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Abstract Cell polarization, in which intracellular substances are asymmetrically dis-
tributed, enables cells to carry out specialized functions. While cell polarity is often
induced by intracellular or extracellular spatial cues, spontaneous polarization (the
so-called symmetry breaking) may also occur in the absence of spatial cues. Many
computational models have been used to investigate the mechanisms of symmetry
breaking, and it was proved that spontaneous polarization occurs when the lateral
diffusion of inactive signaling molecules is much faster than that of active signaling
molecules. This conclusion leaves an important question of how, as observed in many
biological systems, cell polarity emerges when active and inactive membrane-bound
molecules diffuse at similar rates while cycling between cytoplasm and membrane
takes place. The recent studies of Rätz and Röger showed that, when the cytosolic and
membrane diffusion are very different, spontaneous polarization is possible even if the
membrane-bound species diffuse at the same rate. In this paper, we formulate a two-
equation non-local reaction-diffusion model with general forms of positive feedback.
We apply Turing stability analysis to identify parameter conditions for achieving cell
polarization. Our results show that spontaneous polarization can be achieved within
some parameter ranges even when active and inactive signaling molecules diffuse at
similar rates. In addition, different forms of positive feedback are explored to show
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that a non-local molecule-mediated feedback is important for sharping the localization
as well as giving rise to fast dynamics to achieve robust polarization.

Keywords Cell polarization · Turing stability analysis · Budding yeast · Non-local
feedback

1 Introduction

Cell polarization, in which substances previously uniformly distributed become asym-
metrically localized, is fundamental to various cellular processes such as differenti-
ation, migration, and development. Failure in polarization may lead to lethality or
dysfunctionality of the cells. How cell polarity is established and maintained has been
a central question in cell biology. The fundamental mechanisms for cell polarization
remain controversial, but it is known that polarity development typically involves the
localization of signaling molecules to a proper location of the cell membrane (Bryant
and Mostov 2008), which can be exemplified by the localization of PAR proteins
(Goldstein and Macara 2007), Scribble proteins (Humbert et al. 2003), phosphoinosi-
tide lipids (Krahn and Wodarz 2012), and Rho family GTPase (Raftopoulou and Hall
2004). These signaling molecules are initially distributed in the cytoplasm, and then,
in response to extracellular or intracellular cues, they are finally localized at a proper
location on the plasma membrane. The localization of signaling molecules activates
certain cellular pathways, and ultimately leads to the organization of the cytoskeleton
or other responses, which contributes to cell morphogenesis or motility.

The budding yeast Saccharomyces cerevisiae has been an excellent model system
to study cell polarization owing to simple, yet powerful experimental tools available
in this organism. In yeast cell, a new daughter cell emerges from the original (mother)
cell, referred to as budding, and this is a result of cell polarization at the bud site.
In wild-type cells, the selection of a bud site is determined by spatial cues that are
distinct in each cell type. However, most previous works have studied polarization in
the absence of these spatial cues (Park and Bi 2007; Slaughter et al. 2009) by deleting
a crucial molecule, Rsr1, which links the spatial cue and the downstream polariza-
tion machinery. As a result, the cells will choose their bud sites in a fully random
and spontaneous manner, which is the so-called symmetry breaking. This symmetry
breaking is not unique to yeast, but can also be observed in mammalian neutrophils and
amoeba (Drubin and Nelson 1996; Wedlich-Soldner and Li 2003). To understand the
mechanisms underlying symmetry breaking, several mathematical models have been
proposed, which can roughly be categorized into two groups. The first type is deter-
ministic models, that is, reaction-diffusion equations. In those models, Turing-type
mechanism was suggested to be responsible for the self-organization of molecules
which gives rise to cell polarity (Goryachev and Pokhilko 2008; Jilkine and Edelstein-
Keshet 2011; Rätz and Röger 2012). The second type is stochastic models in which
individual molecular interactions are considered (Altschuler et al. 2008; Freisinger et
al. 2013). Though from different perspectives, both continuum and stochastic models
emphasize the importance of cycling of GTP and GDP bound forms of the polarized
protein Cdc42 (we will refer them as active and inactive forms, respectively) and the
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Bem1- or Rdi1-mediated positive feedback that further accelerates the recruitment and
activation of Cdc42. In particular, Altschuler et al. (2008) have shown that an intrinsic
stochastic mechanism through linear positive feedback alone is sufficient to account
for the spontaneous establishment of a single site of polarity, but the same linear pos-
itive feedback is not sufficient for symmetry breaking in deterministic models, which
suggests a fundamental difference between stochastic and deterministic models. On
the other hand, this conclusion raises interesting questions: why does linear positive
feedback fail to work in deterministic model? Is there a mathematical explanation?
What would be the general “admissible” forms of positive feedback which give rise
to robust cell polarization? In this paper, we attempt to use mathematical analysis
to address the above questions and propose possible mechanisms through which the
feedback is established.

In previous works (Goryachev and Pokhilko 2008; Jilkine and Edelstein-Keshet
2011; Rätz and Röger 2012) concerning Turing-type mechanism for cell polarization,
numerical simulations have been performed to investigate the parameters, but con-
ditions for Turing instability, therefore cell polarization, are not studied in detail. By
considering the cytoplasmic and membrane-bound inactive species as one pooled vari-
able, and the membrane-bound active species as the other variable, usually assuming
the ratio of the diffusion rates of these two is large, stability analysis has been per-
formed (Rätz and Röger 2012; Rubinstein et al. 2012). In the recent work, Rätz and
Röger (2012) presented a non-local reaction-diffusion model and performed a Turing
stability analysis to study the conditions for achieving Turing instability. They reach
the conclusion that Turing instability occurs when the lateral diffusion of inactive sig-
naling molecules is much faster than that of active signaling molecules. In Rubinstein
et al. (2012), the authors performed weakly nonlinear analysis to a similar system to
obtain information about the dynamics of the solution. There are also models which
separate the membrane-bound species and cytosolic species in different domains, with
the communication of molecules between these two domains represented by fluxes
(Levine and Rappel 2005; Rätz and Röger 2013). In Rätz and Röger (2013), linear
stability analysis was performed for this type of model, with two possible mecha-
nisms of cell polarization were identified: Turing stability or polarization induced
by the difference in cytosolic and lateral diffusion. This result supports that sponta-
neous polarization is possible even when lateral diffusion coefficients are same and
the biochemical network in Rätz and Röger (2013) has been applied for studying cell
motility (Marth and Voigt 2013). In many biological systems, the membrane-bound
active and inactive signaling molecules diffuse at similar rates, while the inactive form
cycles between the cytoplasm and membrane, for example, Cdc42 molecules in bud-
ding yeast (Goryachev and Pokhilko 2008; Lo et al. 2013). It is important to know
whether Turing instability occurs in that case. In this paper, we formulate a non-local
reaction-diffusion model with two membrane-bound species and general forms of pos-
itive feedback. Turing stability analysis (Turing 1990) is applied to identify parameter
conditions for achieving cell polarization. Our analysis shows that Turing instability
indeed exists when active and inactive signaling molecules have the same diffusion
rates. Also, different forms of positive feedback are explored to show the relationship
between feedback function forms and the robustness of cell polarization.
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This paper is organized as follows. In Sect. 2, we present a two-equation reaction-
diffusion model of cell polarization with a general function form of positive feedback.
In Sect. 3, we perform Turing stability analysis to the model proposed in Sect. 2
to derive conditions for which cell polarity emerges. Sections 4 and 5 contain the
discussion of different forms of positive feedback which lead to different localiza-
tion patterns. In Sect. 6, we show that a robust polarization can be achieved through
non-local positive feedback and that the polarization is tight. Finally, conclusion is
presented in Sect. 7.

2 A Two-Equation Model for Cell Polarization

Cell polarization can be generally simplified as processes involving exchange of active
and inactive forms of polarized molecules, feedbacks through molecular interactions,
as well as physical mechanisms such as transport and diffusion. Reaction-diffusion
mathematical models have been widely used to model cell polarization for different
biological systems, and these models have led to proposed mechanisms such as wave
pinning (Jilkine et al. 2007; Maree et al. 2006) and Turing instability (Goryachev and
Pokhilko 2008; Turing 1990) to explain how robust localization of molecules forms
in the presence of cytoplasmic or membrane diffusion. Despite the differences among
various previous models for the emergence of cell polarity, all these models include
a positive feedback mechanism, mediated through either chemical interactions with
other species or physical transport.

In this paper, we consider a continuum mathematical model describing the dynam-
ics of a polarized signaling molecule on the cell membrane: the variables include its
active and inactive membrane-bound forms (we use the term “active form” to indicate
that only this form is functional to induce the downstream cellular responses, although
the “inactive” molecules are also important in the cycling of molecules). The cyto-
plasmic inactive form of this molecule is also involved, but it is modeled implicitly
through conservation of total molecules. This type of polarized molecules can be well
exemplified by Cdc42-GTPase cycle in budding yeast, with Cdc42-GDP its inactive
form and Cdc42-GTP its active form. Most of the GTPase cycles have a common
mechanism that enables them to switch between the active (GTP-bound) and inactive
(GDP-bound) states. The switch from inactive to active is initiated by hydrolysis and
it can be reversed by guanine nucleotide exchange factors (GEFs), which cause the
GDP to dissociate from the GTP. When the GDP is bound, GDIs bind to the GTPase
and release the GDP from the cell membrane to the cytoplasm. This process can be
reversed by the action of a GDI displacement factor.

The domain in our model could be the membrane of a cell, which is a sphere, or
for simplicity it could be the cross section of the cell, which is a circle. The domain
is denoted by M, which is either a circle (one-dimensional domain) or a spherical
surface (two-dimensional domain). We use a and b to represent active and inactive
membrane-bound signaling molecules, respectively; without confusion in the context,
we will also use a and b to denote their corresponding particle fractions, which is unit-
less (Altschuler et al. 2008). Thus, the exact partical numbers of active and inactive
signaling molecules in any open subset A of the domain M can be calculated by
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Na A = N

|M |
∫

A

a dS and NbA = N

|M |
∫

A

b dS,

where |M | equals to the total area of the domain M , and N is the total number of
active and inactive signaling molecules in the whole cell including membrane and
cytoplasm.

The dynamics of a and b are thus governed by a reaction–diffusion system, which
may be non-local depending on the function form of F(·, ·):

∂a

∂t
= Dm∇2a + F(a, ân)b − koffa, (1)

∂b

∂t
= Dm∇2b − F(a, ân)b + koffa + gon(1 − â − b̂) − goffb, (2)

with ân = ∫
M an dS/|M |, â = ∫

M a dS/|M | and b̂ = ∫
M b dS/|M | respectively

representing the average values of an , a and b over the cell membrane. In this paper,
two kinds of spatial domain are considered: (1) one-dimensional cross section of the
cell membrane of radius R µm, as in Fig. 1a; (2) two-dimensional spherical surface
of the cell membrane of radius R µm. Periodic boundary conditions are used for both
domains.

The first terms of the right-hand side in Eqs. (1) and (2) represent the diffusion of
species a and b with Dm the lateral surface diffusion rate and ∇2 the Laplacian operator
on the cell membrane. In many systems such as budding yeast, it is reasonable to
assume that the membrane diffusion rates of active (Cdc42-GTP) and inactive (Cdc42-
GDP) signaling molecules are approximately the same (Lo et al. 2013; Goryachev and
Pokhilko 2008), and therefore we take the same value Dm for both species.

In our model, a key assumption is that the total number of active and inactive
signaling molecules in the whole cell is conserved. Along with the fact that â and b̂
represent the total fractions of the membrane-bound species, we obtain

N = N (̂a + b̂ + Fracc), (3)

where Fracc stands for the fraction of cytoplasmic signaling molecules. Hence, by (3),
Fracc = 1 − â − b̂. Under the assumption that signaling molecules are uniformly dis-
tributed throughout the cytoplasm due to fast cytoplasmic diffusion and the recruitment
rate is proportional to the fraction of cytoplasmic signaling molecules, gon(1 − â − b̂)

is the recruitment rate of the inactive molecules from the cytoplasm to the membrane.
We remark here that to ensure 1−â−b̂ being between 0 and 1 to represent the fraction,
the initial value for â + b̂ needs to be less than 1, which is assumed throughout this
paper. The last term in Eq. (2), goffb, is the rate at which membrane-bound signaling
molecules are extracted into the cytoplasm. The constant koff is the deactivation rate
coefficient of signaling molecules from active form to inactive form.

In Eqs. (1)–(2), the function F represents the activation rate for signaling mole-
cules. By assuming that active signaling molecules form a feedback loop to promote
activation, meaning that the activation from the inactive form (b) to the active form
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A B C

Fig. 1 One-dimensional spatial domain and two forms of positive feedback in the cell polarization model.
Variables and parameters are as in model (1)–(2). a Simplified one-dimensional spatial domain represents
the cross section of the cell membrane of radius R µm; b molecule interactions with a local positive feedback
(4); c molecule interactions with a non-local positive feedback (5)

(a) is positively regulated by the active molecules (a), the function F is thus posi-
tively correlated with the particle density of a. In this paper, we consider two different
feedback functions:

F(a) = k11 + k12an; (4)

and

F(a, ân) = kon
k21 + k22an

1 + k21 + k22ân
. (5)

The first function form in Eq. (4) is a direct cooperative feedback which only depends
on the local values of a. This feedback process includes multi-step cooperative inter-
actions such as recruitment and binding. This nonlinear cooperativity is modeled by
the an , with n ≥ 1, and n stands for the degree of cooperativity and is called the
cooperativity coefficient. This type of feedback has been used in many Turing type
systems (Meinhardt 1982; Turing 1990). The parameter k11 represents the basal acti-
vation rate of Cdc42 and the parameter k12 represents the activation rate coefficient
through the cooperative feedback. The second function form in Eq. (5) involves a
non-local term ân , as well as the local density a. This function models feedback that is
mediated through another species initially uniformly distributed in the cytoplasm, as in
Goryachev and Pokhilko (2008), Lo et al. (2013). A good example is the well-known
positive feedback of Cdc42-GTP mediated by the Bem1 complex in budding yeast.
Other than Bem1 complex, Smith et al. (2013) proposed that Rdi1, the Cdc42 guanine
nucleotide dissociation inhibitor, plays a critical role for symmetry breaking. Similar
to Bem1 complex, Rdi1 is initially uniformly distributed in the cytoplasm and forms
a Rdi1-Cdc42 complex which enhances Cdc42 localization on the membrane. The
detailed derivation of this feedback will be discussed in Sect. 6. These two forms of
positive feedback are illustrated in Fig. 1b and c, with the corresponding interactions
and parameters in model (1)–(2).

3 Linear Stability Analysis

In this section, we apply Turing stability analysis Turing (1990) to study the conditions
of the parameters to achieve spontaneous cell polarization. We remark here that the
stability analysis in this section can be applied for general feedback function F(a, ân).
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First, we study a homogeneous steady state solution (a0, b0) of the system (1)–(2),
which satisfies the following equations:

0 = F(a0, an
0 )b0 − koffa0, (6)

0 = −F(a0, an
0 )b0 + koffa0 + gon(1 − a0 − b0) − goffb0. (7)

Note that since a0 is homogeneous over space, ân
0 = an

0 , â0 = a0, and b̂0 = b0. By
summing up (6) and (7), we obtain

0 = gon(1 − a0 − b0) − goff b0,

and hence
b0 = gon

gon + goff
(1 − a0). (8)

By substituting (8) into (6), we have

0 = gon

gon + goff
F(a0, an

0 )(1 − a0) − koffa0. (9)

When a0 = 1, the right-hand side of (9) is negative; when a0 = 0, the right-hand side
of (9) is positive (F is a positive function because it represents positive feedback).
By the intermediate value theorem, at least one homogeneous steady state solution a0
exists between 0 and 1, and then by (8), a corresponding non-negative homogeneous
steady state solution b0 can be found.

To examine the stability of a homogeneous steady state solution with respect to
small perturbations, we define a(x, t) and b(x, t) as slightly perturbed functions from
the homogeneous steady state:

a(x, t) = a0 + εa1(x, t), (10)

b(x, t) = b0 + εb1(x, t), (11)

where the perturbation amplitude ε � 1 is much smaller than a0 and b0. After sub-
stituting (10) and (11) into the model (1)–(2) and applying Taylor expansion around
(a0, b0), the leading terms satisfy the following system:

∂a1

∂t
= Dm∇2a1 + (FX1(a0, an

0 )a1 + nan−1
0 â1 FX2(a0, an

0 ))b0 − koffa1

+F(a0, an
0 )b1, (12)

∂b1

∂t
= Dm∇2b1 − (FX1(a0, an

0 )a1 + nan−1
0 â1 FX2(a0, an

0 ))b0 + koffa1

−F(a0, an
0 )b1 − gonâ1 − gonb̂1 − goffb1, (13)

where FX1 and FX2 denote the partial derivatives with respect to the first and the
second arguments, respectively. We note that when the local feedback function (4)
is considered, FX1 is positive and FX2 equals to zero; when the non-local feedback
function (5) is considered, FX1 is positive and FX2 is negative.
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Here we consider a particular spatially periodic perturbation

a1(x, t) = αeλt Ek(x),

b1(x, t) = βeλt Ek(x),

where α and β are nonzero parameters, k is a non-negative integer, and Ek(x) is the
kth non-zero eigenfunction of Laplace operator. System (12)–(13) becomes

λ

(
α

β

)

=
(−σk Dm + (FX1 + δ(k)nan−1

0 FX2)b0 − koff F
−(FX1 + δ(k)nan−1

0 FX2)b0 + koff − δ(k)gon −σk Dm − F − δ(k)gon − goff

)

(
α

β

)
, (14)

where

δ(k) =
{

1 if k = 0,

0 if k > 0,

and the eigenvalue

σk =
{

k2/R2 for a one-dimensional cross section,

2k2/R2 for a two-dimensional spherical surface,

where R is the radius of the circle or sphere, and FX1 , FX2 , F are evaluated at (a0, an
0 ).

It is worth to make a remark that all the analysis can be applied for two-dimensional
smooth ellipsoid surface (not necessarily spherical surface) by considering corre-
sponding eigenvalues and eigenfunctions of Laplace operator.

If we define

J =
(−σk Dm+(FX1+δ(k)nan−1

0 FX2)b0 − koff F
−(FX1+δ(k)nan−1

0 FX2)b0+koff − δ(k)gon −σk Dm−F−δ(k)gon − goff

)
,

then Eq. (14) becomes

J
(

α

β

)
= λ

(
α

β

)
. (15)

Therefore, λ is an eigenvalue of J, and (α, β)T is the corresponding eigenvector. Eq.
(15) has a nonzero solution (α, β) if and only if det(J − λI) = 0, which means that λ

should be a zero of the following characteristic polynomial:

λ2 − λ
(
−2σk Dm + (FX1 + δ(k)nan−1

0 FX2)b0 − koff − F − δ(k)gon − goff

)

+ σ 2
k D2

m − σk Dm

(
(FX1 + δ(k)nan−1

0 FX2)b0 − koff − F − δ(k)gon − goff

)
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− (δ(k)gon + goff)((FX1 + δ(k)nan−1
0 FX2)b0 − koff) + Fδ(k)gon = 0. (16)

The emergence of cell polarity relies on the (Turing) instability of the homogeneous
steady state. To achieve that, two conditions are required:

(i) If the perturbation is spatially homogeneous, the homogeneous steady state
(a0, b0) is linearly stable. This condition ensures that starting from a constant
initial condition close to (a0, b0), (a0, b0) will be an attractor. This condition is
equivalent to that when the wave number k is zero, all eigenvalues λ are negative;

(ii) For some positive integers k, at least one λ satisfying Eq. (16) is positive, which
means that (a0, b0) is linearly unstable under a perturbation with some positive
wave lengths (Turing 1990; Rätz and Röger 2012).

Together, these two conditions imply that wave functions perturbed from the homo-
geneous steady state are moving toward another steady state for and only for positive
wave lengths.

The first condition is equivalent to that when k = 0, the trace of J is negative and
the determinant of J is positive:

(FX1 + nan−1
0 FX2)b0 − koff − F − gon − goff < 0, (17)

and
− (gon + goff)((FX1 + nan−1

0 FX2)b0 − koff) + Fgon > 0. (18)

The inequality (18) can be rewritten as

(FX1 + nan−1
0 FX2)b0 − koff − gon

gon + goff
F < 0. (19)

It is easy to show that (19) implies (17), and therefore one only needs to check the
inequality (19) for condition (i).

The second condition is equivalent to the conditions that for some positive k, the
determinant of J is negative or the trace of J is positive:

− 2σk Dm + FX1 b0 − koff − F − goff > 0 (20)

or

σ 2
k D2

m − σk Dm
(
FX1 b0 − koff − F − goff

) − goff(FX1b0 − koff) < 0, k ≥ 1. (21)

As (a0, b0) is a homogeneous steady state, we can apply equality (8) to Eqs. (20) and
(21), and rewrite them as

− 2σk Dm + gon

gon + goff
FX1(1 − a0) − koff − F − goff > 0 (22)

and

− σk Dm + gon

gon + goff
FX1(1 − a0) − koff − σk Dm

σk Dm + goff
F > 0. (23)
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It can be observed that the inequality (22) implies (23). Since (22) or (23) needs to be
satisfied, it suffices to check the inequality (23).

Moreover, if there exists a positive integer kc such that

−σkc Dm + gon

gon + goff
FX1(1 − a0) − koff − σkc Dm

σkc Dm + goff
F > 0,

then the inequality (23) holds for any positive integer k ≤ kc. Thus, the second
condition can be reduced to

− σ1 Dm + gon

gon + goff
FX1(1 − a0) − koff − σ1 Dm

σ1 Dm + goff
F > 0. (24)

Finally, we summarize that Turing instability exists at a homogeneous steady state
solution (a0, b0) if the system (1)–(2) satisfies the following two conditions

gon

gon + goff
(FX1 + nan−1

0 FX2)(1 − a0) − koff − gon

gon + goff
F < 0, (25)

and

− σ1 Dm + gon

gon + goff
FX1(1 − a0) − koff − σ1 Dm

σ1 Dm + goff
F > 0. (26)

When the conditions (25) and (26) are satisfied, positive λk can be solved from (16)
for some positive k:

λk =
−2σk + Q1 +

√
Q2

1 + goff Q2

2
, (27)

where Q1 = gon
gon+goff

FX1(1−a0)−koff −F−goff and Q2 = gon
gon+goff

FX1(1−a0)−koff .
We remark that Q2 is larger than zero since (26) is satisfied.

Since σk is increasing with respect to k ≥ 1, λk is decreasing with respect to k ≥ 1.
Then the fastest growing mode occurs when k = 1. This supports that single peak
mode may dominate until reaching steady state and the model will end up with a single
peak.

4 Linear Feedback is Not Sufficient for Achieving Symmetry Breaking

The simplest form of feedback is a linear function dependent only on the density of
the active polarized species a, namely,

F(a) = k11 + k12a.
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To see if this form of feedback can produce spontaneous cell polarization, one needs
to check (25) and (26). Considering the term

gon

gon + goff
FX1(1 − a0) − koff

in (26), since a0 is a homogeneous steady state solution, by the equality (9), we deduce
that

gon

gon + goff
F ′(1 − a0) − koff = 1

a0

(
gon

gon + goff
k12a0(1 − a0) − koffa0

)

= − gon

gon + goff

k11(1 − a0)

a0
< 0.

Therefore, the left-hand side of (26) is negative, and the second condition of Turing
instability is not satisfied.

Although the above analysis suggests that linear positive feedback will not give
rise to polarity establishment, this feedback was used in Altschuler et al. (2008) and
was able to produce spontaneous polarization under a stochastic setting for budding
yeast cells. This work (Altschuler et al. 2008) definitely has shown the effect of ran-
dom fluctuation and demonstrated the essential difference between deterministic and
stochastic models. However, while the feedback of Cdc42 cycle during yeast budding
involves the recruitment of guanine nucleotide exchange factors, i.e., the GEF, and
the formation of the Bem1 complexes including the GEF (Park and Bi 2007), the
feedback is more likely a multi-step cooperative process than a linear one. Hence, we
will consider the cooperative feedback in the following section.

5 Cooperative Feedback can Lead to Symmetry Breaking

A multiple-step cooperative feedback process can be modeled by a local feedback
function with n ≥ 2:

F(a) = k11 + k12an, n ≥ 2, (28)

where the parameter n determines the cooperativity of the response to the density of
molecules. Here n = 1 indicates a non-cooperative, while n > 1 represents a multiple-
step cooperative feedback process which may include different independent steps of
recruitment, binding, and dissociation. In this section, we will show that our model
coupling (28) can achieve Turing instability in some suitable parameter ranges.

Let (a0, b0) be a homogeneous steady state solution. According to (9), a0 satisfies
the following equation

gon

gon + goff
(k11 + k12an

0 )(1 − a0) − koffa0 = 0. (29)

Defining k3 = gon
gon+goff

k11 and k4 = gon
gon+goff

k12, we can rewrite (29) in a polynomial
form

− k4an+1
0 + k4an

0 − (k3 + koff)a0 + k3 = 0. (30)
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Now we define the left-hand side as a function

f (a) = −k4an+1 + k4an − (k3 + koff)a + k3. (31)

According to the intermediate value theorem and the fact that f (0) > 0 and f (1) < 0,
at least one solution a0 of (30) exists between 0 and 1. Since f has only one inflection
point a = n−1

n+1 between 0 and 1, and there are at most three positive solutions satisfying
(30) for n = 3, one can plot all the possible profiles of f , as shown in Fig. 2. We
recall that (a0, b0) is locally stable for spatially homogeneous perturbations when it
satisfies the inequality (25), which in this case can be rewritten as

(nk4an−1
0 )(1 − a0) − koff − (k3 + k4an

0 ) < 0. (32)

From (32), we know that (25) is satisfied if and only if the slope of f is negative at
a = a0.

If f assumes one of the profiles in Fig. 2a–e, there is always at least one homoge-
neous steady state solution satisfying condition (25). If f is a function as in Fig. 2f,
the slope of f is zero at a = a0; however, by considering higher order terms, it is
easy to show that the homogeneous steady state is locally stable for spatially homo-
geneous perturbations. Hence, we can conclude that there always exists at least one
homogeneous steady state solution which is locally stable for spatially homogeneous
perturbations.

To obtain Turing instability, besides satisfying (25), a homogeneous steady state
solution has to be unstable for a perturbation with some positive wavenumbers k, that is,
to satisfy (26). The following theorem provides a range of parameters in which Turing
instability exists, and later another theorem will be stated, which gives a condition for
the existence of locally stable homogeneous steady state solution. In the following
theorem, we define D∗ = σ1 Dm + σ1 Dm

σ1 Dm+goff
(k11 + k12). The detailed proofs are

presented in Appendix 7.2.

Theorem 1 Assume that D∗ < k3 and n > 1. For the system (1)–(2) with the local
feedback form (28), if the condition

1 − (n − 1)
n−1

n

n

koff + D∗

k
1
n
4 k

n−1
n

3

>
k3

k3 − 1
n D∗ + n−1

n koff
(33)

is satisfied, then there exists a homogeneous steady state solution satisfying conditions
(25) and (26) for Turing instability. In addition, the condition (33) also implies that
there is no locally stable homogeneous steady state solution.

By Theorem 1, we find that Turing instability can be obtained with suitable ranges
of parameters. Now we use a computational simulation for one-dimensional model to
verify the result of Theorem 1. For the simulations in this paper, we apply a second-
order central difference approximation for the diffusion terms, Riemann sum for the
definite integrals, and a fourth order Adams–Moulton predictor–corrector method for
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Fig. 2 Possible combinations of homogeneous steady states of model (1)–(2), with feedback form (28)
and n ≥ 2. Circle markers represent homogeneous steady states which are locally stable for spatially
homogeneous perturbation; cross markers represent homogeneous steady states which are locally unstable
for spatially homogeneous perturbation. In all the plots, we take n = 3 with parameters: a k3 = 1 min−1,
k4 = 50 min−1, and koff = 7 min−1; b k3 = 1 min−1, k4 = 47.6837 min−1, and koff = 7.5938 min−1;
c k3 = 1 min−1, k4 = 89.2857 min−1, and koff = 6.8571 min−1; d k3 = 3 min−1, k4 = 50 min−1, and
koff = 3 min−1; e k3 = 1 min−1, k4 = 25 min−1, and koff = 7 min−1; f k3 = 1 min−1, k4 = 16 min−1,
and koff = 3 min−1

the temporal discretization. FORTRAN 77 is used for the simulation and plots are gen-
erated using MATLAB. For one-dimensional simulations, the number of spatial points
is 400 and the temporal step 	t is 1 × 10−3 min; for two-dimensional simulations,
the number of spatial points is 1,026 and the temporal step 	t is 6.64 × 10−4 min.
The initial conditions for all simulations are defined as

a(x, 0) = 0,

b(x, 0) = 0.3(1 + 0.2η(x)),

where η(x) is a function of uniformly distributed random number from 0 to 1.
The time-dependent simulation shown in Fig. 3a demostrates that localization of

active signaling molecules can be achieved with a set of parameters satisfying (33).
The ranges of the parameters we use here are based on previous works (Lo et al. 2013;
Goryachev and Pokhilko 2008; Altschuler et al. 2008).

We are also interested in the range of parameters in which a solution may tend to
a homogeneous steady state, as stated in the following theorem.
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Fig. 3 Time-dependent simulations for the one-dimensional model (1)–(2) with the local feedback (28).
Left panels are solutions of a and right panels are solutions of b. In these two simulations, n = 2, D =
0.15 µm2 min−1, R = 2 µm, koff = 10 min−1, gon = 20 min−1, and goff = 9 min−1. Other parameters
are: a k11 = 20 min−1 and k12 = 250 min−1; b k11 = 30 min−1 and k12 = 40 min−1

Theorem 2 Assume that n > 1. For the system (1)–(2) with the local feedback form
(28), if the condition

1 − (n − 1)
n−1

n

n

koff

k
1
n
4 k

n−1
n

3

<
k3

k3 + n−1
n koff

(34)

is satisfied, then there exists a locally stable homogeneous steady state solution. This
means that an evolving solution may stabilize to a homogeneous steady state when
the initial condition is sufficiently close to it.

The simulation displayed in Fig. 3b demonstrates that if the parameters satisfy the
inequality (34), the solution tends to a homogeneous steady state.

As mentioned above, the feedback loop on activation of signaling molecules usu-
ally is a multiple step process involving recruitment and binding of certain feedback
molecules, such as Bem1 complex and Rdi1 protein. A growing Cdc42-GTP cluster
on the cell membrane captures free feedback molecules in the cytoplasm and then, the
membrane-bound feedback molecules promote and maintain the local clustering of
active Cdc42. The limitation of the total amount of feedback molecules implies that
the magnitude of feedback saturates; however, this saturation is not modeled in the
current feedback form (28). Motivated by this, we study a non-local feedback function
in the next section.
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6 Non-local Feedback Enhances Sharper and Faster Polarization

If we take into account the molecules which mediate the positive feedback (here we call
them feedback molecules), as shown in Fig. 1b, and assume that these molecules are
initially uniformly distributed in the cytoplasm and later recruited to the cell membrane
by the active signaling molecules (variable a), then the activation rate of the signaling
molecules is proportional to the density of the membrane-bound feedback molecules
(denoted by c). Thus, we obtain the following equations for a, b, and c:

∂a

∂t
= Dm∇2a + koncb − koffa, (35)

∂b

∂t
= Dm∇2b − koncb + koffa + gon(1 − â − b̂) − goffb, (36)

∂c

∂t
= (h1 + h2an)(1 − ĉ) − hoff c, (37)

where (h1 + h2an) is the recruitment rate of the feedback molecules c from the
cytoplasm to the membrane, the parameter h1 is the basal recruitment rate of the
feedback molecules and he parameter h2 is the Cdc42-mediated recruitment rate of
the feedback molecules; (1− ĉ) is the fraction of the cytoplasmic feedback molecules;
ĉ represents the average value of c over the membrane; and hoff is the disassociation
rate of the feedback molecules from the membrane to the cytoplasm.

We assume that the dynamics of the feedback molecules is much faster than that
of the signaling molecules, as in Goryachev and Pokhilko (2008), Lo et al. (2013).
Therefore, particle density of the feedback molecules reaches quasi-steady state of
Eq. (37) at the time scale of a and b, that is,

(h1 + h2an)(1 − ĉ) − hoff c = 0.

By integrating the above equation over the membrane, one can obtain the value of ĉ
and substitute that back into the equation, and then we have

c = k21 + k22an

1 + k21 + k22ân
, (38)

where k21 and k22 equal to h1/hoff and h2/hoff , respectively.
By substituting (38) into Eqs. (35) and (36), we obtain a system with a non-local

feedback term:

∂a

∂t
= Dm∇2a + F(a, ân)b − koffa,

∂b

∂t
= Dm∇2b − F(a, ân)b + koffa + gon(1 − â − b̂) − goffb,

with

F(a, ân) = kon
k21 + k22an

1 + k21 + k22ân
. (39)
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Fig. 4 Time-dependent simulations for the one-dimensional model (1)–(2) with the non-local feedback
(39). Left panels are solutions of a and right panels are solutions of b. In these two simulations, n = 2,
D = 0.15 µm2 min−1, R = 2 µm, kon = 10 min−1, koff = 10 min−1, gon = 20 min−1, and
goff = 9 min−1. Other parameters are: a k21 = 2 and k22 = 25; b k21 = 3 and k22 = 4

Hence, the three-equation system is reduced to a two-equation system, but with the
positive feedback as a non-local function of a, unlike the usual feedback forms.

Now we study the parameter regime for achieving symmetry breaking. First, we
start our analysis by considering the steady state equation (9)

k5 + k6an
0

1 + k1 + k2an
0
(1 − a0) − koffa0 = 0. (40)

By denoting k∗
on = gon

gon+goff
kon, k5 = k∗

onk21, and k6 = k∗
onk22, Eq. (40) can be rewritten

as
1

1 + k21 + k22an
0

(
(k5 + k6an

0 )

(
1 − k∗

on + koff

k∗
on

a0

)
− koffa0

)
= 0. (41)

Let the left-hand side be a function g(a):

g(a) = 1

1 + k21 + k22an
g1(a),

where

g1(a) = (k5 + k6an)

(
1 − k∗

on + koff

k∗
on

a

)
− koffa. (42)

It is easy to see that g(a) = 0 if and only if g1(a) = 0. Moreover, for any a0
satisfying g(a0) = 0 (or equivalently g1(a0) = 0), we have g′

1(a0) < 0 if and only

123



Mathematical Analysis of Spontaneous Emergence of Cell Polarity 1851

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

CBA

FE
D

20 ππ 20 ππ 20 ππ

20 ππ 20 ππ 20 ππ

λ1 =0.2711 λ1 =0.1276 λ1 =0.0763

λ1 =0.0586 λ1 =0.2289 λ1 =0.3977

Fig. 5 Time-dependent solutions of a for the one-dimensional model (1)–(2) with the local feedback (28).
In all these simulations, n = 2, D = 0.15 µm2 min−1, R = 2 µm, gon = 20 min−1, and goff = 9 min−1.
Other parameters are: a k11 = 20 min−1, k12 = 250 min−1 and koff = 10 min−1; b k11 = 36 min−1,
k12 = 450 min−1, and koff = 10 min−1; c k11 = 50 min−1, k12 = 650 min−1, and koff = 10 min−1;
d k11 = 30 min−1, k12 = 375 min−1, and koff = 5 min−1; e k11 = 30 min−1, k12 = 375 min−1, and
koff = 13 min−1; f k11 = 30 min−1, k12 = 375 min−1 and koff = 20 min−1

if g′(a0) < 0. Thus, the stability analysis reduces to analysis based on g1. Note
that the function form of g1 in Eq. (42) is similar to the polynomial form feedback
f in Eq. (31), so the stability analysis for spatially homogeneous perturbations we
did in Sect. 5 can be carried out similarly here. After applying the result in Sect. 5,
we conclude that at least one homogeneous steady state solution is locally stable for
spatially homogeneous perturbations in the system (1)–(2) with the feedback form
(39).

Next we want to find a range of parameter in which a steady state solution is
unstable for a perturbation with certain positive wavenumbers k (satisfying (26)) for
obtaining Turing instability. In the following theorem, we define D+ = σ1 Dm +

σ1 Dm
σ1 Dm+goff

k21+k22
1+k21+k22

. The proof of the following theorem can be found in Appendix
7.2.

Theorem 3 Assume that D+ < k5 and n > 1. For the system (1)–(2) with the non-
local feedback form (39), if the condition

1 − (n − 1)
n−1

n

n

koff + D+

k
1
n
6 k

n−1
n

5

>
k5

k5 − 1
n

k∗
on

k∗
on+koff

D+ + n−1
n

k∗
on

k∗
on+koff

koff

(43)
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Fig. 6 Time-dependent solutions of a for the one-dimensional model (1)–(2) with the non-local feedback
(39). In all these simulations, n = 2, D = 0.15 µm2 min−1, R = 2µm, k21 = 2, k22 = 25, gon =
20 min−1, and goff = 9 min−1. Other parameters are: a kon = 10 min−1 and koff = 10 min−1; b
kon = 18 min−1 and koff = 10 min−1; c kon = 25 min−1 and koff = 10 min−1; d kon = 15 min−1

and koff = 5 min−1; e kon = 15 min−1 and koff = 13 min−1; f kon = 15 min−1 and koff = 18 min−1

is satisfied, then there exists a homogeneous steady state solution satisfying conditions
(25) and (26) for Turing instability. In addition, condition (43) also implies that a
locally stable homogeneous steady state solution does not exist.

The time-dependent simulation shown in Fig. 4a demonstrates that one set of parameter
that satisfies the condition (43) gives rise to localization of signaling molecules for the
one-dimensional model.

In the next theorem, we provide conditions for which the homogeneous steady state
is locally stable. The proof of the following theorem can be found in Appendix 7.2.

Theorem 4 Assume that n > 1. For the system (1)–(2) with the non-local feedback
form (39), if the condition

1 − (n − 1)
n−1

n

n

koff

k
1
n
6 k

n−1
n

5

<
k5

k5 + n−1
n

k∗
on

k∗
on+koff

koff

(44)

is satisfied, then there exists a locally stable homogeneous steady state solution.

In Fig. 4b, we choose one set of parameters that satisfies the the inequality (44), and
run a simulation. The solution indeed approaches a homogeneous steady state.

Comparing the simulations in Figs. 3 and 4, we observe that with the non-local
feedback (39), the polarization is sharper and forms faster than that with the local
feedback (28). To test if this is a general trend, we vary the activation rate and deacti-
vation rate coefficients, while keeping the diffusion rate Dm, the recruitment rate gon
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Fig. 7 (Color Figure Online) Time-dependent solutions of a for the two-dimensional model (1)–(2). a With
the local feedback (28). In this simulation, n = 2, D = 0.15 µm2 min−1, R = 2 µm, gon = 20 min−1,
goff = 9 min−1, k11 = 20 min−1, k12 = 250 min−1, and koff = 10 min−1; b with the non-local feedback
(39). In this simulation, n = 2, D = 0.15 µm2 min−1, R = 2µm, k21 = 2, k22 = 25, gon = 20 min−1,
goff = 9 min−1, kon = 10 min−1, and koff = 10 min−1

and the extraction rate goff fixed, with their values based on Altschuler et al. (2008),
Lo et al. (2013). Figure 5 shows that with the local feedback (28), the polarization
always reaches steady state after 60 min. On the other hand, the system with the
non-local feedback (39) produces a sharper polarization and the polarity is stabilized
around 10 min (Fig. 6). If we compare the growth rates, λ1, of the fastest growing
mode, we find that λ1 for the non-local feedback (39), which is between 0.9 and 2.3,
is much larger than that for the local feedback (28), which is between 0.05 and 0.4.
This result supports that the non-local feedback (39) enables faster polarization. In
yeast budding, the localization of membrane-bound Cdc42-GTP is usually very sharp
and forms rapidly, usually in not more than 60 min. We also compare the simulations
of the two feedback functions for the two-dimensional model and the results are con-
sistent with that observed in the one-dimensional simulations. Figure 7 displays two
examples of the simulations for the two feedback functions on the two-dimensional
spherical surface. With the local feedback (28), the polarization reaches steady state
after 50 min (Fig. 7a); the system with the non-local feedback (39) produces a sharper
polarization within 10 min (Fig. 7b). Our simulations suggest that, the non-local feed-
back (39) may play a positive role in the formation of a narrow polarization and fast
dynamics, with diffusion and recruitment rates within some reasonable ranges.

7 Conclusion

Mathematical modeling is an important tool to understand the mechanisms of cell
polarity establishment and maintenance. Numerous models have been proposed for
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different systems of cell polarization (Altschuler et al. 2008; Goryachev and Pokhilko
2008; Jilkine and Edelstein-Keshet 2011; Rätz and Röger 2012). For budding yeast
system, recent studies suggest that spontaneous emergence can be achieved through
cycling of active and inactive Cdc42 molecules and the positive feedback through
Bem1 complex (Altschuler et al. 2008; Goryachev and Pokhilko 2008) or Rdi1 protein
(Smith et al. 2013). However, detailed mathematical analysis of the models is not well
studied in this system.

In this paper, we have formulated a two-equation model of reaction-diffusion sys-
tems for cell polarization, which encompasses many previous polarization models for
yeast and other organisms. Our model consists of active and inactive forms of the polar-
ization molecules, and involves a general form of positive feedback, which could be
local or non-local. We have used Turing stability analysis to analyze the conditions and
the forms of feedbacks that can give rise to spontaneous cell polarization. It is shown
in this paper that linear positive feedback is not sufficient to achieve cell polarization,
while cooperative feedback or non-local feedback due to mediating feedback mole-
cules are good for polarization. Moreover, our results reveal that the diffusion rates
of active and inactive signaling molecules do not need to be very different in order to
produce cell polarization. Finally, our simulations suggest that the molecule-mediated
feedback, which corresponds to the non-local feedback form, plays a positive role in
narrowing the localization area as well as fast dynamics to achieve robust polarization.
The conclusions in this paper provide parameter conditions that can be checked for the
existence of polarized solutions. Furthermore, the analysis of the feedback provides
insights into the mechanisms through which cell polarity is established.

In this study, we only focus on spontaneous emergence of cell polarization which
do not involve inherited spatial cues, such as the budding landmark cues in the normal
budding of yeast cells. Previous studies have shown that cells also exhibit a charac-
teristic and robust pattern of polarization dependent on specific type of spatial cues
(Jilkine and Edelstein-Keshet 2011; Lo et al. 2013; Moore et al. 2008; Park and Bi
2007). In the future work, we will extend our study to these systems [for example, a
yeast model with landmark cues in Lo et al. (2013)] to get better insights into these
biological processes.
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Appendix

7.1 Proofs of Lemmas

In this section, we will state three lemmas, which will be used in the next section for
the proofs of Theorems 1–4. First, we define a function fy(a) used in the lemmas:

fy(a) = (γ1 + γ2an)(1 − γ3 y) − γ4a − D(a − y). (45)

where n > 1, γ1, γ2, γ4 > 0, γ3 ≥ 1 and 0 ≤ D < γ1γ3.
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Lemma 1 The function fy in (45) has the following properties:

1. min
a≥0

fy(a) equals to

γ1 − (γ1γ3 − D)y − n − 1

n
n

n−1

(γ4 + D)
n

n−1

γ
1

n−1
2

(1 − γ3 y)−
1

n−1 ,

which is strictly decreasing with respect to y for y ∈ (0, 1/γ3).
2. For each y, there exist at most two solutions in {a|a ≥ 0} satisfying fy(a) = 0.
3. There exists a number ym in [0, 1/γ3) such that two smooth functions a1(y), a2(y)

can be well defined in the domain [ym, 1/γ3) and the following properties hold:
(a) min

a≥0
fy(a) ≤ 0 for any y ∈ [ym, 1/γ3);

(b) fy(a1(y)) = fy(a2(y)) = 0 for any y ∈ [ym, 1/γ3);
(c) a1(y) > a2(y) ≥ 0 for any y ∈ (ym, 1/γ3);
(d) a′

1(y) > 0 and a′
2(y) < 0 for any y ∈ (ym, 1/γ3);

(e) lim
y→1/γ3

a1(y) = ∞ and lim
y→1/γ3

a2(y) = 0;

(f) d fy
da

∣∣a=a1(y) > 0 and
d fy
da

∣∣a=a2(y) < 0 for any y ∈ (ym, 1/γ3);
(g) if there is at least one solution in a ≥ 0 for f0(a) = 0, then ym = 0;
(h) if there is no solution in a ≥ 0 for f0(a) = 0, then a1(ym) = a2(ym),

d fym
da

∣∣a=a1(ym) = d fym
da

∣∣a=a2(ym) = 0 and min
a≥0

fym (a) = 0.

Proof 1. First we consider the first and second derivatives of fy ,

d fy(a)

da
= nγ2an−1(1 − γ3 y) − γ4 − D, (46)

d2 fy(a)

da2 = n(n − 1)γ2an−2(1 − γ3 y). (47)

By Eq. (47), we show that the minimum point in {a|a ≥ 0}, with y ∈ (0, 1/γ3), is at

a =
(

γ4 + D

nγ2(1 − γ3 y)

) 1
n−1

with

min
a≥0

fy(a) = γ1 − (γ1γ3 − D)y − n − 1

n
n

n−1

(γ4 + D)
n

n−1

γ
1

n−1
2

(1 − γ3 y)−
1

n−1 .

By the given condition D < γ1γ3, it is easy to show that min
a≥0

fy(a) is strictly decreasing

with respect to y.

2. Suppose that y is a fixed number. If min
a≥0

fy(a) > 0, there is no solution a ≥ 0

satisfying fy(a) = 0.
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If min
a≥0

fy(a) = 0, the minimum point

ā =
(

γ4 + D

nγ2(1 − γ3 y)

) 1
n−1

is one of the roots for fy(a). As d fy(a)

da > 0 for a > ā and d fy(a)

da < 0 for 0 ≤ a < ā,
fy(a) > fy(ā) for any a �= ā, and therefore ā is the only solution of fy(a) = 0.

If min
a≥0

fy(a) < 0, by the fact that fy(0) > 0, lim
a→∞ fy(a) > 0 and the intermediate

value theorem, we know that there are at least two solutions satisfying fy(a) = 0. As
d fy(a)

da > 0 for a > ā and d fy(a)

da < 0 for 0 ≤ a < ā, fy(a) > fy(ā) for any a �= ā. So
there are only two roots of fy(a): one is in [0, ā), and the other is in (ā,∞).

3. By the result of part 1, min
a≥0

fy(a) tends to −∞ as y is close to 1/γ3. If min
a≥0

fy(a) >

0 for y = 0, according to the intermediate value theorem, we can find ym such
that min

a≥0
fym (a) equals zero; if min

a≥0
fy(a) ≤ 0 for y = 0, we define ym = 0.

Since min
a≥0

fy(a) is strictly decreasing with respect to y, and according to the results

of part 2, fy(a) = 0 has two solutions a for any y ∈ (ym, 1/γ3), so we can define two
functions a1(y) and a2(y) that satisfy fy(a1(y)) = fy(a2(y)) = 0 and a1(y) > a2(y)

for any y ∈ (ym, 1/γ3), that is,

a1(y) = max{a ≥ 0| fy(a) = 0}, a2(y) = min{a ≥ 0| fy(a) = 0}.
The derivative of fy(a) with respect to y is −γ1γ3 + D − γ2γ3an , which is always
negative, and fy(a) is a smooth function with respect to y and a, and therefore we can
apply the inverse function theorem to show that a1(y) and a2(y) are smooth functions.
By the definitions and the proof of part 2, it is easy to verify the properties (a, b, c, f,
g, h).

By property (b), we have fy(a1(y)) = 0 and fy(a2(y)) = 0. When differentiating
these two equations with respect to y on both sides, we have −γ1γ3+D−γ2γ3a1(y)n+
d fy
da (a1(y))a′

1(y) = 0 and −γ1γ3 + D − γ2γ3a2(y)n + d fy
da (a1(y))a′

2(y) = 0. Hence
we obtain

a′
1(y) = −−γ1γ3 + D − γ2γ3a1(y)n

d fy
da (a1(y))

,

a′
2(y) = −−γ1γ3 + D − γ2γ3a2(y)n

d fy
da (a2(y))

.

By property (f) and γ1γ3 > D, we show that a′
1(y) > 0 and a′

2(y) < 0, which
completes the proof of property (d).

From the proof of part 2, we have a2 ∈
[

0,
(

γ4+D
nγ2(1−γ3 y)

) 1
n−1

)
and a1 ∈

((
γ4+D

nγ2(1−γ3 y)

) 1
n−1

,∞
)

. So we know that a1(y) tends to infinity as y goes to 1/γ3.
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Since a = 0 is the solution for f1/γ3(a) = 0, we have lim
y→1/γ3

a2(y) = 0, which

completes the proof of property (e). �
Lemma 2 If

⎛
⎝1 − (n − 1)

n−1
n

n

γ4 + D

γ
1
n

2 γ
n−1

n
1

⎞
⎠ >

γ1γ3

γ1γ3 − 1
n D + n−1

n γ4
(48)

is satisfied, then
d fa0
da

∣∣a=a0 > 0 holds for any solution a0 satisfying fa0(a0) = 0.

For the proofs of Lemmas 2 and 3, we define two functions S1, S2 in the domain
[ym, 1/γ3):

S1(y) = a1(y) − y,

S2(y) = a2(y) − y,

where a1, a2 and ym are defined in Lemma 1.

Proof There are two parts in the proof:

1. Prove that if S1(ym) < 0,
d fa0
da

∣∣a=a0 > 0 holds for any solution a0 ≥ 0 satisfying
fa0(a0) = 0.

2. Prove that condition (48) implies S1(ym) < 0.

By combining these two results, we can prove that if the condition (48) is satisfied,

then
d fa0
da

∣∣a=a0 > 0 holds for any solution a0 ≥ 0 satisfying fa0(a0) = 0. �
Proof of part 1 Suppose that S1(ym) < 0. Since a1(y) ≥ a2(y), we get S2(ym) ≤
S1(ym) < 0. By a′

2(y) < 0 (Lemma 1(3c)), we have S′
2 < 0, which means that S2 is

a decreasing function. Since S2(ym) < 0 and S2 is a decreasing function, S2(y) < 0
for all y ∈ [ym, 1/γ3), and there is no solution to S2(y) = 0.

According to Lemma 1 and the definitions of S1 and S2, all solutions a0 ≥ 0 for
fa0(a0) = 0 have to satisfy S1(a0) = 0 or S2(a0) = 0. Since S1(ym) < 0 implies
that there is no solution satisfying S2(y) = 0, all solutions a0 ≥ 0 for fa0(a0) have to

satisfy S1(a0) = 0 and therefore
d fa0
da

∣∣a=a0 > 0 according to Lemma 1(3f). �
Proof of part 2 Suppose that condition (48) is satisfied, by Lemma 1(1), we have

min
a≥0

fy(a) = γ1 − (γ1γ3 − D)y − n − 1

n
n

n−1

(γ4 + D)
n

n−1

γ
1

n−1
2

(1 − γ3 y)−
1

n−1 .

If 0 < γ3 y < 1 − (n−1)
n−1

n

n
γ4+D

γ
1
n

2 γ
n−1

n
1

, we have

γ1(1 − γ3 y)
n

n−1 >
n − 1

n
n

n−1

(γ4 + D)
n

n−1

γ
1

n−1
2

,

123



1858 W.-C. Lo et al.

and therefore

γ1 − (γ1γ3 − D)y >
n − 1

n
n

n−1

(γ4 + D)
n

n−1

γ
1

n−1
2

(1 − γ3 y)−
1

n−1 ,

min
a≥0

fy(a) > 0.

�

Lemma 1(3a) implies that ym is larger than 1
γ3

(
1 − (n−1)

n−1
n

n
γ4+D

γ
1
n

2 γ
n−1

n
1

)
, that is,

ym >
1

γ3

⎛
⎝1 − (n − 1)

n−1
n

n

γ4 + D

γ
1
n

2 γ
n−1

n
1

⎞
⎠ > 0. (49)

Then we apply Lemma 1(3h) to show that there is no solution with a ≥ 0 such that
f0(a) = 0.

By Lemma 1(3b, h), we know that (ym, a1(ym)) satisfies the following two equa-
tions:

fym (am) = (γ1 + γ2an
m)(1 − γ3 ym) − γ4am − D(am − ym) = 0, (50)

d fym

da

∣∣a=am = nγ2an−1
m (1 − γ3 ym) − γ4 − D = 0, (51)

where am = a1(ym).
After multiplying (50) and (51) by n and am , respectively, we have

nγ1(1 − γ3 ym) + nγ2an
m(1 − γ3 ym) − nγ4am − nDam + nDym = 0, (52)

nγ2an
m(1 − γ3 ym) − γ4am − Dam = 0. (53)

Substracting (52) by (53), we obtain

nγ1(1 − γ3 ym) − (n − 1)(γ4 + D)am + nDym = 0,

which leads to

am = n

n − 1

1

γ4 + D
(γ1 − (γ3γ1 − D)ym). (54)

By substituting (54) into S1(ym), we obtain

S1(ym) = am − ym = n

n − 1

1

γ4 + D

(
γ1 −

(
γ1γ3 − 1

n
D + n − 1

n
γ4

)
ym

)
. (55)
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By applying (49) and condition (48),

ym >
1

γ3

⎛
⎝1 − (n − 1)

n−1
n

n

γ4 + D

γ
1
n

2 γ
n−1

n
1

⎞
⎠

>
γ1

γ1γ3 − 1
n D + n−1

n γ4
,

which, coupled with (55), implies that S1(ym) < 0.

Lemma 3 Suppose D = 0, and if

⎛
⎝1 − (n − 1)

n−1
n

n

γ4

γ
1
n

2 γ
n−1

n
1

⎞
⎠ <

γ1γ3

γ1γ3 + n−1
n γ4

. (56)

holds, then there exists a solution a0 satisfying fa0(a0) = 0 and
d fa0
da

∣∣a=a0 < 0.

Proof There are two parts in the proof:

1. Prove that if S2(ym) ≥ 0, there exists a0 ≥ 0 such that fa0(a0) = 0 and
d fa0
da

∣∣a=a0 < 0.
2. Prove that condition (56) implies S2(ym) ≥ 0.

By combining these two results, we can prove that if the condition (56) is satisfied,

there exists a0 ≥ 0 satisfying fa0(a0) = 0 and
d fa0
da

∣∣a=a0 < 0.

Proof of part 1 Suppose S2(ym) > 0, as we know that S2(1/γ3) = −1/γ3 < 0, then
by the intermediate value theorem, there exists a solution a0 satisfying S2(a0) = 0

( fa0(a0) = 0), and therefore
d fa0
da

∣∣a=a0 < 0, according to Lemma 1(3f).

Proof of part 2 Suppose that condition (56) is satisfied.
If ym = 0, we have S2(ym) = a2(ym) ≥ 0, which completes the proof of part 2.

Otherwise if ym > 0, by Lemma 1(1), we have

min
a≥0

fy(a) = γ1 − γ1γ3 y − n − 1

n
n

n−1

γ
n

n−1
4

γ
1

n−1
2

(1 − γ3 y)−
1

n−1 .

If γ3 y > 1 − (n−1)
n−1

n

n
γ4

γ
1
n

2 γ
n−1

n
1

, we have

γ1(1 − γ3 y)
n

n−1 <
n − 1

n
n

n−1

γ
n

n−1
4

γ
1

n−1
2

,
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and therefore

γ1 − γ1γ3 y <
n − 1

n
n

n−1

γ
n

n−1
4

γ
1

n−1
2

(1 − γ3 y)−
1

n−1 ,

min
a≥0

fy(a) < 0.

Lemma 1(3h) implies that

ym ≤ 1

γ3

⎛
⎝1 − (n − 1)

n−1
n

n

γ4

γ
1
n

2 γ
n−1

n
1

⎞
⎠ . (57)

By Lemma 1(3b, h), (ym, a1(ym)) satisfies the following two equations:

fym (am) = (γ1 + γ2an
m)(1 − γ3 ym) − γ4am = 0, (58)

d fym

da

∣∣a=am = nγ2an−1
m (1 − γ3 ym) − γ4 = 0, (59)

where am = a2(ym).
After multiplying (58) and (59) by n and am , respectively, we have

nγ1(1 − γ3 ym) + nγ2an
m(1 − γ3 ym) − nγ4am = 0, (60)

nγ2an
m(1 − γ3 ym) − γ4am = 0. (61)

Then subtracting (60) by (61), one obtains

nγ1(1 − γ3 ym) − (n − 1)γ4am = 0,

which leads to

am = n

n − 1

1

γ4
(γ1 − γ3γ1 ym). (62)

After substituting (62) into S2(ym), we get

S2(ym) = am − ym = n

n − 1

1

γ4 + D

(
γ1 −

(
γ1γ3 + n − 1

n
γ4

)
ym

)
. (63)

By applying (57) and condition (56),

ym ≤ 1

γ3

⎛
⎝1 − (n − 1)

n−1
n

n

γ4

γ
1
n

2 γ
n−1

n
1

⎞
⎠

<
γ1

γ1γ3 + n−1
n γ4

,

which, coupled with (63), implies that S2(ym) ≥ 0.
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7.2 Proofs of Theorems 1–4

7.2.1 Theorem 1

Proof First, we set γ1 = k3, γ2 = k4, γ3 = 1, γ4 = koff , and D = D∗ in the lemmas.
By applying Lemma 2, we obtain that if

1 − (n − 1)
n−1

n

n

koff + D∗

k
1
n
4 k

n−1
n

3

>
k3

k3 − 1
n D∗ + n−1

n koff
(64)

then

nk4an−1
0 (1 − a0) − koff − D∗ > 0 (65)

holds for any a0 satisfying

(k3 + k4an
0 )(1 − a0) − koffa0 = 0. (66)

By (30), we know that a0 is a homogeneous steady state solution for a in system
(1)–(2) with the cooperative feedback (28) if and only if a0 satisfies (66). Also, by
D∗ > σ1 Dm + σ1 Dm

σ1 Dm+goff
(k11 + k12a0), inequality (65) implies inequality (26).

By the result obtained from Lemma 2, we have proved that if (64) is satisfied, then
all possible homogeneous steady state solutions satisfy inequality (26). Since at least
one homogeneous steady state solution satisfies inequality (25), we have proved that
if

1 − (n − 1)
n−1

n

n

koff + D∗

k
1
n
4 k

n−1
n

3

>
k3

k3 − 1
n D∗ + n−1

n koff

then there exists a homogeneous steady state solution satisfying (25) and (26). In
addition, since all possible homogeneous steady state solutions satisfy inequality (26)
in this case, locally stable homogeneous steady state solution does not exist. �

7.2.2 Theorem 2

Proof Let γ1 = k3, γ2 = k4, γ3 = 1, γ4 = koff , and D = 0 in the lemmas. By
applying Lemma 3, we obtain that if

1 − (n − 1)
n−1

n

n

koff

k
1
n
4 k

n−1
n

3

<
k3

k3 + n−1
n koff

,

there exists a solution a0 satisfying

(k3 + k4an
0 )(1 − a0) − koffa0 = 0
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and

nk4an−1
0 (1 − a0) − koff < 0. (67)

By (30), we know that a0 is a homogeneous steady state solution for a in the system (1)–
(2) with the cooperative feedback (28) if and only if a0 satisfies (66). Also, inequality
(67) implies that a homogeneous steady state solution is locally stable for perturbations
with any nonnegative wavenumber [satisfying the condition (25) but not satisfying
(26)]. So we have proved that if the condition

1 − (n − 1)
n−1

n

n

koff

k
1
n
4 k

n−1
n

3

<
k3

k3 + n−1
n koff

is satisfied, there exists a locally stable homogeneous steady state solution. �

7.2.3 Theorem 3

Proof First, we set γ1 = k5, γ2 = k6, γ3 = k∗
on+koff

k∗
on

, γ4 = koff and D = D+ in the
lemmas. By applying Lemma 2, we obtain that if

1 − (n − 1)
n−1

n

n

koff + D∗

k
1
n
6 k

n−1
n

5

>

k∗
on+koff

k∗
on

k5

k∗
on+koff

k∗
on

k5 − 1
n D+ + n−1

n koff

, (68)

then

nk6an−1
0

(
1 − k∗

on + koff

k∗
on

a0

)
− koff − D+ > 0 (69)

holds for any a0 satisfying

(k5 + k6an
0 )

(
1 − k∗

on + koff

k∗
on

a0

)
− koffa0 = 0. (70)

By (41), we know that a0 is a homogeneous steady state solution for a in the system
(1)–(2) with the feedback form (39) if and only if a0 satisfies (69).

By equation (70) with k5 = k21k∗
on and k6 = k22k∗

on, we have

1 + k21 + k22an
0 = 1 − a0

1 − k∗
on+koff

k∗
on

a0

. (71)

Now we substitute the feedback form (39) into inequality (26), we obtain

−σ1 Dm + nk6an−1
0

1 + k21 + k22an
0
(1 − a0) − koff − σ1 Dm

σ1 Dm + goff
kon

k21 + k22an
0

1 + k21 + k22an
0

> 0,
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and by using (71), this inequality can be rewritten as

−σ1 Dm + nk6an−1
0

(
1 − k∗

on + koff

k∗
on

a0

)

−koff − σ1 Dm

σ1 Dm + goff
kon

k21 + k22an
0

1 + k21 + k22an
0

> 0.

Since D+ > σ1 Dm + σ1 Dm
σ1 Dm+goff

k21+k22an
0

1+k21+k22an
0

, inequality (69) implies inequality (26).

By the result obtained from Lemma 2, we have proved that if (68) is satisfied, then
all possible homogeneous steady state solutions satisfy inequality (26). Since at least
one homogeneous steady state solution satisfies (25), we have proved that if

1 − (n − 1)
n−1

n

n

koff + D∗

k
1
n
6 k

n−1
n

5

>
k5

k5 − 1
n

k∗
on

k∗
on+koff

D+ + n−1
n

k∗
on

k∗
on+koff

koff

,

there exists a homogeneous steady state solution satisfying (25) and (26). In addition,
since all possible homogeneous steady state solutions satisfy (26) in this case, locally
stable homogeneous steady state solution does not exist. �

7.2.4 Theorem 4

Proof Let γ1 = k5, γ2 = k6, γ3 = k∗
on+koff

k∗
on

, γ4 = koff and D = 0 in the lemmas. By
applying Lemma 3, we obtain that if

1 − (n − 1)
n−1

n

n

koff

k
1
n
6 k

n−1
n

5

<
k5

k5 + n−1
n

k∗
on

k∗
on+koff

koff

,

then there exists a solution a0 satisfying

(k5 + k6an
0 )

(
1 − k∗

on + koff

k∗
on

a0

)
− koffa0 = 0

and

nk6an−1
0

(
1 − k∗

on + koff

k∗
on

a0

)
− koff < 0. (72)

By (41), we know that a0 is a homogeneous steady state solution for a in the system
(1)–(2) with the feedback form (39) if and only if a0 satisfies (69).

By (71), (72) can be written as

nk6an−1
0

1 + k21 + k22an
0
(1 − a0) − koff < 0,

123



1864 W.-C. Lo et al.

which implies that a homogeneous steady state solution is locally stable for perturba-
tions with any nonnegative wavenumber (satisfying the condition (25) but not (26)).
Thus, we have proved that if the condition

1 − (n − 1)
n−1

n

n

koff

k
1
n
6 k

n−1
n

5

<
k5

k5 + n−1
n

k∗
on

k∗
on+koff

koff

is satisfied, there exists a locally stable homogeneous steady state solution. �
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