well known that such an equation has n solutions, which may be real or imag-
inary. If all the eigenvalues λ1,λ2, · · · ,λn are different from one another, then the
general solution of the linear system (7.3) is

x(t) =
n

∑
j=1

c jv jeλ jt ,

where v j are eigenvectors corresponding to λ j, and the c j are arbitrary constants.
If λ1 = λ2 then we need to replace c2v2eλ2t by c2(tv1 + v̂2)eλ1t where v̂2 is an

appropriate vector; if λ1 = λ2 = λ3, then we replace c3v3 by c3(t2v1 + tv̂3 + ˆ̂v3),
where v̂3 and ˆ̂v3 are appropriate vectors, etc.

We conclude that if the real parts of all the eigenvalues are negative, then x(t)→ 0
as t → ∞. Since the linear system is a good approximation to the full system (7.1)
near the point x0, we have the following result:

Theorem 7.1. If Reλ j < 0 for each eigenvalue of the Jacobian matrix at x0, then the
point x0 is an asymptotically stable (or, briefly, a stable) equilibrium point for (7.1).

That means that any trajectory x(t), with x(0) near x0, converges to x0 as t→ ∞.
The next question is under what conditions on the coefficients a1,a2, · · · ,an is it

true that Reλ j < 0 for all j. The answer is provided by the well known criteria of
Routh-Hurwitz, In the sequel we shall need to use the Routh-Hurwitz criteria only
in case n = 3:
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Theorem 7.2. All the roots of a polynomial

λ
3 +a1λ

2 +a2λ +a3 = 0

have negative real parts if and only if a1 > 0,a3 > 0,a1a2 > a3.

This theorem will be used in the following example.

Problem 7.1. Consider the model of one predator x and two prey species y and z:

dx
dt

= β1xy+β2xz−µx

dy
dt

= r1y− γ1xy

dz
dt

= r2z(1− z)− γ2xz.

Check that the only steady point (x̄, ȳ, z̄) with x̄ > 0, ȳ > 0, z̄ > 0 is given by

x̄ =
r1

γ1
, z̄ = 1− γ2

r2
x̄, β1ȳ = λ −β2z̄

provided γ2x̄< r2 and β2z̄< µ . Use the Routh-Hurwitz theorem to prove that (x̄, ȳ, z̄)
is stable.

Consider a model of two predators, x and y, and one prey, z:

dx
dt

= r1x(1− x
k1
)+β1xz,

dy
dt

= r2y(1− y
k2
)+β2yz, (7.8)

dz
dt

= αz(1− z
B
)− r1xz− r2yz.

Note that in this model each of the predators, x and y, can actually survive on its
own, even if they do not feed on z.

Problem 7.2. Show that the system (7.8) has a unique steady point (x̄, ȳ, z̄) with
x̄ > 0, ȳ > 0, z̄ > 0, and that this point is stable.

Problem 7.3. Consider a model of one prey (x) and two predators (yi):

dx
dt

= ax(1− x
A
)−

2

∑
j=1

bxy j

dyi

dt
= −ciyi +dixyi, i = 1,2.

where c1
d1

< c2
d2

< A. There are four equilibrium points:
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(0,0,0), (A,0,0), (
c1

d1
,

a
b
(1− c1

Ad1
),0), (

c2

d2
,0,

a
b
(1− c2

Ad2
)).

Determine which of these points are stable.

7.1 Numerical Simulations

A system of first order ordinary differential equation has the general form
x
′
1 = F1(x1,x2, ...,xn, t)

x
′
2 = F2(x1,x2, ...,xn, t)

...
x
′
n = Fn(t,x1,x2, ...,xn)

(7.9)

As shown in Chapter 3, higher order equations can be converted to system of first
order equations, so once we know how to solve first order systems, we can solve all
the ODEs.

In particular, if it is a linear system, the general form can be written as
x
′
1 = a11(t)x1 +a12(t)x2 + ...+a1n(t)xn +b1(t)

x
′
2 = a21(t)x1 +a22(t)x2 + ...+a2n(t)xn +b2(t)

...
x
′
n = an1(t)x1 +an2(t)x2 + ...+ann(t)xn +bn(t)

(7.10)

The system can be written as

x′ = A(t)x+b(t).

The code to solve a general ODE system is similar to that in Chapter 3 and 4. The
readers can practice to expand the code in problem with the following problem.

Problem 7.4. Solve the system

x
′
1 = 2x1− x2

2 + sin(t)

x
′
2 =
√

x1 + x2−5x3− t

x
′
3 = 3x1 + x3

with initial conditions (x1(0),x2(0),x3(0)) = (1,1,1) for 0≤ t ≤ 1.



Chapter 8
The chemostat model revisited

In Chapter 2 we considered the chemostat model and used mathematics to answer
the question: How should we choose the outflow rate in order to harvest the maxi-
mum amount of bacteria. Our model however was incomplete because we assumed
that the nutrient concentration in the growth chamber is constant in time, and hence
our answer is questionable. In the present chapter we want to correct the answer, by
basing it on a more complete mathematical model of the chemostat.

We begin by introducing the following notation:

V = volume of the bacterial chamber,
C(t) = concentration of nutrients in the chamber,

r = rate of inflow and outflow,
x = concentration of the bacteria in the chamber.

We assume that

mass of the bacteria formed
mass of the nutrients used

= const.= γ;

γ is the yield constant. By conservation of nutrient mass

rate of change=input-washout-consumption.

Based on experimental evidence we take the rate of bacterial growth to be

m0C
a+C

x,

which m0 and a are constants, and the rate of nutrient consumption to be

m0C
a+C

x
γ
,

since mass 1/γ of the bacteria is formed from consumption of mass 1 of nutrients.
Then
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(VC)′ (t) =C0r−C(t)r− m0C
a+C

x
γ
.

Dividing both sides by V and setting D = r/V (the dilution rate), we get

C′ = (C0−C)D− mC
a+C

x
γ

(8.1)

where m = m0/V . The bacterial growth is given by

x′ = x
(

mC
a+C

−D
)
. (8.2)

Note that the units of C0, C, a, x are mass/volume (e.g. gm/cm3), and the units of m
and D are 1/time (e.g. 1/sec); γ is a dimensionless parameter.

By scaling

C̄ =
C
C0

, x̄ =
x

γC0
, t̄ = Dt

we can simplify the system (8.1) and (8.2). After dropping the bars over C and x,
we then obtain (with new constants m̄ = m

D , ā = a
C0

):

C′ = 1−C− m̄Cx
ā+C

x′ = x
( m̄C

ā+C −1
) (8.3)

Problem 8.1. The steady states of (8.3) are (C1,x1) = (1,0) and (C2,x2) = (λ ,1−
λ ) where λ = ā

m̄−1 , provided m̄ > 1, λ < 1. Prove
(i) (C1,x1) is stable if m̄

ā+1 < 1.
(ii) (C2,x2) is stable.

To biologically interpret the mathematical results of Problem 4.1 we return to the
original parameters, and consider for example the role of the dilution D. Setting

D0 =
m0/V

a/C0 +1
.

We have
m̄

ā+1
=

(m0/V )/D
a/C0 +1

=
D0

D
.

If D > D0 then m̄/(ā+1) < 1, so that (C1,x1) = (1,0) is stable, and in steady
state the chemostat does not produce any bacteria, that is, if D > D0 then there is
a washout. On the other hand, if D < D0 then m̄/(ā+1) > 1, so that m̄ > 1 and
λ < 1; hence, in steady state the chemostat yields bacteria at the (scaled) amount
1− λ , and one can adjust the parameter D, or other parameters of the model, to
obtain the desired amount of bacteria per nutrient.

Since t̄ = Dt, the outflow speed per unit time is D, so that the actual bacterial
yield per unit time (when D < D0) is
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dx
dt

=
dx
dt̄

dt̄
dt

= D
dx
dt̄

for the effluent x. Hence in steady state when the bacterial yields is 1− λ in unit
time t̄, the actual bacterial yield per unit time (when D < D0) is

D(1−λ ) = D
(

1− ā
m̄−1

)
= D

(
1− aV D

C0(m0−V D)

)
≡ f (D).

To maximize the bacterial harvest one should take the dilution rate to be such that it
maximizes f (D) in the interval 0 < D < D0.

Problem 8.2. Prove that the maximum of f (D) is attained at the smaller of the two
positive solutions of the quadratic equation

αD2 +βD+m2
0 = 0,

where α =V 2(1+ a
C0
),β =−2m0V (1+a/C0).

[Hint: Verify that

f ′(D) =
αD2 +βD+m2

0
(m0−V D)2 .

The polynomial g(D)=αD2+βD+m2
0 has two positive roots, D1 <D2 and g(D)>

0 if D < D1 or D > D2, g(0)< 0 if D1 < D < D2. Hence f ′′(D1)< 0, f ′′(D2)> 0.
Finally verify that g(D0)< 0 so that 0 < D1 < D0.]

Problem 8.3. Consider another model of a chemostat, given by

dx
dt

= Cx− x,

dC
dt

= −Cx−C+β , (β > 1).

There are two equilibrium points: (0,β ) and (β −1,1). Show that (0,β ) is unstable
and (β −1,1) is stable.

8.1 Numerical Simulations

In previous chapters, we discussed how to solve an ordinary differential equations

dx
dt

= f(x)

by using Euler’s method or using subroutine ode45 in MATLAB. We also introduced
how to plot phase diagram near steady states. Here, we will introduce how to solve
for the stationary solution of the ODE, i.e., the solution of the steady state equation

f(x) = 0.
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If f(x) is linear or is of a simple function form, it may be solved analytically; how-
ever, if it is nonlinear or if the system is large, solving by hand is not feasible, and
thus one needs to use root-finding algorithms. Two of the best known root finding
algorithms are the bisection method and Newton’s method, name after the eminent
18th century mathematician and scientist Issac Newton. The bisection method is a
“gradient free” approach and usually takes longer to converge but it is more robust.
Newton method uses gradient (slope in one dimension) information and is more effi-
cient.; however, it may fail when the initial estimate is too far away from the root. To
explain the basic ideas, we will use scalar equation f (x) = 0, but the generalization
to f(x) = 0 is straightforward.

8.1.1 Bisection Method

The idea of the bisection method comes from the intermediate value theorem: con-
tinuous function f must have at least one root in the interval (a,b) if f (a) and f (b)
have opposite signs. The method repeatly bisects an interval then selects, for fur-
ther processing, a subinterval in which a root must lie. Suppose that we have two
initial points a0 = a and b0 = b such that f (a) f (b) < 0. The method divides the
interval into two by computing the midpoint c = a+b

2 of the interval. If c is a root,
then the algorithm terminates. Otherwise, the algorithm checks whether f (a) f (c) or
f (c) f (b) is negative. If f (a) f (c)< 0, the root must lie in the interval (a,c) and the
method sets a as a1 and c as b1. Repeating this process, we can construct a sequence
of intervals [an,bn] such that

|bn−an|=
|b0−a0|

2n .

Since the root must lie in these subintervals, the best estimate for the location of the
root is the midpoint of the smallest subinterval found. In that case, the absolute error
after n steps is at most

|b−a|
2n+1 . (8.4)

If either endpoint of the interval is used, then the maximum absolute error is

|b−a|
2n . (8.5)

If we use (8.5) to determine the number of step such that the error is smaller than
the given tolerance ε , the number of iterations needs to satisfy

n > log2
|b−a|

ε
.
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8.1.2 Newton’s Method

Instead of using only the value of the function f , Newton’s method uses also the
derivative of the function. Given the initial guess x0, Newton’s method generates a
sequence of approximations of the root by

xn+1 = xn−
f (xn)

f ′(xn)
. (8.6)

until a sufficiently accurate value is reached. This idea originates from the linear
approximation near the root,

f (xn+1)≈ f (xn)+(xn+1− xn) f ′(xn)≈ 0.

If the function f is continuously differentiable and its derivative does not vanish at
the root α and if f has a second derivative in some interval containing α , then the
convergence is quadratic. To prove this, we use the Taylor expansion near α,

0 = f (α) = f (xn)+ f ′(xn)(α− xn)+R1

where
R1 =

1
2

f ′′(ξn)(α− xn)
2

and ξn is in between xn and α. Thus

α = xn−
f (xn)

f ′(xn)
− f ′′(ξn)

2 f ′(xn)
(α− xn)

2. (8.7)

Setting en = α− xn, and subtracting (8.6) from (8.7), we have

en+1 =−
f ′′(ξn)

2 f ′(xn)
e2

n.

Taking absolute value of both sides gives

|en+1|=
f ′′(ξn)

2| f ′(xn)|
e2

n.

Set

M = sup
x∈I

1
2

∣∣∣∣ f ′′(ξn)

f ′(xn)

∣∣∣∣ , I = [α− r,α + r] for somer > 0.

The necessary condition of convergence for the initial point x0 is M|e|< 1. Thus the
rate of convergence is quadratic if f ′(x) 6= 0 for x ∈ I, f ′′(x) is bounded for x ∈ I,
and x0 sufficiently close to the root α , so that |x0−α| < r. This requirement does
not explicitly tell us how to choose x0 since we do not know the root α before the
computation.
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Newton’s method can be easily extended to solve the general nonlinear systems.
Instead of dividing in (8.6) by f ′(xn), one has to left multiply by the inverse of n×n
Jacobian matrix Jf(xn), i.e.,

Xn+1 = Xn−
[
f′(Xn)

]−1 f(Xn). (8.8)

For numerical purposes it is more common to rewrite (8.8) in the form

f′(Xn)(Xn+1−Xn) = f(Xn).

One can first solve the linear system

f′(Xn)
(
X̃
)
= f(Xn)

for X̃ and then the approximation at next step is obtained by

Xn+1 = X̃ +Xn.

Problem 8.4. Implement Newton’s method to solve x5 = 213. Use initial guess 2.
What is the root you find? How many iterations do you need to reach the tolerance
10−12. Plot the convergence history.



Chapter 9
Spread of Disease

Epidemiology is the study of patterns, causes, and effects of health and disease
conditions in a population. It provides critical support for public health by identify-
ing risk factors for disease and targets for preventive medicine. Epidemiology has
helped develop methodology used in clinical research and public health studies. Ma-
jor areas of epidemiological study include disease etiology, disease break, disease
surveillance, and comparison of treatment effects such as in clinical trials.

Epidemiologists used gather data and a broad range of biomedical and psychoso-
cial theories to generate theory, test hypotheses, and make educated, informed as-
sertions as to which relationships are causal and in which way. For example, many
epidemiological studies are aimed at revealing unbiased relationships between expo-
sure to smoking, biological agents, stress, or chemicals to mortality and morbidity.
In the identification of causal relationship between these exposures and outcome
epidemiologists use statistical and mathematical tools.

In this chapter we focus on epidemiology of infectious diseases. The adjectives
epidemic and endemic are used to distinguish between a disease spread by an in-
fective agent (epidemic) and a disease which resides in a population (endemic). For
example, there are occasional spreads of the cholera epidemic in some countries,
while malaria in endemic is Southern Africa. In this chapter we shall use mathe-
matics in order to determine which epidemic will die out and which will become
endemic.

In what follows we shall develop several different mathematical models for in-
fectious diseases.

We begin with a simple model of a disease in a population of size N. We divide
the population into three classes: susceptible S, infected I, and recovered R. Let

β = infection rate,
µ = death rate, the same for all individuals,
ν = recovery rate,
γ = rate by which recovered individuals have lost

their immunity and became susceptible to the disease.

Then we have the following diagram:

55



56 9 Spread of Disease

where A is the growth of susceptible. If all newborns are healthy, then, not only S and
R, but also I contribute to the growth term A. We view each of the populations S, I, R,
N as representing a number of individuals (or a number density, that is, the number
of individuals per unit area). The dimension of γ , µ , ν is 1/time, the dimension of
β is 1/(individual · time), and the dimension of A is individual/time. Based on the
above diagram, we set up the following system of differential equations:

dS
dt

= A−βSI + γR−µS

dI
dt

= βSI−νI−µI (9.1)

dR
dt

= νI− γR−µR

To examine more carefully the meaning of A, we introduce a differential equation
for N(t), which is abtained by adding all the equations in (9.1),

dN
dt

= A−µN.

Given initial population density N0, we find that

N(t) = N0e−µt +
A
µ
(1− e−µt).

Hence N(t)→ A/µ as t → ∞. Thus A/µ is equal to the asymptotic density of the
population (as t→ ∞).

The system (9.1) is called the SIR model. The SIR model has an equilibrium
point which is disease free, namely

(S0, I0,R0) = (
A
µ
,0,0);

we call it the disease free equilibrium (DFE). The Jacobian matrix at the DFE is
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A
µ

γ

0 β
A
µ
− (ν +µ) 0

0 ν −µ− γ

 .

The characteristic polynomial is

(µ +λ )(β
A
µ
− (ν +µ)−λ )(µ + γ +λ ).

and the eigenvalues are λ1 =−µ,λ2 =−µ−γ,λ3 = β
A
µ
− (ν +µ). Hence the DFE

is stable if
β

A
µ

< ν +µ. (9.2)

When (9.2) holds, any new small infection will die out with time. On the other hand
if

β
A
µ

> ν +µ, (9.3)

the DFE is unstable; there are arbitrarily small infections that will not disappear
in the population. Furthermore, there is an equilibrium point (S̄, Ī, R̄) with Ī > 0,
namely

β S̄ = ν +µ, R̄ =
ν

γ +µ
Ī,

β

µ
Ī =

(β A
µ
− (ν +µ))

ν +µ− γν

γ+µ

. (9.4)

Problem 9.1. Prove that if (9.3) holds then the equilibrium point (S̄, Ī, R̄) is stable.
[Hint: You need to use the Routh-Hurwitz theorem.]

An important concept in epidemiology is the basic reproduction number:
In a healthy population introduce one infection and compute the expected infec-

tion among the susceptibles caused by this single infection We call it the expected
secondary infection, or basic reproduction number, and denote it by R0.Then
intuitively it is clear that DFE is stable if R0 < 1 (the secondary infection will be
smaller than the initial infection) whereas if R0 > 1 then the DFE will be unstable.

Consider, for example, the SIR model (9.1). The DFE is (A/µ,0,0). One infec-
tion evolves according to

dI
dt

=−νI−µI, I(0) = 1,

so that I(t) = e−(ν+µ)t at time t, with total life-time infection∫
∞

0
I(t)dt =

1
ν +µ

.

The secondary infection is then

R0 = β
A
µ
· 1

ν +µ
.
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As already computed in (9.2), (9.3), the DFE is stable if R0 < 1 and unstable if
R0 > 1.

A stable equilibrium point with I > 0 is call endemic; it represents a disease that
will never disappear.

When a susceptible is exposed to an infected individual, he/she may or may not
become immediately sick. With this in mind, we may extend the SIR model by
introducing a new class E, of exposed individuals. The new model, called the SEIR
model, consists of the following equations:

dS
dt

= A−βSI + γR−µS,

dE
dt

= βSI−κE−µE, (9.5)

dI
dt

= κE−νI−µI,

dR
dt

= νI− γR−µR.

Here κ is the rate by which the exposed become infected, and β is the rate of in-
fection of susceptibles by infected individuals. The DFE for the SEIR model is
( A

µ
,0,0,0).

Problem 9.2. Show that the DFE of (9.5) is stable if

β
A
µ

<
(ν +µ)(κ +µ)

κ
.

Problem 9.3. Prove that if the DFE is not stable, then there exists another equilib-
rium point.

In the SIR model we have taken the infection term to be βSI, that is, it depends
on the density of the infected individuals. Another possibility is to take the infection
term to be βSI

N , where I
N is the relative proportion of the infected individuals, namely,

the frequency or prevalence of the infection.

Problem 9.4. Show that when βSI is replaced by βSI
N in (9.1), where N = S+ I+R,

the DFE ( A
µ
,0,0) is stable if β < ν +µ .

Problem 9.5. If in the previous problem (9.2) is replaced by β > ν + µ , then the
DFE is not stable, and there exists another equilibrium point.

HIV

In humans infected with HIV, the HIV virus enters the CD4+ T cells and hijack the
machinery of the cells in order to multiply within these cells. As an infected T cell
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dies, an increased number of virus emerge to invade and infect new CD4+ T cells.
This process eventually lead to significant depletion of the CD4+ T cells, from over
700 in cm3 of blood to 200 in cm3. This state of the disease is characterized as AIDS;
the immune system is too weak to sustain life for too long. In order to determine
whether an initial infection with HIV will develop into AIDS we introduce a simple
model which includes the CD4+ T cells, denoted by T , the infected CD4+ T cells,
denoted by T ∗, and the HIV virus outside the T cells, denoted by V . Their number
densities satisfy the following system of equations:

dT
dt = A−βTV −µT,

dT ∗
dt = βTV −µ∗T ∗,
dV
dt = γµ∗T ∗−κV.

(9.6)

Here β is the infection rate of healthy T cells by external virus, µ and µ∗are the
death rates of T and T ∗, respectively, and γ is the number of virus particle that
emerge upon death of infected one CD4+ T cell.

Problem 9.6. In the model (9.6), the DFE is ( A
µ
,0,0). Prove that the DFE is stable

if
βA
µ

<
κ

γ
,

and is unstable if this inequality is reversed.

We can compute the basic reproduction number R0 for the modle (9.6) as follows:
One virion has the life time of 1

λ
(since dV

dt =−λV , V (t) = e−λ t ,
∫

∞

0 V (t)dt = 1
λ

)
and it infects A/µ T cells at rate β , which each infected T ∗ with life time 1/µ∗

gives rise to γ virus particles. Hence

R0 =
1
λ

β
A
µ

1
µ∗

γ =
βAγ

λ µµ∗
.

From Problem 9.6 we see that the DFE is stable if R0 < 1 and is unstable if
R0 > 1.

9.1 Numerical Simulations

Finding the roots using MATLAB

In the previous chapter, we have introduced basic schemes to calculate a root of an
equation or system. Here we introduce how this is solved in MATLAB. There are
several built-in functions in MATLAB that can be used to solve f(x) = 0:
>> x = fzero(fun,x0)

which attempts to find a zero of fun near x0, if x0 is a scalar and fun is a function
handle. For example,
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>> x = fzero(@cos,[1 2])
x = 1.5708

Another matlab function is
>> x = fsolve(fun,x0)

starts at x0 and tries to solve the equations described in fun. For example, solve

2x1− x2 = e−x1 ,
−x1 +2x2 = e−x2 ,

with the initial guess [x1,x2] = [−5,−5]. First, write a file that computes F, the values
of the equations at x.

function F = myfun(x)
F = [2*x(1) - x(2) - exp(-x(1)); -x(1) + 2*x(2) - exp(-x(2))];

Save this function file as myfun.m somewhere on your MATLAB path. Next, set up
the initial point and options and call fsolve:

x0 = [-5; -5]; % Make a starting guess at the solution

options=optimset(’Display’,’iter’); % Option to display
output

[x,fval] = fsolve(@myfun,x0,options) % Call solver
After several iterations, fsolve finds an answer as shown in Table (9.1).

Table 9.1 output for fsolve

fsolve completed because the vector of function values is near zero as measured
by the default value of the function tolerance, and the problem appears regular as
measured by the gradient.

x =
0.5671
0.5671
fval =
1.0e-006 *
-0.4059
-0.4059.
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Another two MATLAB functions which are useful to study the phase protraits are
“contour” and “quiver”. For example, the contour plot of the function

z = xe(−x2−y2)

over the range −2≤ x≤ 2,−2≤ y≤ 3 can be done by
[X,Y] = meshgrid(-2:.2:2,-2:.2:3);
Z = X.*exp(-X.ˆ2-Y.ˆ2);
[C,h] = contour(X,Y,Z,[-1:0.1:1]); clabel(C,h)

Now we can add the vector field plot by using quiver
[DX,DY] = gradient(Z,.2,.2);
hold on; quiver(X,Y,DX,DY)

From the vector field, we can easier tell the stability properties of a steady state.

Fig. 9.1 (a) contour plot (b) vector field plot

Problem 9.7. 8.6. Use “fsolve” to solve

x3
1 + x2 = 1,

x3
2− x1 = −1.

Indicate your initial condition and how many steps it requires to reach the tolerance
of error to be within 10−6.

Problem 9.8. 8.7 Plot the nullclines and directional field of

z = e(−2x2−y2) sinx

in the range of −2≤ x≤ 2,−2≤ y≤ 3.





Chapter 10
Enzyme Dynamics

Cells are the basic units of life. A cell consists of a concentrated aqueous solution of
molecules contained in a membrane, called plasma membrane. A cell is capable
of replicating itself by growing and dividing. Cells that have a nucleus are called
eukaryotes, and cells that do not have a nucleus are call prokaryotes. Bacteria
are prokaryotes, while yeast and amoebas, as well as most cells in our body, are
eukaryotes. The Deoxyribonucleic acid (DNA) are very long polymeric molecules,
consisting of two strands of chains, having double helix configuration, with repeated
nucleotide units A, C, G, and T. The DNA is packed in chromosomes, within the
nucleus in eukaryotes. In humans, the number of chromosomes is 46, except in
sperm and egg cells where the number is 23.

The DNA is the genetic code of the cell; it codes for proteins. Proteins lie mostly
in the cytoplasm of the cells, that is, outside the nucleus; some proteins are attached
to the plasma membrane, while some can be found in the nucleus. Proteins are poly-
mers of amino acids whose number typically ranges from hundreds to thousands;
there are 20 different amino acids from which all proteins are made. Each protein as-
sumes 3-dimensional configuration, called conformation. Proteins perform specific
tasks by changing their conformation.

Two proteins, A and B, may combine to form a new protein C. We express this
process by writing

A+B−→C.

Biological processes within a cell involves many such reactions. Some of these re-
actions are very slow, other are very fast, and in some cases the reaction rate may
start slow, then speed up until it reaches a maximal level. In this chapter we consider
the question: How to determine the speed of biochemical reactions among proteins.
In order to address this question we shall develop some mathematical models.

We begin with a simple case. Suppose we have two proteins, A and B, or more
generally, two molecules A and B. We assume that A and B, when coming in contact,
undergo a reaction, at some rate k1, that make them form a new molecule C. We
express this reaction by writing
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A+B
k1−→C;

k1 is called the rate coefficient. The respective concentrations of three molecules
are denoted by [A], [B], and [C]. The law of mass action states that the reaction rate
d[C]
dt , or v1, of the above reaction is given by

v1 = k1[A][B],

that is,
d[C]

dt
= k1[A][B] (10.1)

Note that the above reaction implies that

d[A]
at

=−k1[A][B],
d[B]
at

=−k1[A][B].

If the reaction is reversible with rate coefficient k−1, then

A+B
k1
⇀↽
k−1

C

and
d[C]

dt
= k1[A][B]− k−1[C],

d[A]
dt

=
d[B]
dt

=−k1[A][B]+ k−1[C].

Metabolism in a cell is the sum of physical and chemical processes by which
material substances are produced, maintained or destroyed, and by which energy is
made available. Enzymes are proteins that act as catalysts in speeding up chemical
reactions within a cell. They play critical roles in many metabolic processes within
the cell. An enzyme, say E, can take a molecule S and convert it to a molecule P in
one millionth of a second. The original molecule S is referred to as the substrate,
and P is called the product. The enzyme-catalyzed conversion of a substrate S into
a product P is written in the form

S E−→ P. (10.2)

Figure 10.1 illustrate how an enzyme can convert substrate S into a product P.
The profile [S]−→ [P] can take different forms, depending on the underlying biol-

ogy. Two typical profiles are shown in Figure 10.2.
Figures 10.2(A) and 10.2(B) have been shown to hold in different experiments,

but it would be useful to derive them by mathematical analysis based on known
properties of enzymes. Indeed such a derivation will give us a precise mathematical
formula for the profiles displayed in Figure 10.2. We begin with the derivation of a
formula that yields the profile of Figure 10.2(A).
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S" S"
P"

(a)" (b)" (c)" (d)" (e)"

Fig. 10.1 (a) Enzyme attracts S; (b) S is inside E; (c) Enzymatic process converts S into P; (d) P
is released; (e) Enzyme is ready to attract another S.

d
[P

]/
d

t

(A)                 [S]

d
[P

]/
d

t

(B)                 [S]

Fig. 10.2 Two different profiles of the enzymatic conversion of S−→ P.

In what follows we show how such a profile can be derived from the law of mass
action. We write, schematically,

S+E
k1
⇀↽
k−1

C

where C is the complex SE,

C
k2−→ E +P.

By the law of mass action

d[C]

dt
= k1[S][E]− (k−1 + k2)[C], (10.3)

d[E]
dt

= −k1[S][E]+ (k−1 + k2)[C], (10.4)

d[S]
dt

= −k1[S][E]+ k−1[C], (10.5)

d[P]
dt

= k2[C]. (10.6)
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Notice that
d
dt
([E]+ [C]) = 0

so that [E]+ [C] = const = e0; e0 is the total concentration of the enzyme in both E
and the complex C. Note that d[C]

dt + d[S]
dt + d[P]

dt = 0, so equation (10.5) depends on
equations (10.4) and (10.6) and may therefore be dropped.

We focus on equation (10.3) and note that in the enzymatic process the complex
C changes very fast. Hence d[C]/dt is approximately zero, so that

k1[S][E]− (k−1 + k2)[C] = 0.

Substituting [E] = e0− [C] we get

k1[S](e0− [C]) = (k−1 + k2)[C]

or

[C] =
k1e0[S]

(k−1 + k2)+ k1[S]
=

e0[S]
kM +[S]

where KM =
k−1+k2

k1
.

Then
d[P]
dt

= k2[C] = k2e0c =
Vmax[S]
KM +[S]

(10.7)

where Vmax = k2e0.
we have thus derived the Michaelis-Menten formula

d[P]
dt

=
Vmax[S]
KM +[S]

(10.8)

where Vmax and KM are constants; note that

d[P]
dt
→Vmax as [S]→ ∞.

The assumption we made in the derivation of (10.8) that d[C]/dt is very small is
quite reasonable and, indeed, the Michaelis-Menten formula is widely used in de-
scribing enzymatic processes.

But what about Figure 10.2(B)? Such a profile is based on a different enzymatic
process, for example when an enzyme E can bound first with one substrate S and
then with another substrate S. Furthermore, in such a case, as is well established
experimentally, the speed by which the enzyme bounds with the second substrate is
much faster, as illustrated in Figure 10.3.

We model such processes as follows:
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S" P"

(a)" (b)" (c)" (d)" (e)"

S" P"

Fig. 10.3 Enzyme with two sites for absorbing and converting substrate S to product P; the con-
version of the second substrate is faster than the conversion of the first substrate.

S+E
k1
⇀↽
k−1

C1, (C1 = SE)

C1
k2
→ E +P

S+C1

k3
⇀↽
k−3

C2 (C2 = SC1 = S2E)

C2
k4
→ C1 +P

(10.9)

so that
d[P]
dt

= k2[C1]+ k4[C2].

Note that [E]+ [C1]+ [C2] = const.= e0. Assuming the steady state approxima-
tions

d[C1]

dt
=

d[C2]

dt
= 0

one can show that
d[P]
dt

=
(k2K2 + k4[S])e0[S]
K1K2 +K2[S]+ [S]2

, (10.10)

where
K1 =

k−1 + k2

k1
, K2 =

k−3 + k4

k3
.

Steps 1 and 3 in equations (10.9) represent sequential binding of two sub-
strate molecules to the enzyme. We assume that previously enzyme-bound substrate
molecule significantly increases the rate of binding of a second substrate molecule,
so that k3 >> k1. In the extreme case of k1→ 0, k3→ ∞, with k1k3 a finite positive
constant, we get K1→ ∞, K2→ 0, K1K2→ KH > 0, so that
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d[P]
dt

=
Vmax[S]2

KH +[S]2
(10.11)

where Vmax and KH are constants. Formula (10.11) is called the Hill kinetics; it
displays a profile similar to Figure 10.2(B).

Some enzymes can bound with three or more substrates. In this case it is often
the case that when enzyme has already bounded with m substrates S, it has a greater
affinity to bound with the next substrate S. Under this biological assumption, one
can derive the Hill kinetics of order n,

d[P]
dt

=
Vmax[S]n

KH +[S]n
. (10.12)

The Michaelis-Menten formula is used also in other biological processes. For ex-
ample, when macrophages M ingest bacteria B they become infected macrophages
Mi. The resulting growth in Mi is described by the Michaelis-Menten formula

d[Mi]

dt
= λ [M]

[B]
K +[B]

.

Notice that for small [B], this is approximately the mass conservation law

M+B→Mi.

However the capacity of macrophages to ingest bacteria is limited by the following
fact: After receptor proteins on the macrophage membrane have been engaged in the
ingestion process, they need to take time off for recycling. Hence there is a limit, λ ,
on how fast macrophages can ingest the bacteria.

Problem 10.1. Consider the chemical reactions

A+B k−→C, B+C k−→ A

with [A]+ [C] = 3 at time t = 0. Show that y = [B] satisfies y(t) = y0e−3kt .

Problem 10.2. The law of mass action can be extended to interaction among three
or more molecules. Consider for example three species X1,X2,X3 that interact to
form a species Y :

X1 +X2 +X3
k−→ Y

where k is the reaction rate. Then the law of mass action states that

d[Xi]

dt
=−k[X1][X2][X3] for i=1,2,3.

In particular, if X1 = A, X2 = X3 = B, Y =C, then

A+2B k−→C

and
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d[A]
dt

= −k[A][B]2,

d[B]
dt

= −2k[A][B]2.

Assuming that 2[A(0)]+ [B(0)] = 1, show that y(t) = [B(t)] satisfies the equation

y′ =−ky2(1− y), 0 < y(t)< 1

if 0 < y(0)< 1, that the solution of the above equation is given by

1
y
+ ln

1− y
y

= kt +C, C constant,

and that y(t)→ 0 as t→ ∞

Problem 10.3. Derive Equation (10.10) under the steady state approximations d[C1]/dt =
0, d[C2]/dt = 0.

10.1 Numerical Simulations

Problem 10.4. Suppose
A+B k−→C, C 3−→ A+B

Set x = [A], y = [B], z = [C] and take x(0) = y(0) = 1, z(0) = 8. Derive a system
of differential equations for x(t),y(t),z(t), and compute x(0) as a function of k, for
1≤ k ≤ 5.

Problem 10.5.
A+B k−→C, C 3−→ A+2B

Set x = [A], y = [B], z = [C] and take x(0) = y(0) = 1, z(0) = 8. Derive a system
of differential equations for x(t),y(t),z(t), and compute x(0) as a function of k, for
1≤ k ≤ 5.





Chapter 11
Bifurcation Theory

Consider two populations, x and y, that are interacting either by competition, or as
predator and prey. They may end up near a stable steady state, or possibly in sea-
sonally varied states; this depends on their proliferation rates, death rates, available
resources, climate change, etc. In this chapter we wish to explore theses varied pos-
sibilities using mathematics. To do that we begin by a short introduction the theory
of bifurcations. The change that occurs at p = pc typically involves two or more
branches of solutions which depend on the parameter p; the nature of these ‘bi-
furcation’ branches changes radically at p = pc. Bifurcation theory is concerned
with the question of how the behavior of a system which depends on a parameter
p changes with the parameter. It focuses on any critical value, p = pcr, where the
behavior of the system undergoes radical change; such values are called bifurca-
tion points. We shall consider bifurcation phenomena for a system of differential
equations with parameter p,

dx
dt

= f(x, p). (11.1)

Bifurcation points can arise in different ways. For example, suppose a steady state
of Equation (11.1), which depends on p, is stable for p < pc but loses stability at pc.
Then a qualitative change has occurred in the phase portrait of the system (11.1), and
p = pc is a bifurcation point. It sometimes happens that as p increases from p < pc
to p > pc the differential system will begin to have periodic solutions, a well rec-
ognized biological phenomena. Thus we would like to determine, mathematically,
when such a situation takes place.

Problem 11.1-11.3 are simple but typical examples of bifurcations that frequently
occur in biology.

Problem 11.1. Consider the equation

dx
dt

= p+ x2.

71
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It has two steady states x = ±
√
−p if p < 0 and no steady states if p > 0. Prove

that x = −
√
−p is stable and x = +

√
−p is unstable. The point p = 0 is called a

saddle-point bifurcation.

Problem 11.2. Consider the equation

dx
dt

= px− x2.

It has steady points x = 0 and x = p. Prove that x = 0 is stable if p < 0 and unstable
if p > 0, and x = p is unstable if p < 0 and stable if p > 0. Such a point p = 0,
where there is an exchange of stability in the branches of the steady points, is called
a transcritical bifurcation.

Problem 11.3. Consider the equation

dx
dt

= px− x3.

Show that x = 0 and x =±√p (for p > 0) are the steady states of this equation, and
determine their stability. The point p = 0 is called a pitchfork bifurcation.

Figure 11 illustrates the last three examples.

(a)$ (b)$ (c)$

Fig. 11.1 (a) Saddle-point bifurcation diagram; (b) transcritical bifurcation diagram. (c) Pitchfork
bifurcation. Solid curves represent stable steady states, while dotted curves are unstable steady
states.

Consider a species x with logistic growth whose death rate is a parameter p,

dx
dt

= rx(1− x
K
)− px.

It has two steady states: x = 0 and x = K(1− p
r ), but the last one is biologically

feasible only if x > 0, that is, if p < r. The two branches of steady points intersect
at p = r where exchange of stability occurs: x = 0 is stable if p > r and unstable if
p< r, whereas x=K(1− p

r ) is stable if p< r and unstable if p> r. Thus transcritical
bifurcation occurs at p = r.
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When the density of species x is very small (say 0 < x < 1) mating becomes
difficult: The probability of a male from x to meet and mate with a female from x is
proportional to x2. Hence instead of growth rates

dx
dt

= rx, or
dx
dt

= rx(1− x
K
)

we have growth rates

dx
dt

= rx2, or
dx
dt

= rx2(1− x
K
).

Consider species x with dynamics

dx
dt

= rx2(1− x
K
)− px.

It has three branches of steady points given by x = 0 and

rx(1− x
K
)− p = 0, or x =

K
2
±
√

K2

4
− p

r
.

In this example pitchfork bifurcation occurs at p= r
4 K2. We next consider a different

type of bifurcation whereby steady points bifurcate into periodic solutions; this of
course must involve a dynamical system with at least two equations.

Consider the following system of two equations, with bifurcation parameter p:

dx1

dt
= px1−µx2−ax1(x2

1 + x2
2), (11.2)

dx2

dt
= µx1 + px2−ax2(x2

1 + x2
2), (11.3)

where µ , a are positive constants. It is easily seen that the point x = 0 is a steady
point, stable if p < 0 and unstable if p > 0. But for p > 0 there also exists a periodic
solution,

x1(t) =
√

p
a

cos µt, x2(t) =
√

p
a

sin µt

which traces the circle x2
1 + x2

2 =
p
a as t varies.

This type of bifurcation, which gives rise to periodic solutions, is called Hopf
bifurcation. Note that the Jacobian matrix J at the (0,0), where the bifurcation
occurs, is given by

J =

(
p −µ

µ p

)
,

and the characteristic equation is

(p−λ )2 +µ
2 = 0,
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so that the eigenvalues are
λ = p± iµ.

As p crosses from p < 0 to p > 0, the two eigenvalues, at p = 0, become pure
imaginary numbers. It is this behavior of the eigenvalues of the Jacobian matrix that
gives rise to the periodic solutions. In fact, the bifurcation behavior in the example
of the system (11.2)-(11.3) is a special case of the following theorem.

Theorem 11.1. (Hopf Bifurcation) Consider the system

dx
dt

= f (x,y, p),
dy
dt

= g(x,y, p). (11.4)

Assume that for all p in some interval there exists a steady state (xs(p),ys(p)), and
that the two eigenvalues of the Jacobian matrix (evaluated at the steady state) are
complex numbers λ1(p) = α(p)+ iβ (p) and λ2(p) = α(p)− iβ (p). Assume also
that

α(p0) = 0, β (p0) 6= 0 and
dα

d p
(p0) 6= 0.

Then one of the three cases must occur:

1. there is an interval p0 < p < c1 such that for any p in this interval there exists
a unique periodic orbit containing (xs(p0),ys(p0)) in its interior and having a
diameter proportional to |p− p0|1/2;

2. there is an interval c2 < p < p0 such that for any p in this interval there exists a
unique periodic orbit as in case (1);

3. for p = p0 there exist infinitely many orbits surrounding (xs(p0),ys(p0)) with
diameters decreasing to zero.

In the special case of (11.2)-(11.3), p0 = 0, (xs(p0),ys(p0)) = (0,0), α(p) = p,
β (p) = µ , and both cases (1) and (3) occur; case (3) is illustrated in Fig. 3.1(F).

As first example of Hopf bifurcation we consider a model of herbivore-plant
interaction. The plant P has logistic growth with capacity K, and the herbivore N
has eating capacity σ , which is the bifurcation parameter.

Problem 11.4. Consider a herbivore-plant model

dP
dt

= rP(1− P
K
)−σ

P
1+P

N,

dN
dt

= γσ
P

1+P
N−µN,

where γ is the yield constant and µ is the death rate of the herbivore. Prove that if
γ = 2µ , K = 10 then Hopf bifurcation occurs at σ = 5+

√
25−11/2. [Hint: The

steady state for each σ is

P =
µ

γσ −µ
, N =

r
σ
(1+P)(1− P

K
) =

rγ

γσ −µ
(1− µ

K(γσ −µ)
).
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The Jacobian matrix is

J =

(
P(− r

K + σN
(1+P)2 ) −σ

P
1+P

γσN
(1+P)2 0

)
.

Write the eigenvalue equation in the form λ 2 + aλ + b = 0, and show that a = 0,
b > 0, da

dσ
< 0 at σ = 5+

√
25−11/2. ]

Setting σ∗ = 5+
√

25−11/2 we conclude that, as σ increases and crosses σ∗,
the stable steady equilibrium (P,N) becomes unstable and instead the dynamics
of the herbivore-plant model develops periodic solutions with diameters which in-
crease with σ . Thus both plant and herbivore will coexist, and their populations will
vary “seasonally”.

Neuronal oscillations are periodic electrical oscillations along the axon of the
neurons, and some simplified models represent them in the form

dv
dt

= f (v)−w+ I,

dw
dt

= ε(γv−w)

where I is the applied current, arriving from dendrites, which triggers the oscilla-
tions. The function f (v) is a cubic polynomial and ε is a small parameter. The di-
ameter of the periodic oscillations depends on f but is independent of the parameter
I. Motivated by this model we consider here the case where f is a quadratic poly-
nomial, and show that this case gives rise to Hopf bifurcation, that is, to periodic
oscillations which begin with small diameter as I crosses a bifurcation parameter
I0, and then increase with I proportionally to (I − I0)

1/2. For simplicity we take
f (v) = v2.

Problem 11.5. Consider a system

dv
dt

= v2−w+ I,

dw
dt

= 2γv−w,

where γ > 1
4 and 0 < I < γ2. Show that the only steady state (v̄, w̄) is given by

v̄ = γ −
√

γ2− I, w̄ = 2γ v̄, that it is stable if I < γ − 1
4 , and that Hopf bifurcation

occurs at I = γ− 1
4 .
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11.1 Endangered Species

Species with very small density v is endangered as a result of endemic incurable
disease caused by a parasite with density w. If the population of v is spread over a
large territory then mating between a male from v and female from v is proportional
to v× v = v2. Hence

dv
dt

= rv2−αvw

where α is the rate by which the parasite w depletes v. On the other hand, the growth
of the parasite is proportional to v, so that

dw
dt

= γv−βw

where β is the death rate of w. If rβ −αγ 6= 0 then the only steady point is (v̄, w̄) =
(0,0). In order to save the endangered species v from extinction, new population of
the species are introduced into the territory, at density rate I, so that

dv
dt

= rv2−αvw+ I.

This results in steady point (v̄, w̄) where v̄ > 0, w̄ > 0, and the question arises: are
these points (v̄(I), w̄(I)) stable for all I?

To address this question we take, for simplicity, r = α = β = 1, and 1 < γ < 2.
Then

dv
dt

= v2−wv+ I,

dw
dt

= γv−w.

The only steady point is w̄ = γ v̄, v̄ = ( I
γ−1 )

1/2, and the Jacobian matrix about (v̄, w̄)
is

I =
(
(2− γ)v̄ −v̄

γ −1

)
.

Hence detJ = 2(γ−1)> 0 and

trace J = (2− γ)(
I

γ−1
)1/2−1≡ A(I)

where A(I)< 0 if I < I0, A(I)> 0 if I > I0, and

I0 =
γ−1

(2− γ)2 .

The eigenvalues of J are
λ = σ ± iτ
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where σ = 1
2 A(I), τ = [( 1

2 A(I))2−2(γ−1)]1/2, and dσ

dI > 0 at I = I0. Hence (v̄, w̄)
is a stable steady point if I < I0, and Hopf bifurcation occurs at I = I0. We conclude
that as I is increased the population v̄, in the steady state, will increase and remain
stable as long as I < I0; thereafter the steady point will become unstable, and the
populations of v and w will oscillate periodically.

Problem 11.6. Consider the following predator-prey model with sparse prey popu-
lation, x,

dx
dt

= x2(1− x)− xy

dy
dt

= 4xy−4αy

where α > 0. It has an equilibrium point (α,α(1−α)) for any 0 < α < 1. Prove
that Hopf bifurcation occurs at α = 1

2 .

The biological interpretation is that if the predator death rate is smaller than 2
then both predator and prey coexist in steady state, but if the predator death rate ex-
ceeds 2 then both predator and prey still coexist but their densities vary periodically,
or “seasonally”.

11.2 Numerical Simulations

To plot the bifurcation diagram, one needs to scan through the parameter space
and solve the ODEs for those parameters. If we would like to plot the bifurcation
diagram for

dx
dt

= f (x, p),

the first step is to plot the the nullcline on the x-p plane ( f (x, p) = 0), which cor-
reponds to the steady states xs under different p. On the nullcline, part of the curve
corresponds to stable steady state, and part of that corresponds to unstable steady
state (of course, it is possible that only one of them exist). Let us consider the ex-
ample

dx
dt

= x2 + p.

First we would like to plot the curve of x2+ p = 0 on x-p plane. In MATLAB, define
the right-hand-side function in a script file:

function y = saddlefun(p,x)
y = p + x.ˆ2;
Note that p and x could be matrices (so is y) in order to accomodate the dis-

cretized mesh grid matrix of x-p space. To plot the bifurcation diagram, we create
bifur.m, a function file (see Algorithm 1)., with inputs the name of the function (e.g.
’saddlefun’) and the range of x and p to plot. In bifru.m, we first discretize x-p plane
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in 101 by 101 mesh grid (use the command ’meshgird’). Then we try to fplot the
zeros of x2 + p by using the ’contour command, as shown in Fig. Next, for each p,
we need to start with an initial condition x0 which is NOT a steady state and see
at what steady state it ends up. To achieve that, we avoid the nullclines (by using
| f (xi, p j)|> 0.1×mean| f (xi, p j)|), use the rest of the points as intial conditions and
solve the ODE. The solution will get away from the unstable steady state (branch)
and be attracted to stable steady state (branch) (Fig.).
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Fig. 11.2 Bifurcation diagram for saddle point bifurcation. (a) Red curves are the steady states;
(b) green circles are non-steady-state points; (c) solutions converge to stable steady states (blue
circles).

Problem 11.7. Plot the bifrcation diagram for

dx
dt

= px− x3.

with range −5≤ p≤ 5,−5≤ x≤ 5.
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Algorithm 3 bifur.m
% BIFUR Draws bifurcation diagrams
% BIFUR(FCN,XRANGE,PRANGE) draws the
% bifurcation diagram % for the function FCN over the specified x and p ranges.
% FCN is a handle to a user-defined function that takes as
% arguments a variable x and a parameter p. XRANGE is a
% row vector of the form [XMIN XMAX]. PRANGE is a row vector % of the form [PMIN
PMAX].
%
% Example:
% bifur(@saddlefun,[-5 5],[-5 5]);
%
% where saddlefun is a user-defined function of the form
%
% function y=saddlefun(x,p)
% y=p+x.ˆ2;
%
function bifur(fcn,xrange,prange)
nn = 100; % number of points plotted in each range
p1 = [prange(1):(prange(2)-prange(1))/nn:prange(2)]; % sample points in p
x1 = [xrange(1):(xrange(2)-xrange(1))/nn:xrange(2)]; % sample points in x
[p,x] = meshgrid(p1,x1); % generate grid points in [p,x]
fval = feval(fcn,x,p); % evaluate the points value
figure(1);[c,h] = contour(p,x,fval,[0,0],’r’); % plot the zero contour line
xlabel(’p’), ylabel(’x’) x = x(:); p = p(:);
ind = find(abs(fval)¿0.05*mean(abs(fval(:))));
x = x(ind); p = p(ind);
if 1
figure(1); hold on; plot(p,x,’go’) % draw the initial points
end
for iter = 1:1000
x = x + 0.05*feval(fcn,x,p); % solve ode
end hold on; plot(p(:),x(:),’bo’)





Chapter 12
Atherosclerosis: the risk of high cholesterol

Arteries are blood vessels that carry oxygen-rich blood to the heart, brain and other
parts of the body. Atherosclerosis is a disease in which a plaque builds up inside
arteries. The plaque consists of cholesterol, calcium, cells from the blood, and cells
from the arterial wall. Over time the plaque grows, hardens, and narrows the artery.
This reduces the flow of oxygen-rich blood, and also make it more likely to cause
a blood clot, or thrombus, that will block the blood flow. A blockage formed in the
coronary arteries may trigger a heart attack. A blockage formed in the carotid artery
(located on each side of the neck, feeding oxygen to the brain) may cause a stroke.
Atheroselerosis is the leading cause of death in the United States and worldwide,
with annual deaths of 900,000 in the United States and 13 millions worldwide.

The exact cause of atheroselerosis is unknown, and in many cases there are no
symptoms until an episode of heart attack or stroke occurs. There are however risk
factors which contribute to the disease, namely, high cholesterol, heavy smoking,
and hypertension. In this chapter we focus on the risk associated with high choles-
terol, and use mathematics to quantify this risk.

Cholesterol is a protein that each cell in our body needs, But cholesterol does not
dissolve in blood, and must therefore be transported in the blood stream. It is trans-
ported by carrier called lipoprotein, made of fat (lipid) and protein. There are two
types of lipoproteins that carry the cholesterol to and from cells. They are called:
low-density lipoproteins, LDL, and high-density lipoproteins, HDL. The LDL are
“bad” cholesterols, and the HDL are “good” cholesterols. The LDL contributes
to plaque growth and the HDL reduce the plaque by removing the LDL from the
plaque.

The level of cholesterol in the blood is measured in units of 10−5gm/cm3. The
American Heart Association established guidelines regarding the atherosclerosis
risk associated with the levels of LDL and HDL in the blood. For example,

LDL=190, HDL=40 is high risk,
LDL=110, HDL=50 is risk free.
In this chapter, we develop a mathematical model of plaque growth and use it to

predict the risk associated with any pair of values (LDL, HDL). We introduce the
notation
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L0 = Concentration of LDL in blood,
H0 = Concentration of HDL in blood,

and wish to determine, based on (L0,H0), whether a plaque will grow or shrink. To
do that we need to understand how a plaque is formed.

Under the pressure of the bloodstream, a small lesion may occur in the inner sur-
face of the arterial wall, enabling cholesterol to invade into the inner layer, called
intima. Free radicals are molecules or ions that have umpaired valence electrons,
and are therefore highly reactive in many chemical processes in our body; they play
useful role in metabolic processes. Macrophages are cells of the immune system
that travel around the body and engulf and digest foreign particles, cellular debris,
and invading microorganisms. When LDL enters the intima, they immediately be-
come oxidized by radicals. Macrophages from the blood then move into the intima
and engulf the oxidized LDL. The fat-laden macrophages saturated with oxidized
LDL, are called foam cells. Figure 12.1 shows a cross section of a plaque in the
artery.

Blood%

Artery%wall%

Macrophage%

Foam%cell%

Cholesterol%%
molecules%

Fig. 12.1 Cross section of a plaque in an artery.

In our mathematical model we assume that the plaque consists mainly of macrophages
and foam cells. This is a simplification, since also other cells are involved, such as
smooth muscle cells which move from the middle layer of the arterial wall into the
intima.

Our model will include the following variables:

• Macrophage density, M,
• Foam cell density, F ,
• “Bad” cholesterol concentration, LDL or L,
• “Good” cholesterol concentration, HDL or H.

We shall not distinguish between LDL and oxidized LDL. The equation for LDL is
the following:

dL
dt

= L0− k1M
L

K1 +L
− r1L. (12.1)
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The first term on the right-hand side, L0, is the LDL concentration in the blood. The
second term represents the ingestion of LDL by macrophages, which is described
by the Michaelis-Menten formula. The last term is the degradation of LDL.

In a similar way we write the equation for HDL:

dH
dt

= H0− k2H
F

K2 +F
− r2H. (12.2)

Here the second term on the right-hand side is interpreted as follows: HDL is be-
ing absorbed by a foam cell (more precisely, it forms a complex with a membrane
protein of a foam cell) and this initiates a process that empties out the oxidized
LDL from the foam cell. The foam cells returns to become a macrophage, while the
emptied-out oxidized LDL is removed from the plaque and is transported back (by
the blood) to the liver for recycling. We note that when H forms a complex with a
receptor protein on F , it takes some time for the receptor to again become free. Thus
the receptor “recycling” limits the ability of F to react to H, and this explains why
we used k2HF/(K2 +F) instead of k2HF in Eq. (12.2).

The equations for macrophages and foam cells are

dM
dt

=−k1M
L

K1 +L
+ k2H

F
K2 +F

+λ
ML

δ +H
−µ1M, (12.3)

dF
dt

= k1M
L

K1 +L
− k2H

F
K2 +F

−µ2F. (12.4)

The first two terms or the right-hand sides of Eqs. (12.3)-(12.4), account for the
exchanges between macrophages and foam cells, as already explained above. The
terms µ1M, µ2F represent the natural deaths of macrophages and foam cells. The
remaining term that needs explanation is λML/(δ +H). The oxidized LDL in the
plaque triggers infiltration of macrophages from the blood into the plaque, and this is
accounted by the factor λML. On the other hand, the HDL are oxidized by radicals
(as the LDL are) and this reduces the amount of radicals available to oxidize LDL.
In this sense H acts as inhibitor, which restricts the effect of λML by a factor 1/(δ +
H), for some δ > 0.

We wish to solve the system of equations (12.1)-(12.4) and compute the weight
of the plaque

w(t) = M(t)+F(t)

at time t; the weight of the cholesterol is negligible. We take initial values

L = 0,H = 0,F = 0,M = M0 = 5×10−4g/cm3.

We set

R(t) =
w(t)
w(0)

=
w(t)
M0

so that R(0) = 1.
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Given cholesterol level (L0,H0), we wish to determine whether R(t) will in-
crease, indicating risk of atherosclerosis, or decrease which means risk-free of
atherosclerosis.

The following problems show that if L0 is sufficiently small then R(t)→ 0 as
t → ∞, that is: if the level of “bad” cholesterol is low then there is no risk of a
plaque to form.

Problem 12.1. Show that for any small ε > 0, L(t)< L0
r1
+ε if t is sufficiently large.

Problem 12.2. Assume that µ1 = µ2 = µ and prove that if

L0 <
r1δ µ

λ

then R(t)→ 0 if t→ ∞.

12.1 Numerical Simulations

We wish to compute R(t) for 0 < t < T , say T = 300 days.
We say that (L0,H0) is in the risk zone if R(T )> 1, and in the risk-free zone if

R(T )< 1. In the following simulations we use the parameters taken from the model
developed in []: k1 = 144/day, k2 = 10/day, K1 = 10−2g/cm3, K2 = 0.5 g/cm3,
µ1 = 0.015/day, µ2 = 0.03/day, r1 = 2.4× 10−5/day, r2 = 5.5× 10−7/day, λ =
2.57×10−3/day, δ =−2.54 g/cm3.

Problem 12.3. Compute R(300) (300 days) for the 25 pairs (L0,H0), where L0 =
100,120,140,160,180 and H0 = 40,45,50,55,60.

Problem 12.4. Verify that in each of these cases R(300) > 1 if L0 > µ1
λ
(δ +H0),

and R(300)< 1 if L0 <
µ1
λ
(δ +H0).

We may thus conclude that, roughly, (L0,H0) is in the risk zone if

L0 >
µ1

λ
(δ +H0),

and in the no-risk zone if
L0 <

µ1

λ
(δ +H0).

The borderline between the two zones is the linear L0 = aH +b where a = µ1
λ
,b =

µ1
λ

δ .



Chapter 13
Cancer-immune Interaction

An abnormally new growth of tissue with cells that grow more rapidly than normal
cells and has no physiological function is called a neoplasm or a tumor. The ab-
normally rapidly growing cells compete with normal cells for space and nutrients.
When the new growth is localized, it is called a benign tumor. When a tumor in tis-
sue has reaches a size of several millimeters it requires a large supply of nutrients,
for otherwise it can no longer grow. Such a tumor is called avascular. Avascular
tumors try to induce the formation of new blood vessels (angiogenesis) and direct
their movement toward them. They do so by secreting tumor endothelial growth
factor (VEGF) and, if successful, the tumors become vascular. A vascular tumor
continues to grow and some of its cells may break away and travel to other parts of
the body through the bloodstream or the lymph system. Metastatic cancer is a tu-
mor that spread from the original location where it started to other parts of the body.
Metastatic cancer is also called malignant cancer, or, briefly, cancer, although peo-
ple often use the words tumor and cancer interchangeably. Most cancer deaths are
due to metastasized cancer.

Cancer is a disease of tissue growth failure, and it is the result of normal cells
transforming into cancer cells because of mutations in genes that regulate cell
growth and differentiation. In the context of cancer, these genes are classified either
as oncogenes or tumor suppressor genes. Oncogenes are genes which promote
cell growth and reproduction. Tumor suppressor genes are genes which inhibit cell
division and survival. Malignant transformation occurs when oncogenes become
overexpressed compared to normal oncogenes, or when tumor suppressor genes be-
come underexpressed, or disabled. Typically a transformation of a normal cell to a
tumor cell occurs after not one but several gene mutations.

It is commonly believed that most mutations leading to cancer are due to external
conditions, such as smoking, dietary factors, environmental pollutants, exposure to
radiation, and certain infections. But some mutations are hereditary.

There are more than one hundred known types of human cancer, broadly catego-
rized according to the tissue of origin. Carcinomas begin with epithelial cells; sar-
comas arise from connective tissues, muscles and vasculature; leukemias and lym-
phomas are cancers of the hematopoietic (blood) and immune system, respectively;
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gliomas are cancers of the central nervous system, including the brain; retinoblas-
tomas are cancers of the eyes.

The most common cause of cancer-related death in the United States are lung,
colorectal, breast (for women) and prostate (for men), and pancreatic cancers. Ma-
lignancy typically induces moderate cellular immune response. But cancer cells try
to evade the immune response by inducing favorable changes in phenotype of im-
mune cells. The interaction between cancer cells and the immune system is complex,
and it affects the efficacy of chemotherapeutic drugs. In order to determine this ef-
ficacy, we need to develop a mathematical model of cancer-immune interaction and
then use it to evaluate the efficacy of various drugs; this is the aim of the present
chapter.

We begin with a few facts that are needed in order to build the mathematical
model. An important class of immune cells that confront a tumor are T cells. An-
other type of cells are macrophage, which we already met in Chapter 11. Here we
distinguish between two phenotypes: pro-inflammatory macrophages M1, and anti-
inflammatory macrophages M2. M1 Macrophages produce inflammatory cytokine,
interleukin IL-12, and M2 macrophages produce anti-inflammatory cytokine, inter-
leukin IL-10. IL-12 activates T cells, whereas IL-10 inhibits this activation. Ac-
tivated T cells kill tumor cells. In order to evade the immune system, cancer cells
produce transforming growth factor β (TGF-β ) that attaches to the membrane of M1
macrophages and starts a process that changes their phenotype to M2 macrophages,
resulting in reduced killing of cancer cells by T cells. Figure. 13.1 is a schematics
of the cancer-immune interaction described above.

Cancer,(C( T(cells(

M1( M2(

TGF1β(
(Tβ)(
(

IL110(
(I10)(

IL112(((I12)(

Fig. 13.1 Tumor-immune interaction. Arrow means production or activation; blocked arrow-head
means inhibition or killing.

Based on Fig. 13.1 we can write down the following equations for the cells:
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dC
dt

= λcC(1− C
C0

)−µcTC, (13.1)

dM1

dt
= k1− γ̃M1

Tβ

k̃1 +Tβ

−µM1, (13.2)

dM2

dt
= γ̃M1

Tβ

k̃1 +Tβ

−µM2, (13.3)

dT
dt

= k̃T
I12

k̃2 + I10
−µT T. (13.4)

We also have the following equations for the cytokines:

dI12

dt
= λ12M1−µ12I12, (13.5)

dI10

dt
= λ10M2−µ10I10, (13.6)

dTβ

dt
= λβC−µβ Iβ . (13.7)

In Eq. (13.1) we assume a logistic growth for cancer cells, and that T cells kill
cancer cells at rate µc. In Eq. (13.2) we assume constant production rate k1 and
death rate µ1 of M1 macrophage. Tβ changes the phenotype of M1 to M2, and this is

accounted by the term γ̃M1
Tβ

k̃1+Tβ

. In Eq. (13.4) the first term represents the activation

of T cells by I12, a process inhibited by I10 which appears in the factor 1/(k̃2 + I10).
We simplify the model (13.1)-(13.6) by noting that the cytokines dynamics is

much faster than the cells dynamics. Hence we may assume steady state in the equa-
tions of (13.5)-(13.7). Thus I12 = const M1, I10 = const M2 and Tβ = const C. Using
these relations in Eqs. (13.2)-(13.4), the system (13.1)-(13.7) reduces to the follow-
ing system of four equations:

dC
dt

= λcC(1− C
C0

)−µcTC, (13.8)

dM1

dt
= k1− γM1

C
K1 +C

−µM1, (13.9)

dM2

dt
= γM1

C
K1 +C

−µM2, (13.10)

dT
dt

= kT
M1

K2 +M2
−µT T. (13.11)

with coefficients γ , kT and K1,K2.
A common chemotherapeutic drug is TGF-β inhibitor. The effect of this drug is

to increase µβ and hence to reduce γ .

Problem 13.1. Use Eq. (13.5) to deduce that for any small ε > 0,
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M1(t)≤
k1

µ
+ ε

if t is large enough.

Problem 13.2. Use Eq. (13.9) to deduce that for any small ε > 0,

M1(t)≥
k1

µ + γ
− ε

if t is large enough.

Problem 13.3. Use Eq. (13.10) to deduce that for any small ε > 0,

M2(t)≤
γk1

µ2 + ε

if t is large enough.

Problem 13.4. Use Eq. (13.11) to deduce that for any small ε > 0,

T (t)≥ kT

α(γ)
− ε

if t is large enough, where

α(γ) =
µT

k1
(µ + γ)(k2 + γk1/µ

2).

Problem 13.5. Use Eq. (13.8) and Problem 13.4 to conclude that if

kT µC > λcα(γ). (13.12)

then limt→∞ C(t) = 0.

The coefficients kT and µC depend on the immune system, i.e., on the response
of the T cells to cancer. The aggressiveness of the cancer depends on TGF-β , that
is, on the parameter γ , which may be decreased by TGF-β inhibitor. Problem 13.5
asserts that is the immune system is strong enough relative to the aggresiveness of
the cancer then the cancer will disappear.

13.1 Numerical Simulations

We would like to investigate how effective the drug is for various “strengths” µc of
the T-cells killing rate. So we shall determine how C(t), say for 0 ≤ t ≤ 60 days,
depends on the drug and on the immune strength (µc). All other parameters are given
as follows: kc = 10−2/day, µc = 10−7/cell/day, C0 = 106 cell/cm3, µ = 0.3/day,



13.1 Numerical Simulations 89

k1 = 3000 cell/cm3/day, γ = 1.1µ /day, kT = 2µT /cell/day, K1 = 0.5C0, K2 =
105 cell/cm3, µT = 0.2/day.

Problem 13.6. Solve the model (13.6)-(13.11) under the initial conditions C(0) =
102 cell/cm3, M1(0) = 5× 104 cells/cm3, M2(0) = 0, T (0) = 0, for 0 ≤ t ≤ 60
days.

Problem 13.7. Repeat the calculation with γ replaces by γ/A, A = 2,5,10 and draw
the 3 profiles of C(t), 0≤ t ≤ 60.

Problem 13.8. Repeat Problem 11.2 with

1. µc replaced by µc
10 .

2. µc replaced by 10µc.

Draw conclusions on how the efficacy of TGF-β inhibitor on the strength of the
immune system parameter µc.





Chapter 14
Cancer Therapy

There are many drugs that are used in the treatment of cancer; some drug kill cancer
cells directly while others change the cancer microenviroment to make it resistant to
cancer cells growth. In Chapter 11, we considered the drug TGF-β inhibitor, which
changes the macrophage phenotype, thereby enabling the immune system to kill
cancer cells more effectively.

In this chapter we consider two entirely different kinds of anti-cancer drugs. The
first one blocks the activity of VEGF, and the second one uses virus to kill tumor
cells.

14.0.1 VEGF receptor inhibitor

In order to continue to grow abnormally, the tumor requires increasing amounts of
oxygen from the blood. So the tumor secrets VEGF which attracts endothelial cells
that from the inner lining of the blood vessels wall, thereby leading to the formation
of new blood vessels (angiogenesis) that deliver oxygen to the tumor. To model this
process we introduce the following variables:

c = density of tumor cells,
e = density of endothelial cells,
h = concentration of VEGF,
w = concentration of oxygen,

We assume logistic growth
λ̃1c(1− c

K
)

of the tumor, where K is the carrying capacity and λ̃1 is the growth rate. We assume
that λ̃1 is proportional to w, λ̃1 = 0 if w = 0, and that

w = Be (B a positive constant). (14.1)
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Hence,
dc
dt

= λ1ec(1− c
K
)−µ1c, c(0)< K. (14.2)

Here λ1 is a positive constant and µ1 is the death rate of cancer cells.
Next we model the equation for VEGF by

dh
dt

= λ2c−µ2h, (14.3)

where λ2 is the production rate of VEGF by tumor cells, and µ2 is the degradation
rate.

Endothelial cells proliferation is assumed to be proportional to h,

de
dt

= λ3h.

But we need to take into account that e is proportional to w (by Eq. (14.1)) whereas
oxygen is decreased by consumption by cancer cells as well by dissipation in the
tissue, that is,

dw
dt

=−µ̃3cw− µ̃4w.

Hence the complete equation for e has the form

de
dt

= λ3h−µ3ce−µ4e, (14.4)

where all the parameters are positive constants.
Avastin is a drug that inhibits VEGF receptor (VEGFR) and thus does not allow

the activation of VEGF. We can model the effect of Avastin by replacing λ2 in Eq.
(14.3) by λ2/(1+A) where A is proportional to the amount of the delivered drug.
Then Eq. (14.3) becomes

dh
dt

=
λ2c

1+A
−µ2h. (14.5)

The following problems show that if A is large enough then the tumor will decrease
to zero as t→ ∞.

Problem 14.1. Observe that c(t)< K for all t > 0, and use Eq. (14.5) to show that,
for any ε > 0,

h(t)≤ λ2K
µ2(1+A)

+ ε if t is large enough.

Problem 14.2. Use Eq. (14.4) and Problem 14.1 to show that, for any ε > 0,

e(t)≤ λ2λ3K
µ2µ4(1+A)

+ ε if t is large enough.

Problem 14.3. Use Eq. (14.2) and Problem 14.2 to show that if
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1+A >
λ1λ2λ3K
µ1µ2µ4

then c(t)→ 0 as t→ ∞.

We concluded that if Avastin is administered in large enough amount then the
tumor will shrink to zero. We note however that Avastin has negative side effects,
including damage to the liver, and thus can only be administered in limited amounts.

We next introduce a completely different model for anti-tumor treatment by
blocking VEGF. We begin with a model of cancer cells suggested by Gumpertz.
It includes cancer cells x and growth factor γ which act, like VEGF, to provide nu-
trients to the cancer:

dx
dt = γx,
dγ

dt = −αγ.
(14.6)

Problem 14.4. Prove that the solution of (14.6) satisfies the Gompertz equation

dx
dt

=−αx ln
x
K
, (0 < x < K) (14.7)

where K is given by

ln
x(0)

K
=−γ(0)

α
.

We view K as the carrying capacity and α as the growth rate. The constant K de-
pends on the density of the blood vessels which provides nutrients to the tumor. We
can refine the model (14.7) by taking K to be a function of the concentration of the
blood capillaries, which we shall denote by y. We take K = y so that

dx
dt

= αx ln
x
y
, (14.8)

and model the concentration y by the equation

dy
dt

= A−2µy+δxy. (14.9)

Here A−2µy represents that natural growth and degradation of capillaries, and δxy
represents the formation of new capillaries from existing capillaries, induced by
growth factors secreted by the tumor cells.

Problem 14.5. The system (14.8)-(14.9) has steady states

x = y = Z± where Z± =
1
δ
{µ±

√
µ2−δA},

provided δA < µ2. Prove that the steady state x = y = Z− is stable, and that the
steady state x = y = Z+ is unstable.

The biological interpretation is that (i) if δA > µ2, then the tumor receives suffi-
cient nutrients so it grows indefinitely (no steady states); (ii) if δA < µ2, there will
be a steady state (benign tumor).
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We recall that tumor secrets VEGF that increase angiogenesis, and hence A. A
drug that blocks VEGF such as soluble VEGFR-1 (e.g. Avastin), reduces A. If the
drug decreases A so that δA < µ2, then the tumor will not grow indefinitely. Fur-
thermore, the drug will also decrease the size of the benign tumor, in the sense that
it decreases the stable steady point with x = y = 1

δ
(µ−

√
µ2−δA).

14.0.2 Virotherapy

We next consider anti-cancer drug which employs virus particles to kill cancer cells;
such a treatment is called virotherapy. The virus particles are genetically modified
so that they can infect cancer cells but not normal healthy cells. Such viruses are
called oncolytic viruses. The viruses are injected directly into the tumor.

After entering a cancer cell, a virus begins to quickly replicate, and when the
cancer cell dies, a large number of virus particles burst out and proceed to infect
other cancer cells.

To model this process we introduce the following variables:

x = number density of cancer cells,
y = number density of infected cancer cells,
n = number density of dead cells,
v = number density of virus particles which are not contained in cancer cells,

Virotherapy is modeled by the following system of equations:

dx
dt = λx−βxv,
dy
dt = βxv−δy,
dn
dt = δy−µn,
dv
dt = bδy− γv.

(14.10)

where

λ = proliferation rate of cancer cells,
β = rate of infection of cancer cells by viruses,
δ = death rate of infected cancer cells,
µ = removal rate of debris of dead cells,

and, finally, b is the replication number of a virus at the time of death of the infected
cancer cell. Adding Eqs. (14.10), we get

d
dt
(x+ y+n) = λx−µn. (14.11)
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We assume that the tumor is spherical with radius R(t) and that the cells are
continuously moving around in a way that keeps their distribution constant within
the sphere. Hence

x(t)+ y(t)+n(t) = θ(t) (14.12)

where θ(t) is the total cell density. By (14.11), the increase in the number of cells
in the growing sphere is given by

d
dt
(

4π

3
R3(t)θ(t)) = (λx(t)−µn(t))

4π

3
R3(t).

We assume that θ(t) is approximately a constant θ0. Then, after using also
(14.12) we get

θ0
3
R

dR
dt

= (λ +µ)x+µy−µθ0 (14.13)

where x and y satisfy the first two equations of (14.10) and v satisfies the last equa-
tion of (14.10).

In experiments, viral therapy as described above was not initially successful be-
cause it failed to address the effect of the immune system. Immune cells recognize
the infected cancer cells and destroy them before the virus particles get a chance
to replicate to their full potential. To make virotherapy more effective the immune
system must therefore be suppressed. In Problem 14.8 we extend the model (14.10)-
(14.13) to include the density of the immune cells, z, and the chemotherapy P which
suppresses the immune system.

Problem 14.6. Show that the system for (x,y,v) in (14.10) has a steady point (x̄, ȳ, v̄)
with x̄ > 0, and determine whether it is asymptotically stable.

14.1 Numerical Simulations

To simulate the model (14.10)-(14.13), we provide the following codes which uses
’ode45’ to solve the ODEs.

Problem 14.7. Take λ = 2×10−2/h, δ =(1/18)/h, µ =(1/48)/h, θ0 = 106 cells/mm3,
β = 7×10−8 mm3/(h·virus), γ = 2.5×10−2/h. Compute R(t) for 0≤ t ≤ 20h, with
initial conditions x0 = 8×105 cells/mm3, y0 = 105 cells/mm3, v0 = 109 virus/mm3,
R(0) = 2 mm when b = 50,100,200,500.

Problem 14.8. Consider the system

dx
dt

= λx−βxv,
dy
dt

= βxv− kyz−δy,

dn
dt

= kyz+δy−µn,
dz
dt

= syz−ωz2−P(t)z,
dv
dt

= bδy− k0vz− γv,
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Algorithm 4 model cancer.m
% This code simulates model (14.10)-(14.13).
close all,
clear all,
% define global parameters
global lambda delta mu theta 0 beta gamma b
% starting and final time
t0 = 0; tfinal = 20;
% paramters
lambda = 2 * 10ˆ-2; delta = 1/18; mu = 1/48; theta 0 = 10ˆ6; beta = 7 * 10ˆ-8; gamma = 2.5 *
10ˆ-2;
b = 100;
% initial conditions
v0 = [8*10ˆ5, 10ˆ5, theta 0-8*10ˆ5-10ˆ5, 10ˆ9, 2];
[t,v] = ode45(’fun cancer’,[t0,tfinal],v0);
plot(t,v(:,5)) % Plot the evolution of the radius of tumor

Algorithm 5 fun cancer.m
% This is the function file called by model cancer.m
function dy = fun cancer(t,v)
global lambda delta mu theta 0 beta gamma b
dy(1) = lambda*v(1) - beta*v(1)*v(4);
dy(2) = beta*v(1)*v(4) - delta*v(2);
dy(3) = delta*v(2) - mu*v(3);
dy(4) = b*delta*v(2) - gamma*v(4);
dy(5) = v(5)/(3*theta 0)*((lambda+mu)*v(1)+mu*v(2)-mu*theta 0);
dy = [dy(1);dy(2);dy(3);dy(4);dy(5)];

where z = number density of immunity cells, P(t) = immune suppressor drug, x+
y+n+z = θ0, k = rate of immune cell killing infected cell, k0 = take-up rate of virus
by immune cells, s = stimulation rate of immune cells by infected cells, ω = clearing
rate of immune cells. We take P(t)= 8×10−2/h, k = 2×10−8 mm3/(h·immune cell),
k0 = 10−8 mm3/(h·immune cell), s = 5.6×10−7 mm3/(h·infected cell), ω =2×10−7

mm3/(h·immune cell) and all other parameters as in Problem 14.7, z0 = 6× 104

cells/mm3, and all other initial conditions as in Problem 14.7. (i) Compute R(t)
for 0 ≤ t ≤ 20h, when b = 50,100,200,500 and compare the results with those of
Problem 14.7. (ii) Do the same when the chemotherapy dose is increased to P(t) =
16×10−2/h.



Chapter 15
Turberculosis

Tuberculosis (TB) is an infective disease caused by Mycobacterium tuberculosis
(Mtb). The bacteria is spread through the air when people who have active TB in-
fection cough or sneeze. The bacteria attack the lungs, primarily, but can also spread
and attack other parts of the body. The most common symptom of active TB infec-
tion is chronic cough with blood-tinged sputum. It is estimated that one-third of the
world’s population have been infected with Mtb, although only 13 million chronic
cases were active globally in 2013, and 1.5 million associated death occurred. Treat-
ment of TB uses antibiotics to kill the bacteria, but the treatment is not entirely
effective. Vaccination, in children decreases significantly the risk of infection.

TB infection in the lungs begins when inhaled mycrobacteria tuberculosis reach
the pulmonary alveoli and invade into, or are ingested by, alveoli macrophages; alve-
oli are tiny air sacs within the lungs where exchange of oxygen and carbon dioxide
takes place. It is clearly important to determine whether infection by inhaled Mtb
will develop into chronic TB. This cannot be determined directly by measurement,
so we shall use mathematics to address this question. In what follows we develop
a mathematical model and use it to determine the threshold of initial infection that
will develop into active TB.

We introduce the following variables:

M = number of alveolar macrophages in cm3;
Mi = number of infected alveolar macrophages in cm3;
Be = number of extracellular bacteria (residing in tissue, outside macrophages) in cm3;
Bi = number of intracellular bacteria (residing inside macrophages) in cm3;

M satisfies the differential equation

dM
dt

= µM−λ1M
Be

K +Be
−dMM. (15.1)

Here µM is the production rate of M and dM is the death rate when there is not infec-
tion; in steady state, µM = dMM0 where M0 is the number of macrophages in cm3 in
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healthy lungs. The second term on the right-hand side of Eq. (15.1) represents the
ingestion of bacteria by macrophages, modeled by the Michaelis-Menten formula,
which turns M into Mi.

The infected macrophages satisfy the equation

dMi

dt
= λ1M

Be

K +Be
−λ2Mi

B2
i

B2
i +(NMi)2 −dMiMi. (15.2)

The first term on the right-hand side comes from macrophages ingesting extracellu-
lar bacteria, and dMi is the death rate of Mi macrophages. The second term on the
right-hand side of Eq. (15.2) accounts for the burst of Mi under bacterial load. The
probability for macrophage burst increase to 50% when the number of internal bac-
teria reaches N, that is, when Bi = NMi, the burst rate is λ2/2. Note that we have
assumed here that the transition from non-bursting state to bursting-state is sharp,
as in Fig. 10.2(B) rather than Fig. 10.2(A), and so we used the Hill kinetics rather
than the Michaelis-Menten law.

We next write a differential equation for the extracellular bacteria:

dBe

dt
= Nλ2Mi

B2
i

B2
i +(NMi)2 −λ1M

Be

K +Be
. (15.3)

The first term on the right-hand side accounts for the number of bacteria released at
burst of infected macrophages, and the second term represents the loss of Be due to
ingestion by macrophages.

The equation for intracellular bacteria Bi is

dBi

dt
= γBi +λ1M

Bc

K +Bc
−Nλ2Mi

B2
i

B2
i +(NMi)2 . (15.4)

The bacteria grow within macrophages at rate γ . The last two terms in Eq. (15.4)
have already been explained above.

The question then arises: How does it happen that most infections with Mtb do
not lead to chronic active TB? The answer is that the adaptive immune system (lo-
cated in the lymph nodes) receives stress signals from the Mi, and then inflammatory
macrophages (in contrast to non-inflammatory alveolar macrophages) and T cells
migrate into the lung and kill bacteria. For simplicity we consider only the T cells.
Their number per cm3, satisfies the equation

dT
dt

= αMi−dT T, (15.5)

where dT , and α is the rate by which T cells are activated by the (signaling sent by
the) Mi. The killing of bacteria means that we have to replace Eqs. (15.3)-(15.4) by
the following equations:
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dBe

dt
= Nλ2Mi

B2
i

B2
i +(NMi)2 −λ1M

Be

K +Be
−δ1T Be, (15.6)

dBi

dt
= γBi +λ1M

Be

K +Be
−Nλ2Mi

B2
i

B2
i +(NMi)2 −δ2T Bi, (15.7)

For simplicity we take δ1 = δ2 = δ . The parameters α,δ determine the course of
the Mtb infection.

The question of susceptibility to TB can be framed as follows: how many in-
gested bacteria it takes to cause an initial infection to develop into chronic TB? We
shall address this question with the following simple model which involves only
extracellular bacteria B and uninfected macrophages M:

dM
dt

= M0−µ1
MB

B+K
−αM, (15.8)

dB
dt

= λB−µ2
MB

B+K
. (15.9)

Here M0 is a baseline supply of new macrophages, α is the natural death rate of
macrophages, µ1 is the rate by which macrophages ingest bacteria, a process that
depletes the bacteria at rate µ2, and λ is the ingestion process (or endocytosis) mod-
eled by the Michaelis-Menten law because the uptake of bacteria by a macrophage
is time-limited. In steady state of healthy individuals M0−αM = 0.

The model (15.8)-(15.9) is very simple since, as we know from the more de-
tailed model (15.1)-(15.7), λ is a function of Bi, Mi and T . Nevertheless, already the
present simple model sheds some light on the consideration of susceptibility to TB,
as we see from the following problems.

Problem 15.1. We may view the system (15.8)-(15.9) as a model of an infections
disease with DFE

(M,B) = (
M0

α
,0).

Setting

b =
µ2M0

α
−λK,

show that the DFE is stable if b > 0 and unstable if b < 0.

We next study the behavior of solutions of Eqs. (15.8)-(15.9) when the initial
values are not necessarily near the DFE.

Problem 15.2. Show that if M(0) ≤ M0
α

then M(t) ≤ M0
α

for all t > 0, and deduce
that

dB
dt
≥ B

λB−b
B+K

.

Problem 15.3. Deduce from Problem 15.2 that if initially M0 ≤ M0
α

and B(0)> b/λ

then B(t)→ ∞ as t → ∞, which means that TB will develop; note that if b < 0 we
only need to assume that M(0)≤ M0

α
and B(0)> 0.
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We next show that if M(0) > M0
α

and b > 0 then small infection with Mycobac-
teria tuberculosis does not result in TB. Let ε be so small that if

β = α +
µ1ε

ε +K

then
M(0)>

M0

B
and (since b > 0) λ <

µ2M0

β (ε +K)
. (15.10)

We shall prove that if B(0)< ε the B(t)< ε for all t > 0. Indeed, otherwise there is
a first time t0 such that

B(t)< ε if t < t0, and B(t0) = ε.

It follow that
dB
dt

(t0)≥ 0 (15.11)

and
B(t)

B(t)+K
<

ε

ε +K
if t < t0.

Hence, by (15.8),

dM
dt

> M0−µ1M
ε

ε +K
−αM = M0−βM. (15.12)

Rewriting (15.12) in the form

d
dt
(Meβ t)> M0eβ t

we obtain, by integration,

M(t)> M(0)e−β t +
M0

β
− M0

β
e−β t >

M0

β
for 0 < t ≤ t0

where we used the inequality M(0) > M0
β

from (15.10). We now use Eq. (15.9) to
deduce that

dB
dt

(t0) = (λ − µ2M
B+K

)B|t=t0 < (λ − µ2M
B+K

)ε < 0

by the second inequality in (15.10), and this is a contradiction to (15.11).

Problem 15.4. Use the last result and Problem 15.2 to show that if M(0) > M0
α

,
b > 0 and B(0) is sufficiently small then (M(t),B(t))→ (M0

α
,0) as t → ∞. [Hint:

show that that M(t)− M0
α

<Cε if t is large, where C is a constant.]
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15.1 Numerical Simulations

In the following problems the parameters of the system (15.1)-(15.4) are given as
follows: λ1 = 14/day, λ2 = 0.05/day, dM = 8×10−3/day, M0 = 1.5×106 cell/cm3,
so that µM = dMM0 = 1.2× 104 cell/day, dMi = 5× 10−2/day, K = 105Be/cm3,
γ = 0.8 day. At the beginning of infection with Mtb we have: M =M0,Mi = 0,Bi = 0
and Be is the number of inhaled bacteria per cm3. We also take dT = 0.3/day,
α = 2.5/day and T (0) = 0.

Problem 15.5. Simulate the model (15.1)-(15.5) for 0< t < 30 days with Be(0) = 1.
You should find that the functions Be(t),Bi(t) are monotonically increasing.

Problem 15.6. Take δ = 0.1 and Be(0) = 2,5,10. In each of these three cases, com-
pute Be(30) and Bi(30).

Problem 15.7. Repeat the calculations of Problem 15.6 with δ = 1 and with δ = 5.




