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Abstract Optimizing eigenvalues of biharmonic equations appears in the frequency control
based on density distribution of composite rods and thin plates with clamped or simply
supported boundary conditions. In this paper, we use a rearrangement algorithm to find the
optimal density distribution which minimizes a specific eigenvalue. We answer the open
question regarding optimal density configurations to minimize k-th eigenvalue for clamped
rods and analytically show that the optimal configurations are distinct for clamped rods
and simply supported rods. Many numerical simulations in both one and two dimensions
demonstrate the robustness and efficiency of the proposed approach.

Keywords Rearrangement algorithm · Eigenvalue optimization · Biharmonic equation ·
Density function · Rods · Thin plates

1 Introduction

Optimization of eigenvalues in problems involving elliptic operators in inhomogeneousmedia
[6,21] has many applications, including mechanical vibration [1,4,5,11,12,15,17,18,20,21,
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27,29,39,42], optical resonator [26,28,31,33], photonic crystals [13,16,19,25,34,35,40,43],
and population dynamics [22,24,32]. Thus far most of the theoretical results and numerical
approaches are developed for the applications which can be modeled as extremum problems
for eigenvalues of second order elliptic operators. However, most of extremum problems for
eigenvalues of fourth order elliptic operators are widely open. Some of major difficulties
come from that the solutions of fourth order equations do not necessarily have the maximum
principle and sign preserving properties as in second order elliptic equations.

For homogeneousmedia, many previous works on eigenvalue optimization of fourth order
elliptic equations focused on studying the optimal shape which optimizes (minimizes or
maximizes) the first eigenvalue [2,10,37,38,41,45,46,48]. In this paper, we study the mini-
mization of a specific eigenvalue of the simplest fourth order elliptic equation, i.e., biharmonic
equation, in inhomogeneous media. This problem comes from the study of frequency con-
trol based on density distribution of composite rods and plates in one and two dimensions,
respectively. In [1,17,18], the authors studied theoretically minimization and maximization
of the first eigenvalue for several given materials with fixed volumes and found that the
density distribution is a monotone function of the square of the eigenfunction corresponding
to the specific eigenvalue to be optimized when the extremum occurs. In [36], numerical
approaches based on ideas of rearrangement were proposed to find density configurations of
the extremal first eigenvalues.

Here we also use a rearrangement approach [27] to minimize the eigenvalues. Not only the
first eigenvalue but also higher eigenvalues are studied. We will answer the open problem 30
mentioned in page 183 of reference [21] regarding the optimal two-phase density distributions
for eigenvalue minimization for clamped rods and hinged rods. Since the first eigenfunction
of the biharmonic equation with clamped boundary conditions can possibly change sign
[8,9,44], the optimal density configuration could be much more complicated than the one
of the harmonic equation. In this paper, we consider optimization problems in parallel to
those studied for harmonic equations. Many numerical results are shown to demonstrate the
robustness and efficiency of our numerical approach.

This paper is organized as follows. In Sect. 2, we introduce the biharmonic eigenvalue
problems and their known theoretical results. In Sect. 3, we perform an asymptotic analysis
to show that the density configurations to minimize a specific eigenvalue of hinged rods
and clamped rods are different. In Sect. 4, we present finite difference methods for forward
eigenvalue problems and the rearrangement algorithm to minimize a specific eigenvalue. In
Sect. 5, numerical simulations on inhomogeneous rods and plates are shown for bang-bang
density distribution with both clamped and simply supported boundary conditions. In Sect. 6,
we conclude our paper with a discussion.

2 Inhomogeneous Biharmonic Eigenvalue Problems

Let � be a bounded open set in R
N . We consider the minimization problem of the k-th

eigenvalue

min
ρ(x)

λk

of the inhomogeneous clamped plate equation

{
�2u(x) = λρ(x)u(x) in �,

u = ∂u
∂n = 0 on ∂�,

(1)
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and the inhomogeneous simply supported plate equation{
�2u(x) = λρ(x)u(x) in �,

u = �u − (1 − ν)(κ ∂u
∂n ) = 0 on ∂�.

(2)

The operator �2 = � · � is the biharmonic operator, u is the eigenfunction, λ is the corre-
sponding eigenvalue, and ρ(x) is in the class

Aα,β,γ (�) = {ρ(x) ∈ L∞(�);α ≤ ρ(x) ≤ β a.e. in�,

∫
�

ρ(x)dx = γ },
where n denotes the unit outward normal, κ is the curvature, ν is the Poisson’s ratio satisfying
−1 ≤ ν ≤ 0.5, and α, β, γ are given constants. For ease of exposition, the dimension N is
chosen to be one or two in this paper. Let (λk, uk) be the k-th eigenpair. Then the variational
formulations of the eigenvalues for clamped boundary conditions are

λ1(ρ) = inf
ψ∈H2

0 (�),ψ �=0

∫
� (�ψ)2 dx∫

�
ρψ2dx

, (3)

and

λk(ρ) = min
Ek ⊂ H2

0 (�),

subspace of dim k

max
ψ∈Ek ,ψ �=0

∫
� (�ψ)2 dx∫

�
ρψ2dx

, (4)

for higher eigenmodes k ≥ 2. The variational formulations of the eigenvalues for simply
supported boundary conditions are

λ1(ρ) = inf
ψ∈H1

0 (�)∩H2(�),ψ �=0

∫
� (�ψ)2 dx − ∫

∂�
(1 − ν)κ

(
∂ψ
∂n

)2
dS∫

�
ρψ2dx

, (5)

and

λk(ρ) = min
Ek ⊂ H1

0 (�) ∩ H2(�),

subspace of dim k

max
ψ∈Ek ,ψ �=0

∫
� (�ψ)2 dx − ∫

∂�
(1 − ν)κ

(
∂ψ
∂n

)2
dS∫

�
ρψ2dx

,

(6)

for higher eigenmodes k ≥ 2.
When ρ(x) is positive everywhere, (1) and (2) are models used to describe the vibration

of a clamped plate and a simply supported plate with the inhomogeneous density function
ρ(x), respectively. It is worth pointing out that the simply supported boundary conditions can
be simplified to the hinged boundary conditions, where �u = 0, in one or two dimensions
with homogeneous Dirichlet boundary conditions and zero curvature on the boundary. In
the discussion below, we will use the terminology “the hinged boundary conditions” for
one-dimensional intervals or two-dimensional rectangular domains. Otherwise, ν will be
specified in the simply supported boundary conditions.

In one dimension, the theoretical results [3–5,42] indicated that the optimal distributions
of ρ(x) are of bang-bang type for both boundary conditions. The eigenvalue problem of an
inhomogeneous clamped rod is{

u(4)(x) = λρ(x)u(x), in [−L , L],
u(−L) = u

′
(−L) = u(L) = u

′
(L) = 0,
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and the eigenvalue problem of a hinged (simply supported) rod is{
u(4)(x) = λρ(x)u(x), in [−L , L].
u(−L) = u

′′
(−L) = u(L) = u

′′
(L) = 0.

Then the unique minimizer ρ̌1(x) (maximizer ρ̂1(x)) of both clamped and hinged extremal
eigenvalue problems minρ(x) λ(ρ) (maxρ(x) λ(ρ)) in the class of Aα,β,γ is

ρ̌1(x) =
⎧⎨
⎩

α, x ∈ (−L ,−δ),

β, x ∈ (−δ, δ),

α, x ∈ (δ, L),

⎛
⎝ρ̂1(x) =

⎧⎨
⎩

β, x ∈ (−L ,−δ),

α, x ∈ (−δ, δ),

β, x ∈ (δ, L),

⎞
⎠

where δ = (γ − 2αL)/(2β − 2α) (δ = (γ − 2βL)/(2α − 2β)). This optimal distribution is
the same as the one for Dirichlet Laplace eigenvalue problem{−u

′′
(x) = λρ(x)u(x), in [−L , L],

u(−L) = u(L) = 0,

which was discovered by Krein [29]. He also found that optimal distributions for general
higher eigenmodes λk (k ≥ 2) of Dirichlet Laplace eigenvalue problem are 2L/k−periodic
and are defined on each interval(

−L + j2L

k
,−L + ( j + 1)2L

k

)
, j = 0, ..., k − 1,

by

ρk(x) = ρ̌1 (kx − (2 j + 1 − k) L)
(
ρk(x) = ρ̂1 (kx − (2 j + 1 − k) L)

)
. (7)

Banks [4] found that the optimal distributions forλk for the hinged rod problem are exactly the
same as (7). However, the optimal density distribution for the clamped rod problem remains
an open question [21, p.183].

In two or higher dimensions, the problem (1) was considered recently in [1,17,18]. The
authors studied minimization and maximization of the first eigenvalue for several given
materials of fixed volumes. The existence of minimizers in the family of all measurable
functions which are rearrangements of a given function were proved for both clamped and
hinged boundary conditions; however, the existence of maximizers can be proved only for
domains � such that the operator is positive preserving, i.e., u ≥ 0 if �2u = f in � with
clamped boundary conditions for any given f ≥ 0. Furthermore, the extremum occurs when
the density function is a monotone increasing (decreasing) function of the square of the
eigenfunction corresponding to the eigenvalue which is to be minimized (maximized). This
implies that the material with higher (lower) density must overlap with where the magnitude
of eigenfunction is larger (smaller).

3 Open Question: Is the Minimizer of Hinged Rod Also the Minimizer of
Clamped Rod?

In this section, we only consider theminimization problem.A similar approach can be applied
to the maximization problem. The minimizers for all eigenmodes with hinged boundary
conditions in one dimension are described in (7). The density in the optimal configuration is
periodically distributed with higher density in the center within each period. However, the
analytic form of the minimizer associated with clamped boundary conditions is unknown
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[21]. Based on numerical simulations shown in Sect. 5.1, we notice that unlike the hinged
boundary conditions, the minimizer of k-th eigenvalue, k ≥ 2, with clamped boundary
conditions, does not have periodicity; in other words, the minimizer of the hinged rod cannot
be the minimizer of the clamped rod. However, it is not trivial to compute the explicit formula
of the minimizers for the clamped rod. Here we attempt to prove that the minimizer of the
hinged rod is not the minimizer of the clamped rod, and it suffices to show that the minimizer
of hinged rod cannot give the minimal eigenvalue in a subspace of the density distributions
satisfying the constraint.

Without loss of generality, we consider the problem on the interval [−1, 1] with the
constraint that half of the rod is of high density, and we search for a minimizer of λ2 in the
subspace of density functions satisfying
{

ρ(x) ∈ Aα,β,γ (�) : ρ(x) =
{

β, if x ∈ [−c − 1
4 ,−c + 1

4 ]
⋃[c − 1

4 , c + 1
4 ],

α, otherwise,

}
(8)

where c ∈ ( 14 ,
3
4 ) and γ = α +β. Note that ρ(x) is the minimizer of the hinged rod if c = 1

2 .
Our goal is to show that the eigenvalue λ2 obtained at c = 1

2 is not the minimum in the
interval ( 14 ,

3
4 ) when clamped boundary conditions are imposed. In the following, we will

prove this by using an asymptotic analysis based on the assumption that the densities of two
materials are sufficiently close.

Let α = ρ, β = ρ + ε, where ρ is a positive constant and ε is a small positive number.
Assume (μ, v) is the second eigenpair of the eigenvalue problemwith a homogeneous density
ρ. Denote the perturbed density by

ρε(x) =
{

ρ + ε, if x ∈ [−c − 1
4 ,−c + 1

4 ]
⋃[c − 1

4 , c + 1
4 ],

ρ, otherwise.

Then the perturbed clamped plate problem is
{

(uε)
(4) (x) = λερεuε(x), in [−1, 1],

uε(−1) = uε(1) = u′
ε(−1) = u′

ε(1) = 0,

and its second eigenpair (λε, uε) can be formally expanded as ([7,23])

λε = μ + εμ1 + ε2μ2 + O(ε3),

uε = v + εv1 + ε2v2 + O(ε3).

The weak formulation is

(
(uε)

(3) ψ − (uε)
′′
ψ

′)∣∣∣1−1
+
∫ 1

−1
(uε)

′′
ψ

′′
dx = λε

∫ 1

−1
ρεuεψdx, (9)

where ψ is a smooth test function. The right-hand side equals

λε

∫ 1

−1
ρεuεψdx = λε

∫ 1

−1
ρuεψdx + λε

∫ 1

−1
(ρε − ρ)uεψdx .

Moreover,

∫ 1

−1
(ρε − ρ)uεψdx =

∫ −c+ 1
4

−c− 1
4

εvψdx +
∫ c+ 1

4

c− 1
4

εvψdx + O(ε2).
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By comparing ε0 order term in Eq. (9), we have

O(ε0) :
(
v(3)ψ − v

′′
ψ

′)∣∣∣1−1
+
∫ 1

−1
v

′′
ψ

′′
dx = μ

∫ 1

−1
ρvψdx . (10)

This equality naturally holds for the eigenpair (μ, v) of the homogeneous eigenvalue problem{
v(4)(x) = μρv, in [−1, 1].
v(−1) = v(1) = ∂v

∂n (−1) = ∂v
∂n (1) = 0

Compare the ε1 order term:

O(ε1) :
(
(v1)

(3) ψ − (v1)
′′
ψ

′)∣∣∣1−1
+
∫ 1

−1
(v1)

′′
ψ

′′
dx

= μ

∫
ρv1ψdx + μ1

∫ 1

−1
ρvψdx + μ

(∫ −c+ 1
4

−c− 1
4

vψdx +
∫ c+ 1

4

c− 1
4

vψdx

)
. (11)

Plugging ψ = v1 into Eq. (10), it yields∫ 1

−1
v

′′
v

′′
1dx = μ

∫ 1

−1
ρvv1dx . (12)

Plugging ψ = v into Eq. (11) and using the equality (12) lead to

μ1

∫ 1

−1
ρv2dx + μ

(∫ −c+ 1
4

−c− 1
4

v2dx +
∫ c+ 1

4

c− 1
4

v2dx

)
= 0.

Hence,

μ1 =
−μ

(∫ −c+ 1
4

−c− 1
4

v2dx + ∫ c+ 1
4

c− 1
4

v2dx

)
∫ 1
−1 ρv2dx

.

It is well known that the eigenfunctions for the homogeneous clamped rod are given by

φn(x) =
⎧⎨
⎩
cosh

(
r1, n+1

2

)
cos

(
r1, n+1

2
x
)

− cos
(
r1, n+1

2

)
cosh

(
r1, n+1

2
x
)

when n is odd,

sinh
(
r2, n2

)
sin
(
r2, n2 x

)
− sin

(
r2, n2

)
sinh

(
r2, n2 x

)
when n is even,

where r1,m and r2,m are them-th positive roots of tan(r) + tanh(r) = 0 and tan(r)−tanh(r) =
0, respectively, and the corresponding eigenvalues are λ2m−1 = r41,m/ρ and λ2m = r42,m/ρ.

Note that on each period
[
kπ
2 ,

(k+2)π
2

]
, tan(x) intercepts with tanh(x) and − tanh(x) once,

respectively, giving those corresponding eigenvalues.
Here we consider the second eigenfunction of v(4) = μρv, which is

v = sinh
(
r2,1

)
sin
(
r2,1x

)− sin
(
r2,1

)
sinh

(
r2,1x

)
,

where π < r2,1 < 3π
2 and r2,1 ≈ 3.9266. Since we know that tan

( 7π
6

) = 1√
3
, tan

(
5π
4

)
= 1

and tanh
( 7π

6

)
> 1

2 , the root must satisfy 7π
6 < r2,1 < 5π

4 .

Due to the fact that μ > 0 and v is an odd function,

μ1 =
−2μ

∫ c+ 1
4

c− 1
4

v2dx
∫ 1
−1 ρv2dx

,

123



J Sci Comput

and

∂λε

∂c
= ε

∂μ1

∂c
+ O(ε2) = −2εμ∫ 1

−1 ρv2dx

∂

∂c

(∫ c+ 1
4

c− 1
4

v2dx

)
+ O(ε2).

Therefore, minimizing the leading order term of λε is equivalent to maximizing
∫ c+ 1

4

c− 1
4

v2dx

when ε is small. Since

∫ c+ 1
4

c− 1
4

v2dx = ∫ c+ 1
4

c− 1
4

(
sinh(r2,1) sin(r2,1x) − sin(r2,1) sinh(r2,1x)

)2
dx,

then

∂

∂c

∫ c+ 1
4

c− 1
4

v2dx

∣∣∣∣∣
c= 1

2

=
(
sinh

(
r2,1

)
sin

(
3

4
r2,1

)
− sin

(
r2,1

)
sinh

(
3

4
r2,1

)

+ sinh
(
r2,1

)
sin

(
1

4
r2,1

)
− sin

(
r2,1

)
sinh

(
1

4
r2,1

))

·
(
sinh

(
r2,1

)
sin

(
3

4
r2,1

)
− sin

(
r2,1

)
sinh

(
3

4
r2,1

)

− sinh
(
r2,1

)
sin

(
1

4
r2,1

)
+ sin

(
r2,1

)
sinh

(
1

4
r2,1

))
.

Note that

sinh
(
r2,1

)
sin

(
3

4
r2,1

)
− sin

(
r2,1

)
sinh

(
3

4
r2,1

)

+ sinh
(
r2,1

)
sin

(
1

4
r2,1

)
− sin

(
r2,1

)
sinh

(
1

4
r2,1

)

= sinh
(
r2,1

) (
sin

(
3

4
r2,1

)
+ sin

(
1

4
r2,1

))

− sin
(
r2,1

) (
sinh

(
3

4
r2,1

)
+ sinh

(
1

4
r2,1

))
> 0,

because sinh
(
r2,1

)
> 0, sin

( 3
4r2,1

) + sin
( 1
4r2,1

)
> 0, sin

(
r2,1

)
< 0 and sinh

( 3
4r2,1

) +
sinh

( 1
4r2,1

)
> 0 for 7π

6 < r2,1 < 5π
4 . We also have

sinh
(
r2,1

)
sin

(
3

4
r2,1

)
− sin

(
r2,1

)
sinh

(
3

4
r2,1

)

− sinh
(
r2,1

)
sin

(
1

4
r2,1

)
+ sin

(
r2,1

)
sinh

(
1

4
r2,1

)

= 8 cos
(r2,1

2

)
cosh

(r2,1
2

)
sinh

(r2,1
4

)
sin
(r2,1

4

) [
cosh

(r2,1
4

)
− cos

(r2,1
4

)]
< 0,

because cos
( r2,1

2

)
< 0, cosh

( r2,1
2

)
> 0, sinh

( r2,1
4

)
> 0, sin

( r2,1
4

)
> 0 and cosh

( r2,1
4

) −
cos

( r2,1
4

)
> 0 for 7π

6 < r2,1 < 5π
4 .
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(a) (b)

Fig. 1 Search for the minimizer of λ2 for clamped boundary conditions by perturbing centers of two equal
bumps. a Plot of second clamped eigenvalue with respect to c, center of symmetric high density regions; b
plot of second clamped eigenvalue with respect to ci ’s, centers of non-symmetric high density regions

Therefore,

∂

∂c

∫ c+ 1
4

c− 1
4

v2dx

∣∣∣∣∣
c= 1

2

< 0 and
∂λε

∂c

∣∣∣∣
c= 1

2

> 0.

This completes the proof that λε is not minimized at c = 1
2 . Now we can conclude that:

(1) when ε is small, the minimizer of the hinged rod is not the minimizer of the clamped
rod; (2) decreasing c near 1

2 can give a smaller second eigenvalue in the subspace of density
functions satisfying Eq. (8). Actually, these conclusions are consistent with what we observe
numerically. We perform a search for the minimizer in the same subspace by calculating the
second eigenmode of the clamped eigenvalue problem for different values of c between 1

4
and 3

4 with α = 1 and β = 2. The plot of the second eigenvalue with respect to c is shown
in Fig. 1a. We can see that the second eigenvalue is increasing with respect to c at 1

2 and
the minimum is achieved between 0.4 and 0.45. We also perform a similar search in a larger
subspace of density functions such that the compartments of high density with equal lengths
are not necessarily symmetric about 0. The centers of the high density compartments, denoted
by c1 and c2, must satisfy − 1

2 ≤ c1 + 1
4 ≤ c2 − 1

4 ≤ 1
2 . The search is thus implemented in

two dimensions in terms of c1 and c2 by computing the second eigenvalue corresponding to
the density function

ρ(x) =
{
2 if x ∈ [c1 − 1

4 , c1 + 1
4 ]
⋃[c2 − 1

4 , c2 + 1
4 ],

1 otherwise.

The result is shown in Fig. 1b. The star marks the minimizer of the hinged rod and the
triangle is for the clamped rod. They are obviously distinct. Numerically we can also see that
the minimizer of the clamped rod is on the line c1 + c2 = 0, i.e., the high density regions are
symmetric with respect to zero.

Remark 1 In fact, if μ1 = 0, c satisfies either

sinh(r2,1) sin

(
1

4
r2,1

)
cos(r2,1c) − sin(r2,1) sinh

(
1

4
r2,1

)
cosh(r2,1c) = 0
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0.3 0.4 0.5 0.6 0.7
−15

−10

−5

0

5

10

15

sinh(r)cos(r/4)sin(rc)
sin(r)cosh(r/4)sinh(rc)

Fig. 2 The plots of sinh(r2,1) sin
(
r2,1

1
4

)
cos

(
r2,1c

)
and sin(r2,1) sinh

(
1
4 r2,1

)
cosh(r2,1c) (left),

sinh(r2,1) cos
(
1
4 r2,1

)
sin
(
r2,1c

)
and sin(r2,1) cosh

(
1
4 r2,1

)
sinh(r2,1c) (right) in

[
1
4 , 3

4

]

or

sinh(r2,1) cos

(
1

4
r2,1

)
sin(r2,1c) − sin(r2,1) cosh

(
1

4
r2,1

)
sinh(r2,1c) = 0.

The first equation has only one root which is approximately 0.4272while the second equation
has no roots in

[ 1
4 ,

3
4

]
, as shown in Fig. 2.

Remark 2 This approach can be applied straightforwardly to the proof of a distinctminimizer
of higher eigenmode λk, k ≥ 3, for a clamped rod from that of a hinged rod. For example,
for the third eigenvalue, if searching the minimizer in the subspace such that the high density
region consists of three sub-intervals with equal lengths, with one of them centered at zero
and the other two symmetric about zero, we can assume

ρε(x) =
{

ρ + ε, x ∈ [−c − 1
6 ,−c + 1

6 ]
⋃[− 1

6 ,
1
6 ]
⋃[c − 1

6 , c + 1
6 ],

ρ, otherwise.

The derivation is similar except that the third eigenfunction of the homogeneous clamped
rod satisfies

v = cosh(r1,2) cos(r1,2x) − cos(r1,2) cosh(r1,2x),

where r1,2 = 5.4978 is the second root of tan(x) + tanh(x) = 0. Minimizing the leading

order term of λε is equivalent to maximizing
∫ c+ 1

6

c− 1
6

v2dx because v is even and ε is small.

Setting the first order derivative equal to zero gives

∂

∂c

∫ c+ 1
6

c− 1
6

v2dx =
(
cosh(r1,2) cos

(
r1,2

(
c + 1

6

))
− cos(r1,2) cosh

(
r1,2

(
c + 1

6

)))2

−
(
cosh(r1,2) cos

(
r1,2

(
c − 1

6

))
− cos(r1,2) cosh

(
r1,2

(
c − 1

6

)))2

= 0,
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i.e., either

cosh(r1,2) cos(r1,2c) cos

(
1

6
r1,2

)
− cos(r1,2) cosh(r1,2c) cosh

(
1

6
r1,2

)
= 0

or

cosh(r1,2) sin(r1,2c) sin

(
1

6
r1,2

)
+ cos(r1,2) sinh(r1,2c) sinh

(
1

6
r1,2

)
= 0.

With r1,2 = 5.4978, the first equation has no roots and the second equation has only one root,
which is c ≈ 0.5892. This indicates that the first order approximation of the minimizer of a
clamped rod in this subspace is achieved roughly when the centers of the three intervals are
approximately located at −0.5892, 0 and 0.5892. In contrast, the centers in the minimizer of
a hinged rod are located at − 2

3 , 0,
2
3 , respectively. Thus the minimizer of a hinged rod is not

the minimizer of a clamped rod for the minimization of the third eigenvalue.

4 Numerical Discretization and Optimization

The numerical approach for extremal eigenvalue problems consists of two parts: (1) the
forward solver on a given domain: given the density function ρ, find its corresponding
eigenvalues λk and eigenfunctions uk ; (2) the optimization solver: given eigenvalues and
eigenfunctions under the current density function, determine a new distribution of the den-
sity function ρ such that the objective function, i.e., λk , decreases. For simplicity, we perform
the finite difference calculations on one-dimensional intervals and two-dimensional rectan-
gular, circular, and annular domains. Problems on general domains can be solved similarly
via finite element approaches [27,36].

4.1 Finite Difference Methods for Forward Problems

The finite difference discretization on different domains adopts distinct treatments to avoid
singularities and impose boundary conditions precisely. On a one-dimensional interval or
a two-dimensional rectangular domain, we follow the regular finite difference method to
discretize the equation. On a sphere or an annulus, the discretization is performed after
transforming the equation into polar coordinates. The details of finite difference discretization
for biharmonic eigenvalue problems equipped with clamped or simply supported boundary
conditions on domains of different shapes are provided in “Appendices 1, 2, 3”.

Overall, the discretization of biharmonic eigenvalue problems on square, circular, and
annular domains, all lead to a square matrix, denoted by A, and the discretization of the
right-hand-side term ρ(x)will form a diagonal matrix, denoted by B, with the corresponding
densityρi, j which orders in the sameway asUi, j along the diagonal. The resulting generalized
eigenvalue problem AU = �BU , with� being the diagonal eigenvaluematrix, is then solved
by Arnoldi’s method [30] to obtain the first few eigenvalues and eigenfunctions.

4.2 Rearrangement Algorithm for Minimization of Eigenvalues

In order to optimize the k-th eigenvalue, we use the fully sorting algorithm which was
proposed to solve optimization problems in harmonic eigenvalue equations [27]. Define the
Rayleigh quotient of the biharmonic operator as
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R[ψ]:=
∫
� (�ψ)2 dx∫

�
ρ(x)ψ2(x)dx

if clamped boundary conditions are imposed, or

R[ψ]:=
∫
� (�ψ)2 dx − ∫

∂�
(1 − ν)κ(

∂ψ
∂n )2dS∫

�
ρ(x)ψ2(x)dx

if simply supported boundary conditions are imposed. Note that in both formulas the density
ρ appears only in the denominator of R[ψ], so we denote the numerator of R[ψ] by D(ψ).
Let B(�) = H1

0 (�) ∩ H2(�) stand for simply supported boundary conditions and B(�) =
H2
0 (�) for clamped boundary conditions. The constraint is given by

∫
�

ρ(x)dx = γ , where
γ is some constant. Under this constraint, once the densities of two materials are given,
the area percentages for each of them are determined. The fully sorting algorithm described
below can guarantee the density constraint is always satisfied. Consider the minimization
problem for the first eigenvalue

min
ρ(x)

λ1 = min
ρ(x)

min
ψ∈B(�)

D(ψ)∫
�

ρ(x)ψ2(x)dx

and

min
ρ(x)

λk = min
ρ(x)

min
Ek ⊂ B(�),

subspace of dim k

max
ψ∈Ek ,ψ �=0

D(ψ)∫
� ρ(x)ψ2(x)dx

for k > 1. Assume that the eigenfunctions are normalized by
∫
�

ρ(x)ψ2(x)dx = 1. At the
i-th iteration, the density function is denoted by ρi . Use the forward problem solver described
in the previous section to find the corresponding eigenvalue λk(ρ

i ) and the eigenfunction
uk(ρi ). For simplicity, denote them by the eigenpair (λk,i , uk,i ). Thus

λk,i = D(uk,i )∫
�

ρi u2k,i dx
.

Our goal becomes to find a density function ρ(x) such that it can maximize the integral in
the denominator, namely,

∫
�

ρ(x)u2k,i dx . (13)

Suppose ρi+1 is a new guess, such that
∫

�

ρi+1u2k,i dx ≥ ∫
�

ρi u2k,i dx,

then a new estimate for λk,i+1 will be smaller because

λ1,i+1 = min
ψ∈B(�),ψ �=0

D(ψ)∫
�

ρi+1ψ2(x)dx
= D(u1,i+1)∫

�
ρi+1u21,i+1(x)dx

≤ D(u1,i )∫
�

ρi+1u21,i (x)dx
≤ D(u1,i )∫

�
ρi u21,i (x)dx

= λ1,i (14)
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and

λk,i+1 = min
Ek ⊂ B(�),

subspace of dim k

max
ψ∈Ek ,ψ �=0

D(ψ)∫
�

ρi+1ψ2(x)dx

= D(uk,i+1)∫
�

ρi+1u2k,i+1(x)dx
≤ D(uk,i )∫

�
ρi+1u2k,i (x)dx

≤ D(uk,i )∫
�

ρi u2k,i (x)dx
= λk,i (15)

for k > 1 whenever uk,i does not belong to the subspace spanned by {u1,i+1, . . . , uk−1,i+1}.
In fact, uk,i never lies in the subspace of lower eigenmodes associated with ρi+1 in our
numerical tests. Therefore, the monotone decreasing sequence

{
λk,i

}
determined by Eq. (14)

and (15) must converge since it is bounded below. The success of this procedure depends on
whether we can find a density function so that it maximizes the integral (13). By using the
finite difference approximation, the discretized eigenfunction Uk and the density function
are written into column vectors

Uk = (Uk1,Uk2, . . . ,UkN )T ,

ρ = (ρ1, ρ2, . . . , ρN )T ,

where N is the total number of nodal points. Consequently, the problem becomes tomaximize
the discretization of (13) ∑

j=1,...,N

ρ jU
2
k j�x2 (16)

subject to the constraint
∑

j=1,...,N
ρ j�x2 = γ if� is a square. This optimization can be solved

by using the following rearrangement inequality.
Rearrangement Inequality [47]: Let

a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn

be ordered sequences of real numbers. The inequality

anb1 + . . . + a1bn ≤ aσ(1)b1 + · · · + aσ(n)bn ≤ a1b1 + . . . + anbn

holds for every choice of permutation σ on 1, 2, . . . , n.
This rearrangement inequality indicates that we could optimize the sum in (16) if we

arrange ρi in the same order as that of U 2
k j . Practically, this means to place higher density

material in the region where U 2
k j is larger to maximize the sum, or to place lower density

material in the region where U 2
k j is larger to minimize the sum.

Remark 3 The rearrangement method we describe above is essentially an alternating opti-
mization algorithm with respect to ρ (rearrangement) and u (Rayleigh principle). The
efficiency of the algorithm is mainly due to the exact solution of the problem with respect to
a fixed u.

Remark 4 This fully sorting algorithm can be directly applied to solve simple λk for k ≥ 1.
However, it is possible that the k-th eigenvalue becomes multiple, that is, it collides with its
neighboring eigenvalues. When this happens, multiple eigenfunctions need to be considered
while updating the density function: instead of the order ofU 2

k j , we should arrange ρ j in the

order of the convex combination
∑c

s=0 αsU 2
(k−s) j where the real numbers αs’s satisfy αs ≥ 0
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and
∑c

s=0 αs = 1 if λk−c, . . . , λk collide. One can perform an optimization algorithm to find
the optimal αs’s which give the largest integral (13) or simply choose a combination such
that the integral increases at each iteration.

Remark 5 If � is a circular or annular domain, the numerical evaluation of the constraint
is different because each cell is a small sector instead of a square (a Jacobian needs to be
multiplied).

We summarize the minimization algorithm in Algorithm 1.

Algorithm 1 Fully sorting algorithm for minimization of λk
Require: Initial guess for ρ(x)
Solve the elliptic eigenvalue problem by the forward finite difference method
while ρ(x) is not optimal do

if the eigenvalue λk is colliding with its neighbors λk−c, . . . , λk−1 then
sort the linear combination

∑c
s=0 αsU2

(k−s) j with
∑c

s=0 αs = 1 in descending order.
else

sort U2
k j in descending order

end if
Assign the high density to the points corresponding to larger values of the sorted vector and low density

to smaller values such that the area of the high density region satisfies the constraint.
if ‖ρ − ρnew‖ = 0 then

Stop
else

solve the elliptic eigenvalue problem with ρnew
ρ = ρnew

end if
end while

The computational complexity per iteration in the algorthim is mostly determined by
Arnoldi iteration which is used to solve forward eigenvalue problems. Generally, the com-
putational complexity of Arnoldi iteration is O(k2N + kN 2), where k is the number of
eigenvalues calculated and N is the matrix size, when solving Ax = λBx . The O(kN 2) cost
is due to the computation of B−1Ax at each Arnoldi iteration while the O(k2N ) is due to the
orthogonalization of the Krylov subspace vector. Since A is a block-tridiagonal matrix and
B is a diagonal matrix, the computation of B−1Ax is reduced to O(kN ). The computational
complexity per iteration is reduced to O(k2N + kN ). As to how fast the rearrangement
algorithm converges, the numerical results shown in [27] indicate that rearrangement algo-
rithm requires much less iterations (usually less than 10 iterations) than the gradient descent
approaches based on shape derivative information (a couple hundred iterations).

5 Simulation Results

In this section, wewill show results of the fully sorting algorithm tominimize λk for k ranging
from 1 to 5 on a square, elongated rectangle, circle, and an annulus. It is worth pointing
out that even for the principle eigenmode on a rectangular domain, the eigenfunction may
oscillate near a corner and experience sign changing analytically [8,9,44]. However, since
the oscillation occurs near a corner within the distance of 10−3 with the amplitude below
10−10, only very high precision method on a fine mesh can capture it numerically. This kind
of behavior also needs further study on more general domains and for higher eigenmodes,
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which is beyond the scope of this paper. In the following numerical simulations, we will
consider rods and plates consisting of two different densities and the percentage of lower
density region exceeds a certain threshold so that the optimal density configuration is more
regular. We expect that the optimal density will become much more complicated when the
sign changing effect cannot be ignored.

5.1 Minimization of λk on an Interval

Consider the eigenvalue problems (1) and (2) on [−1, 1]. First, we test the order of accuracy
of the forward solver to compute the eigenvalues λk, k = 1, . . . , 6, of the discretized operator
described inAppendixwithα = 1, β = 2, γ = 3, and the support of the low densitymaterial
in the middle. The tested mesh sizes are h = 1

100 ,
1

200 ,
1

400 . The results are shown in Tables 1
and 2. The second order accuracy is clearly observed as the second order central difference
scheme is used to approximate the derivatives with hinged and clamped boundary conditions.

We apply the fully sorting algorithm tominimize λk, k = 1, 2, 3, 4, 5, 6 with clamped and
hinged boundary conditions with the initial density functionmentioned above in the accuracy
test. The analytic expression of the optimal density function for the minimizer of a hinged
rod has been derived in [21] and it has the periodic configuration in one dimension, shown in
Fig. 3. However, the results for clamped boundary conditions shown in Fig. 4 indicate that
only the minimizer of the first eigenvalue is the same as that of a hinged rod; for the second
eigenmode, there are also two symmetric high density regions in the minimizer’s profile,
which distinguishes from that of a hinged rod by the non-periodicity; for higher eigenmodes,
the sizes of high density regions are not uniform and the bumps farthest from the center

Table 1 Accuracy test for the first six eigenvalues on [−1, 1] with hinged boundary conditions

h = 1
100 h = 1

200 h = 1
400 log2

∣∣∣∣∣
uh−u h

2
u h
2

−u h
4

∣∣∣∣∣
λ1 5.146887 5.147142 5.147205 2.00

λ2 64.584145 64.590827 64.592497 2.00

λ3 322.810183 322.888050 322.907520 2.00

λ4 1124.788345 1125.391246 1125.542012 2.00

λ5 2724.768224 2727.085277 2727.664785 2.00

λ6 5323.050869 5328.536361 5329.908507 2.00

Table 2 Accuracy test for the first six eigenvalues on [−1, 1] with clamped boundary conditions

h = 1
100 h = 1

200 h = 1
400 log2

∣∣∣∣∣
uh−u h

2
u h
2

−u h
4

∣∣∣∣∣
λ1 28.627477 28.632999 28.634379 2.00

λ2 175.589137 175.656833 175.673764 2.00

λ3 598.313218 598.644725 598.727649 2.00

λ4 1731.976372 1733.570086 1733.968832 2.00

λ5 4023.562912 4029.347445 4030.795288 2.00

λ6 7482.235317 7495.542230 7498.874337 2.00
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Fig. 3 The optimal density distributions and their corresponding eigenfunctions for the minimization of the
first six eigenvalues with hinged boundary conditions

always have larger sizes, whereas for a hinged rod all bumps have the same widths. All the
minimization procedures meet the stopping criterion within 10 iterations by the fully sorting
algorithm.

5.2 Minimization of λk on a Unit Square

Consider the eigenvalue problems (1) and (2) on the unit square [0, 1] × [0, 1]. First, we test
the order of accuracy of the forward solver to compute the eigenvalues λk, k = 1, . . . , 6, of
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Fig. 4 The optimal density distributions and their corresponding eigenfunctions for the minimization of the
first six eigenvalues with clamped boundary conditions

the discretized operator described in Appendix with homogeneous density ρ(x, y)≡1. The
tested mesh sizes are h = 1

50 ,
1

100 ,
1

200 . The results are shown in Tables 3 and 4. The second
order accuracy is clearly observed as the second order central difference scheme is used to
approximate the derivatives with either hinged or clamped boundary conditions.

Now we apply the fully sorting algorithm to minimize the eigenvalues of (1) and (2)
on the unit square with α = 1, and β = 2. The constraint is set to be γ = 1.5 which
is equivalent to requiring that half of the square is at the high value β of density and the
other half is at low value α. We implement the rearrangement algorithm to minimize λk for
k = 1, . . . , 5 on a mesh of 250 × 250 grid points. Notice that for the homogeneous case,
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Table 3 Accuracy test for the first six eigenvalues on [0, 1] × [0, 1] with hinged boundary conditions

h = 1
50 h = 1

100 h = 1
200 log2

∣∣∣∣∣
uh−u h

2
u h
2

−u h
4

∣∣∣∣∣
λ1 389.380069 389.572276 389.620339 2.00

λ2 2429.785187 2433.865669 2434.886804 2.00

λ3 2429.785187 2433.865669 2434.886804 2.00

λ4 6217.793535 6230.081113 6233.156418 2.00

λ5 9688.485415 9727.778393 9737.624872 2.00

λ6 9688.485415 9727.778393 9737.624872 2.00

Table 4 Accuracy test for the first six eigenvalues on [0, 1] × [0, 1] with clamped boundary conditions

h = 1
50 h = 1

100 h = 1
200 log2

∣∣∣∣∣
uh−u h

2
u h
2

−u h
4

∣∣∣∣∣
λ1 1289.954088 1293.683924 1294.621142 1.99

λ2 5348.616237 5377.089561 5384.261203 1.99

λ3 5348.616237 5377.089561 5384.261203 1.99

λ4 11612.640048 11686.047874 11704.606299 1.98

λ5 17104.258221 17260.754751 17300.285961 1.99

λ6 17270.014283 17425.655941 17464.966689 1.99

only λ1 and λ4 are simple among the first five eigenvalues. It is possible that the second
and third eigenvalues collide, and the fifth and sixth eigenvalues also collide during the
optimization. For the eigenvalue whose multiplicity is greater than 1, it is necessary to search
for the optimum based on a combination of neighboring eigenfunctions. Therefore, we need
to compare the minimizers obtained by sorting based on a single eigenmode or a combination
of multiple ones to guarantee that the global optimum is achieved. In this numerical example,
all the minimizers are achieved by sorting based on a single eigenfunction, except that, λ3 is
minimized when λ2 and λ3 collide. In addition, we compare the minimizers of hinged and
clamped plates in Figs. 5 and 6. For the hinged boundary conditions, similar to the results in
one dimension, the optimizer has periodicity in both x- and y-directions. In contrast, the high
density compartments are closer to the center of the domain in the optimizers for clamped
boundary conditions.

5.3 Minimization of λk on an Elongated Rectangle

Consider the eigenvalue problems (1) and (2)withα = 1 andβ = 2 on an elongated rectangle
[−r, r ]× [−1, 1] where r is some constant greater than 1. Let r = 5 so that the length is five
times of the width. On such a domain we expect to observe a similar phenomenon to that on
a one-dimensional interval when minimizing the first five eigenvalues, under the constraint
that half of the rectangle is composed of high density material. The rearrangement algorithm
is carried out on a mesh with h = 1

50 for hinged and clamped boundary conditions. For each
eigenmode, the minimizer of λk is achieved as a simple eigenvalue, shown in Fig. 7. With
hinged boundary conditions, the high density region in the minimizers of λk, k ≥ 2, consists
of k compartments of equal size aligned with the long side with periodicity, whereas the
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Fig. 5 Minimization of λk , k = 1, 2, 3, 4, 5 on a square domain with hinged boundary conditions. Figures in
the first column are the optimized density configurations with the darker color representing the lower value.
Figures in the second column are the corresponding eigenfunctions and figures in the third column are the
convergence history of each eigenvalue. All minimizations converge within 10 iterations
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Fig. 6 Minimization of λk , k = 1, 2, 3, 4, 5 on a square domain with clamped boundary conditions. Figures
in the first column are the optimized density configurations with the darker color representing the lower value.
Figures in the second column are the corresponding eigenfunctions and figures in the third column are the
convergence history of each eigenvalue. All minimizations converge within 10 iterations
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Fig. 7 Optimized density configurations for λk , k = 1, 2, 3, 4, 5, on an elongated rectangle with hinged (left)
or clamped (right) boundary conditions

first and last compartments along the long side show larger sizes when clamped boundary
conditions are imposed. This is consistent with what we observed in one-dimensional optimal
results.

5.4 Minimization of λk on a Unit Disk

Consider the eigenvalue problems (1) and (2) on a unit disk {(x, y) : x2 + y2 ≤ 1} under
the constraint that half of the disk consists of the high density material with α = 1 and
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β = 2. We perform the rearrangement algorithm to minimize λk for k = 1, . . . , 5 after
converting the equation into polar coordinates on a 350× 350 mesh equipped with clamped
or simply supported boundary conditions with ν = 0.3. Notice that for the homogeneous
density distribution, only the first eigenvalue is simple. The second and third eigenvalues
are colliding with each other, so are the fourth and fifth eigenvalues. Therefore, the optimal
configuration of the third eigenvalue is achieved when the second and third eigenvalues
collide and the fifth eigenvalue is minimized when the fourth and fifth eigenvalues collide.
The minimizers of the other eigenvalues are obtained through sorting based on a single
eigenfunction. The results are shown in Figs. 8 and 9. When minimizing λk with k ≥ 2, the
optimal configurations for clamped boundary conditions have the high density regions closer
to the center of the disk, comparedwith those for simply supported boundary conditions. This
is similar to what we observe when the minimization is implemented on a square domain.

5.5 Minimization of λk on an Annulus

Consider the eigenvalue problems (1) and (2) on an annular domain {(x, y) : r2in ≤ x2+ y2 ≤
r2out }, where rin = 0.4 and rout = 1. The constraint is that half of the annulus consists of the
high density material with α = 1 and β = 2. We implement the rearrangement algorithm
to minimize λk for k = 1, . . . , 5 on a 250 × 250 mesh after converting the equation into
polar coordinates for clamped or simply supported boundary conditions with ν = 0.3. On
the annular domain with inner radius 0.4, the second and third eigenvalues collide with each
other, so do the fourth and fifth eigenvalues for the homogeneous density. Therefore, for
λ3 and λ5, the sorting procedure should be implemented in the direction of a combination
of neighboring eigenfunctions. As shown in Figs. 10 and 11, the optimal configurations for
the second eigenvalue are achieved when it is simple, while the optima are obtained for the
third eigenvalue when it collides with the second one. The optimal configurations for the
fourth and fifth eigenvalues are obtained in a similar manner. An interesting observation is
that for the first eigenvalue, the optimal configuration may not be radially symmetric. This
symmetry breaking is analytically studied for harmonic eigenvalue problems on an annular
domain [11,12]. Indeed, a similar phenomenon is observed numerically for the biharmonic
eigenvalue problems. On a fixed annular domain, the symmetry of the optimal configuration
is related to the composition ratio between two different materials given in the constraint.
In Fig. 12, we show the minimization of λ1 for different proportions of the high density
on the annular domain {(x, y) : r2in ≤ x2 + y2 ≤ r22 }, where rin = 0.4 and rout = 1.
When the proportion is relatively large, the optimal configuration is radially symmetric. The
symmetry is gradually lost as the proportion decreases. The threshold for symmetry breaking
is between 0.2 and 0.5 as the proportion of the high density region for simply supported
boundary conditions, and is between 0.5 and 0.8 for clamped boundary conditions.

When the inner radius is sufficiently small, the principle eigenfunction is not of one
sign and the corresponding eigenvalue may have the multiplicity greater than 1 for clamped
boundary conditions [14,44]. We perform the sorting algorithm to minimize λk, k = 1, 2
on the annulus {(x, y) : 1

8002
≤ x2 + y2 ≤ 1} under the constraint that half of the annulus

consists of the high density material with α = 1 and β = 2. Note that when the density
is homogeneous on the clamped punctured disk, the first and second eigenvalues collide,
which is different from the case with relatively large inner radius whereas the second and
third eigenvalues collide. Therefore, it is possible that the second eigenvalue is minimized
when it is colliding with the first one. The mesh is set to be 100× 400 after being converted
into the polar coordinates (r, θ). The results by the rearrangement algorithm are shown in
Fig. 13. Unlike the minimization in the annulus with rin = 0.4, the high density region
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Fig. 8 Minimization of λk , k = 1, 2, 3, 4, 5 on a unit disk with simply supported boundary conditions,
ν = 0.3. Figures in the first column are the optimized density configurations with the darker color representing
the lower value. Figures in the second column are the corresponding eigenfunctions and figures in the third
column are the convergence history of each eigenvalue. All minimizations converge within 10 iterations
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Fig. 9 Minimization of λk , k = 1, 2, 3, 4, 5 on a unit disk with clamped boundary conditions. Figures in
the first column are the optimized density configurations with the darker color representing the lower value.
Figures in the second column are the corresponding eigenfunctions and figures in the third column are the
convergence history of each eigenvalue. All minimizations converge within 10 iterations
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Fig. 10 Minimization of λk , k = 1, 2, 3, 4, 5 on an annulus with rin = 0.4 and rout = 1 with simply
supported boundary conditions, ν = 0.3. Figures in the first column are the optimized density configurations
with the darker color representing the lower value. Figures in the second column are the corresponding
eigenfunctions andfigures in the third column are the convergencehistoryof each eigenvalue.Allminimizations
converge within 10 iterations
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Fig. 11 Minimization of λk , k = 1, 2, 3, 4, 5 on an annulus with rin = 0.4 and rout = 1 with clamped
boundary conditions. Figures in the first column are the optimized density configurations with the darker
color representing the lower value. Figures in the second column are the corresponding eigenfunctions and
figures in the third column are the convergence history of each eigenvalue. All minimizations converge within
10 iterations
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Fig. 12 Optimal density configurations for simply supported (top) and clamped(bottom) boundary conditions,
ν = 0.3, with the proportion of the high density region given as 0.2, 0.5, 0.8 in the constraint, from left to right,
respectively. The darker color represents the lower density. The optimal density is not radially symmetric for
the small proportion and becomes symmetric as the proportion increases
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Fig. 13 Minimization of λ1 and λ2 on an annulus with rin = 1
800 , rout = 1 with clamped boundary condi-

tions. Figures in the first column are the optimized density configurations with the darker color representing
the lower value. Figures in the second column are the corresponding eigenfunctions and figures in the third
column are the convergence history of each eigenvalue. The high density region in the optimized configuration
of λ1 is unconnected and the minimizer of λ2 is obtained when it collides with λ1
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in the minimizer of the first eigenvalue, obtained as a simple eigenmode, is consisting of
two symmetric compartments; the minimizer of the second eigenvalue is obtained when it
collides with the first eigenmode and the configuration may exhibit symmetry breaking by
perturbing the composition ratio.

6 Discussion

In this paper we are interested in the optimization of weighted biharmonic eigenvalue prob-
lems in one- or two-dimensional domains given the constraint that the mass of the materials
is fixed. We answer the open question by demonstrating the optimizer of hinged bound-
ary conditions, whose analytic formula has been previously found, is not the optimizer of
clamped boundary conditions for eigenvalue λk, k ≥ 2, by an asymptotic analysis on a
one-dimensional interval. We also numerically solve the minimizer of clamped boundary
conditions in one dimension and compare with that of hinged boundary conditions, showing
that they are not identical numerically. The analytical formulas of optimizers for clamped
boundary conditions require further studies. The rearrangement algorithm is used to min-
imize eigenvalues on a one-dimensional interval, two-dimensional square, rectangle, unit
disk or an annular domain efficiently. This numerical method can be directly applied to other
optimization problems, such as buckling equations. When applying this method to more gen-
eral domains, special treatment may be needed as eigenmodes collide or symmetry breaking
occurs.

Appendix 1

In one dimension, for simplicity, we choose D = [−1, 1], and define a uniform grid of points
xi = −1 + ih where h is the mesh size, 0 ≤ i ≤ N and N = 2/h. The discretized eigen-
function is denoted by U in the form of a column vector (U0, . . . ,UN )T . We approximate
the fourth order derivative at xi by the central difference formula

U
′′′′
i ≈ Ui−2 − 4Ui−1 + 6Ui − 4Ui+1 +Ui+2

h4
,

for i = 2, · · · , N − 2. To approximate the derivatives at x1 and xN−1, values at ghost points
x−1 = −1 − h and xN+1 = 1 + h are necessary and can be obtained by the given boundary
conditions. If clamped boundary conditions are imposed, that is,

u(−1) = u(1) = u
′
(−1) = u

′
(1) = 0,

we choose U0 = UN = 0 at two end points and U−1 = U1 and UN+1 = UN−1 at two ghost
points. Thus

U
′′′′
1 ≈ 7U1 − 4U2 +U3

h4
,

and

U
′′′′
N−1 ≈ UN−3 − 4UN−2 + 7UN−1

h4
.

The hinged boundary conditions

u(−1) = u(1) = u
′′
(−1) = u

′′
(1) = 0

123



J Sci Comput

lead to U0 = UN = 0 at the boundaries, U−1 = 2U0 − U1 and UN+1 = 2UN − UN−1 at
two ghost points. Thus

U
′′′′
1 ≈ 5U1 − 4U2 +U3

h4
,

and

U
′′′′
N−1 ≈ UN−3 − 4UN−2 + 5UN−1

h4
.

Consequently, the matrix representing the biharmonic operator on [−1, 1] is formed by
assigning the coefficients in the approximation formula of U

′′′′
i to the i-th row.

Appendix 2

In two-dimensional rectangle D = [−a, a] × [−b, b], define a uniform grid of points xi, j =
(x1i , x2 j ) where x1i = −a + ih1, x2 j = −b + jh2 where h1 and h2 are mesh sizes in
x1- and x2- directions, respectively. For simplicity, we assume that h1 = h2 = h. Let(
Ui, j

)
0≤i≤N ,0≤ j≤M be the matrix of the discretized eigenfunction. The second order central

difference scheme involving 13-point stencils is used to approximate the biharmonic operator

�2Ui, j ≈ 1

h4

⎡
⎢⎢⎢⎢⎣

+Ui, j+2

+2Ui−1, j+1 −8Ui, j+1 +2Ui+1, j+1

+Ui−2, j −8Ui−1, j +20Ui, j −8Ui+1, j Ui+2, j

+2Ui−1, j−1 −8Ui, j−1 +2Ui+1, j−1

+Ui, j−2

⎤
⎥⎥⎥⎥⎦

for 2 ≤ i ≤ N − 2, and 2 ≤ j ≤ M − 2. With clamped boundary conditions the biharmonic
operator along i = 1 is approximated by

�2U1, j ≈ 1

h4

⎡
⎢⎢⎢⎢⎣

+U1, j+2

−8U1, j+1 +2U2, j+1

+21U1, j −8U2, j U3, j

−8U1, j−1 +2U2, j−1

+U1, j−2

⎤
⎥⎥⎥⎥⎦ , 2 ≤ j ≤ M − 2,

and

�2U1,1 ≈ 1

h4

⎡
⎣+U1,3

−8U1,2 +2U2,2

+22U1,1 −8U2,1 U3,1

⎤
⎦ .

The approximating formulas along i = N −1, j = 1 or j = M −1 can be derived similarly.
All points at the boundaries are taken as zero, U0, j = UN , j = Ui,0 = Ui,M = 0. For the
hinged boundary conditions, the discretization is almost the same, except the approximations
for points near the boundaries (i = 1 or N − 1, j = 1 or M − 1). For example,

�2U1, j ≈ 1

h4

⎡
⎢⎢⎢⎢⎣

+U1, j+2

−8U1, j+1 +2U2, j+1

+19U1, j −8U2, j U3, j

−8U1, j−1 +2U2, j−1

+U1, j−2

⎤
⎥⎥⎥⎥⎦ , 2 ≤ j ≤ M − 2,
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and

�2U1,1 ≈ 1

h4

⎡
⎣+U1,3

−8U1,2 +2U2,2

+18U1,1 −8U2,1 U3,1

⎤
⎦ .

The discretization along the other sides can be obtained similarly. Each stencil approximat-
ing �2Ui, j is assigned into a row to form the matrix of the discrete biharmonic operator.
Therefore, the size of the matrix to approximate the biharmonic operator on a rectangle is
(N − 1)(M − 1) × (N − 1)(M − 1).

Appendix 3

For the biharmonic eigenvalue problem on a circular or annular domain, we perform the
numerical discretization after transforming the problem into the polar coordinates, and the
harmonic operator in terms of (r, θ) is

�u = ∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2
∂2u

∂θ2
.

Assume the domain � is a disc with radius one, denoted by D(0, 1). In polar coordinates
(r, θ), the mesh is set to be ri = 2i−1

2N+1 , θ j = 2π j
M , i = 1, 2, . . . , N + 1, j = 1, 2, . . . , M to

avoid (0, 0). Suppose U(N+1)×M is the matrix of discretized eigenfunction, then

�Ui j =
(

(2N + 1)2

4(2i − 1)
+ (2N + 1)2

4

)
Ui+1, j +

(
− (2N + 1)2

4(2i − 1)
+ (2N + 1)2

4

)
Ui−1, j

+
(
M(2N + 1)

2π(2i − 1)

)2 (
Ui, j+1 +Ui, j−1

)−
(

(2N + 1)2

2
+ 2

(
M(2N + 1)

2π(2i − 1)

)2
)
Ui j .

Near the center, the ghost point U0, j satisfies

U0, j = U1, j+ M
2
.

For clamped boundary conditions, we can define ghost points outside r = 1 as

UN+2, j = UN , j .

The simply supported boundary conditions in terms of polar coordinates are written as

u = ∂2u

∂r2
+ ν

(
1

r2
∂2u

∂θ2
+ 1

r

∂u

∂r

)
= 0,

where ν is a given constant. Thus we can define

UN+2, j = (νh − 2)UN , j + 4UN+1, j

νh + 2

as the ghost points outside r = 1. Let L be the discrete operator � with clamped or simply
supported boundary conditions, then the biharmonic operator is approximated by L2 after
eliminating the last M rows and columns corresponding to the boundary.

The discretization on an annular domain with an inner radius rin and an outer radius rout is
similar to the circular case, except that the origin is not included in the domain and therefore
the discretized mesh starts at rin and ends at rout in the r -direction . An annulus has both
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inner and outer boundaries, and therefore L2 is obtained by deleting the first and last N rows
and columns from the discrete version of the biharmonic operator with clamped or simply
supported boundary conditions.
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