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Abstract

Cells localize (polarize) internal components to specific locations in response to external signals such as spatial gradients.
For example, yeast cells form a mating projection toward the source of mating pheromone. There are specific challenges
associated with cell polarization including amplification of shallow external gradients of ligand to produce steep internal
gradients of protein components (e.g. localized distribution), response over a broad range of ligand concentrations, and
tracking of moving signal sources. In this work, we investigated the tradeoffs among these performance objectives using a
generic model that captures the basic spatial dynamics of polarization in yeast cells, which are small. We varied the positive
feedback, cooperativity, and diffusion coefficients in the model to explore the nature of this tradeoff. Increasing the positive
feedback gain resulted in better amplification, but also produced multiple steady-states and hysteresis that prevented the
tracking of directional changes of the gradient. Feedforward/feedback coincidence detection in the positive feedback loop
and multi-stage amplification both improved tracking with only a modest loss of amplification. Surprisingly, we found that
introducing lateral surface diffusion increased the robustness of polarization and collapsed the multiple steady-states to a
single steady-state at the cost of a reduction in polarization. Finally, in a more mechanistic model of yeast cell polarization, a
surface diffusion coefficient between 0.01 and 0.001 mm2/s produced the best polarization performance, and this range is
close to the measured value. The model also showed good gradient-sensitivity and dynamic range. This research is
significant because it provides an in-depth analysis of the performance tradeoffs that confront biological systems that sense
and respond to chemical spatial gradients, proposes strategies for balancing this tradeoff, highlights the critical role of
lateral diffusion of proteins in the membrane on the robustness of polarization, and furnishes a framework for future spatial
models of yeast cell polarization.
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Introduction

Breaking symmetry is a fundamental process in biology [1].
Components that were previously uniformly distributed become
asymmetrically localized. This anisotropy or polarization creates
complexity of form and function. The challenge is polarizing in the
right place at the right time to the proper extent under uncertain
and changing conditions (i.e. robust polarization).
Cells localize components to specific locations leading to

morphological changes in response to internal and external cues.
For example, haploid cells of the yeast Saccharomyces cerevisiae
typically form a new bud at the site of the previous bud (internal
cue). In addition, haploid yeast cells can sense an external gradient
of mating pheromone and form a mating projection (shmoo)
toward the source. In both cases, a large number of signaling,
structural, and transport proteins localize at the site of the
morphological change [2,3].
There has been extensive mathematical modeling of cell

polarization as a special case of pattern formation in living
systems. Turing originally proposed that complex spatial patterns

could arise from simple reaction-diffusion systems [4]. Meinhardt
popularized the modeling of biological pattern formation using
generic reaction-diffusion models. In particular, he introduced the
idea that polar structures could arise from local autocatalysis (i.e.
positive feedback) balanced by global inhibition [5]. Subsequently,
researchers constructed more detailed models that incorporated
information about specific molecular species and reactions in cells
undergoing chemotaxis. One class of models used a local
excitation, global inhibition (LEGI) mechanism [6,7].
Sensing and responding to a chemical gradient present many

challenges including sensitivity, dynamic range, tracking, and
noise (Fig. 1A). The gradient may be shallow and the
concentration difference between front and back small (sensitivity).
The average concentration of the chemical ligand may be much
higher or lower than the dissociation constant (Kd) of the ligand
receptor (dynamic range). The source of the chemical signal may
be moving (tracking). There may be noise in the gradient, and so
forth. It is an open question how well these different performance
objectives can be achieved simultaneously. In the literature, the
focus has been on understanding how a shallow external gradient
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can be amplified to create a steep internal gradient of cellular
components. High amplification can result in an all-or-none
localization of the internal component to a narrow region.
However, the tracking of a moving signal source has also been
acknowledged to be important. Devreotes and colleagues [8] made
the distinction between directional sensing (low amplification,
good tracking) and polarization (high amplification, poor tracking).
Meinhardt first highlighted the potential tradeoff between
amplification and tracking [9].
This field possesses an extensive literature, and Dawes et al. [10]

reviewed a number of previous models of eukaryotic gradient-
sensing and cell polarization. Included were the models of
Meinhardt [9], Narang [11], Levchenko-Iglesias [12], Postma-
Van Haastert [13], Maly et al. [14], Haugh and colleagues [15],
Gamba et al. [16], and Skupsky et al. [17]. Many of the models

contained some type of positive feedback structure, as well as
nonlinearities capable of generating ultrasensitivity to the input.
The models ranged from generic models (e.g. [9,11,13] ) to more
mechanistic models (e.g. [10,14,17]).
Dawes et al. categorized the models according to gradient-

sensing, amplification, polarization, tracking of directional change,
persistence when the stimulus is removed (i.e. multi-stability), etc.
Among the 23 papers containing models mentioned in the article,
only four [9,10,17,18] simultaneously considered the issues of
amplification, tracking, and multi-stability. Of these 4, the paper
by Skupsky et al. [17] was most related to the work described here.
Those authors defined 4 modes of gradient-sensing that depended
on the strength of the positive feedback and the extent of
translocation of signaling molecules from the cytoplasm to the
membrane. These modes varied in the degree of amplification

Figure 1. Schematic descriptions of performance objectives and model of polarization. (A) Performance objectives of sensing and
responding to a gradient. The graphs depict the concentration of chemical ligand along the axial length of the cell. Below each graph is a picture of a
cell in a chemical gradient (background shading) with the polarized component in red. The chemical gradient may be shallow (sensitivity), the
average concentration may be low or high (dynamic range), and the direction of the gradient may be changing (tracking). In each case, the external
gradient must be amplified to create a polarized distribution of some internal component. (B) In the model, the polarized species a (red) becomes
localized to the front of the cell through cooperative interactions (q is the Hill cooperativity parameter) in response to the input and through positive
feedback (+). There is global negative feedback (integral control) mediated by the species b (blue). (C) In feedforward/feedback coincidence
detection, the positive feedback amplification of a depends on a feedforward component originating from the input u (green) and a feedback
component originating from a (red).
doi:10.1371/journal.pone.0003103.g001
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(polarization), presence of multiple steady-states, response to a
rotating gradient, etc. However, a detailed characterization of the
modes was hampered by the complexity of the mechanistic model.
We have presented a more mathematical treatment using generic
models motivated by yeast (small) cell gradient-sensing and
polarization. These simple models motivated more complex
mechanistic models later in our paper.
Here we investigated in a systematic fashion the tradeoff between

amplification and tracking during gradient-sensing. We demonstrat-
ed the nature of these tradeoffs using a simple model and well-
defined measures of performance. In particular, we focused on the
roles of cooperativity and positive feedback on amplification and
their effects on tracking. Although the tradeoff could not be
eliminated, it could be fine-tuned throughmodifications to the model
to ensure balanced performance in specific regimes of external
conditions. In addition, we demonstrated that moderate lateral
surface diffusion in the membrane increased the robustness of
polarization. Finally, we used these findings to update our previous
model of yeast spatial sensing of mating pheromone, and simulate
polarization for a range of surface diffusion coefficients.

Results

Generic Model and Measures of Polarization and
Amplification
Previously we constructed a model of yeast cell polarization that

explicitly represented spatial dynamics [19]. In that model we
explored the tradeoff between amplification of a shallow external
gradient into a steeper internal gradient of intracellular compo-
nents and tracking a gradient whose direction is changing. Both
objectives were hard to achieve simultaneously. The complexity of
the model, however, prevented a thorough analysis of the tradeoff.
Here, we constructed a simpler, generic model that captured the
essence of the larger model.

La
dt

~Ds+2
s az

k0
1z buð Þ{q z

k1

1z cað Þ{h
{k2a{k3ba{k5âa ð1:1Þ

db

dt
~k4âab

âa~!aa{ass

!aa~

Ð
s a dsÐ
s ds

u~LmidzLslope z{z0ð Þ

ð1:2Þ

The default value for most of the parameters was 1:
k0 = k1 = k2 = k3 = k4 = k5 = 1 s21; b= c=1; ass=1. This default
case assumes that all of the dynamics in the system are on the
same time-scale. In the investigations below, we typically varied
the values of k0, k1, q, h and Ds. We also explored varying the other
parameters (data not shown) but found that they did not impact
the steady-state behavior as significantly. The input u and the
variables a and b were chosen to be unitless.
In this model (Model 1), the variable a represents the

concentration of the species undergoing polarization and whose
spatial dynamics are of interest (Fig. 1B). The second variable b
represents the concentration of a negative regulator involved in a
negative feedback loop that regulates a and behaves like a global
inhibitor; it is uniformly distributed throughout the cell. The input
u is a linear chemical gradient. The species represented by a is

assumed to be bound to the membrane and the term Ds+2
s a

describes its lateral surface diffusion in the membrane with
diffusion coefficient Ds. The second term (k0/1+(bu)2q) in Eq. (1.1)
represents the cooperative production of a which depends on the
input u; the form of the term is a Hill expression possessing a Hill
cooperativity parameter q and a Hill half-maximal constant 1/b.
The third term is a positive feedback term in which a stimulates its
own production. This autocatalytic reaction is also a cooperative
reaction possessing a Hill cooperativity parameter h and a Hill
half-maximal constant 1/c.
Degradation is described by a first-order decay term (k2a).

Regulation is achieved through two negative feedback terms
representing proportional feedback (k5â) and integral feedback
(k3ba) [20]. The variable b is involved in the integral feedback control
loop with the second differential equation ensuring that the average
steady-state levels of a (ā) will tend to the fixed value ass. The variable â
represents the difference between ā and ass. Because the integral
feedback term k3ba cannot be negative, the steady-state concentration
of a will drop below ass for low input values. Note that we have
assumed that there is fast mixing of the negative regulator
represented by b in the cell interior; this assumption is likely to be
valid for smaller cells. In addition, we point out that the production of
the negative regulator b is autocatalytic, which prevents b from
becoming negative. Finally, modifying the form of Eq. (1.2) by adding
a constant basal synthesis rate (k6) for b breaks the integral control, but
did not significantly alter the steady-state behavior of the model.
Geometrically, we modeled the cell as a sphere with radius

1 mm. We applied a linear spatial gradient described by the
concentration of ligand at the center of the cell, Lmid, and the
gradient slope Lslope (which was relative to Lmid); z is the axial
coordinate along the length of the cell in the direction of the
gradient and z0 is the position of the center of the cell. The
response of the cell was measured by the spatial dynamics of a, and
in particular, the polarized distribution of a. We represented these
dynamics in one-dimension (1D) along the axial length because a
sphere is rotationally symmetric around its axis (axisymmetric).
Biologically, we interpret this model as a signal transduction

cascade in which the cooperative assembly of multi-protein signaling
complexes can give rise to the cooperative input term. Positive
feedback is found in many of these signaling systems. For example, in
the yeast mating response the combined actions of the proteins
Bem1p, Cdc42p, and Cdc24p create a positive feedback loop [21].
Negative feedback loops are also ubiquitous in signaling pathways
and can act upstream at the level of receptor down-regulation to the
more downstream transcriptional activation of negative regulators.
Thus, we view the model as a simplification of more sophisticated
models of cell polarity and chemotaxis from other authors such as the
LEGI models previously mentioned [6]. It is important to note that
for simplicity we chose a generic model formalism that does not obey
mass-action. For example, the synthesis terms show no dependence
on the ‘‘substrate’’ of a, implying that the level of substrate is
constant. However, the fundamental spatial dynamics of the generic
model are reproduced in mass-action models such as the model of
yeast pheromone-induced polarization described later.
We investigated several measures of polarization. First was the

value of a at the front of the cell, af, where the concentration of
ligand is highest. The second was an approximation of the relative
slope of a:

POL að Þ:
af{!aa

!aaR
:

The average concentration of a is ā, and the radius of the cell is
R. The third measure termed the polarization factor (PF) describes
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the ‘‘width’’ of the global distribution of the polarized component:

PF að Þ:1{2
Sp að Þ
SA

Sp að Þ~min Cj j,C5V :

ð

C

a dS~

#

1

2

ð

V
a dS, V is the surface of the sphere

$

Sp(a) is the surface area at the front of the cell that encompasses
50% of the polarized component a and SA is the total surface area
of the cell. An unpolarized cell would have a PF of 0 and an
infinitely polarized cell would have a PF of 1. We concluded that
in most cases, all three measures conveyed the same information
(data not shown), and we have typically plotted af for convenience
and consistency.
Amplification refers to the conversion of the external gradient

signal into the polarization of the internal component. We defined
the amplification factor (AF) as the ratio of polarization of a to the
relative slope (i.e. polarization) of the external gradient of ligand L
(POL(L)). A large AF indicates that the cell can amplify a shallow
spatial gradient to produce significant internal polarization:

AF a, Lð Þ: POL að Þ
POL Lð Þ

:

Amplification is Produced by Cooperativity or Positive
Feedback
For the first half of this work, we explored the spatial dynamics

when Ds=0 (i.e. no surface diffusion). Initially we set k1 = 0 in Eq
(1.1) so that there would be no positive feedback. Amplification
would arise from the cooperative production of a as a function of
input (k0/(1+(bu)2q)). With the parameter b=1, and the average
ligand concentration Lmid=1, we varied the slope of the gradient
(Lslope) for four different values of the Hill cooperativity parameter
q. A maximum polarization of af,2 (POL(a),1 mm21) was
achieved. Increasing q resulted in better polarization at smaller
slopes (i.e. shallower gradients), and thus better amplification
(Fig. 2A). We were able to increase polarization beyond af=2 by
fine-tuning b such that bLf (Lf is the ligand concentration at the
front of the cell) was closer to 1. For b=0.92, af=8 (Fig. 2B).
For a given value of Lmid, it was possible to obtain good

polarization for a shallow slope using a high value of q and fine-
tuning the value of b. What happens when we vary Lmid for a fixed
b and q? Good polarization was observed only for a narrow range
of concentrations. In Figure 2C, we varied Lmid (for a fixed Lslope
relative to Lmid) over a 2-fold range from 1 to 2 for different values
of the cooperativity parameter q. There was a tradeoff: higher
values of q produced better polarization, but a reduced range of
responsiveness. More importantly, the overall range was quite
limited (less than 2-fold), thus indicating a very narrow dynamic
range of the polarization response with k1 = 0.
We added positive feedback by setting k1.0; a acts autocata-

lytically to stimulate its own production. Within the positive
feedback term, there is a Hill cooperativity parameter h. Both k1
and h influenced the strength (gain) of the positive feedback. For
k1 = 1 s21, polarization improved for higher values of h (Fig. 2D).
The increase in polarization was accompanied by the appearance
of multiple steady-states (blue lines). We represented these steady-
states by an envelope of possible solutions. We then explored
different values of k1 for fixed values of h. With h=1, there was no

enhanced amplification even for large values of k1. Thus,
substantial amplification required some degree of cooperativity
in the positive feedback loop [22]. With h$2, we saw increased
maximum polarization for higher values of k1. Thus, increasing k1
or h resulted in dramatic polarization that was associated with
multiple solutions.
When the positive feedback gain was sufficiently large, a

decrease in the gradient slope did not cause a decrease in the
maximum polarization solution. Indeed, the maximum polariza-
tion could be achieved as LslopeR0, indicating the presence of
infinite amplification or what has more commonly been termed
spontaneous polarization (i.e. polarization in response to an
infinitesimal gradient) [11]: AFR‘ when POL(L)R0 and
POL(a)RC.0 (Fig. 2E). Interestingly at higher gradient slopes
there was actually a slight decline in maximum polarization. In
Figure 2E, the envelope of possible solutions is indicated by the
region between the solid lines (maximum polarization solution)
and dashed lines (minimum polarization solutions).
Plotting af versus Lmid revealed a broad dynamic range for the

maximum polarization solution spanning at least four orders of
magnitude for higher values of h (Fig. 2F). At larger values of Lmid,
polarization decreased but was still substantial for h=4 and h=8.
The decrease was caused by the increased contribution of the
input-dependent Hill term at all positions both front and back. In
summary, one potential role of positive feedback in biological
systems is to increase the amplification and dynamic range of
gradient-induced polarization.

Multiple Steady-States Arise from Positive Feedback
Given that there are multiple steady-states, how can one

describe all such solutions? Simulations identify a subset of
solutions one by one; analytic methods are needed to determine
the range of possible solutions. At steady-state the time derivatives
(left-hand side) of the differential Equations (1.1) and (1.2) in
Model 1 go to 0, and then one can solve the resulting algebraic
equations for a: 0 = f(a, b, z). The solution must also satisfy the
integral constraint imposed by integral control: 0 = ā(b)2ass.
Because multiple values of b may satisfy the constraint, one scans
for feasible b, bs, and then solves for the roots of the polynomial
equation f(a, bs, z) = 0.
For didactic purposes, we explored a version of the model in

which we let c= c9(1/(1+(bu)2q)), c9=1 (see Section 2.5 for further
description); the essential results did not depend on the particular
model. For k1 = 0, there was a single solution, and we obtained an
expression in which a is a function of the input-dependent Hill
cooperativity term. For h=1 (k1 = 10 s21), only one value of b
satisfied the integral constraint, and the resulting quadratic
equation in a possessed only one positive root. Thus, there was
at most a single steady-state, which is shown in Fig. 3. For h=2,
there were multiple feasible values of b resulting in a family of root
curves. The resulting polynomials were cubic, and depending on
the parameter values, there could be one or three real roots, which
could be stable or unstable. In Figure 3 (h=2) for a given bs, we
observed a lower stable root and an upper stable root and an
overlapping region containing two stable roots and one unstable
root. One forms a solution by connecting the stable points along
the x-axis in a manner that satisfies the integral constraint, crossing
between the lower and upper root curves in the overlapping region
(blue lines). There were multiple solutions for each root curve
given that one can cross between the lower and upper roots
multiple times, but typically we were most interested in the
solution with the highest polarization value, which is what is drawn
in blue. The envelope of solutions represents the highest polarized
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solutions for each feasible b, and thus does not represent all
possible solutions.
For values of h greater than 2, we solved for the roots

numerically using MATLAB. As h increased, the plots became
more curvy and ‘‘S’’-shaped with a broader overlap region, and
larger upper stable values. In addition, the range of feasible values
of b increased resulting in more solutions and a broader envelope
of polarized solutions. For h=8, the overlap region of some root
curves spanned the entire length of the cell. We termed such root
curves ‘‘three-tier’’ because the root curve was no longer
contiguous within the boundaries of the cell, resulting in three
separate segments, the upper and lower stable solutions and the
middle unstable solution. Such ‘‘three-tier’’ root curves allowed for
reversed polarization solutions in which the intracellular compo-
nent was concentrated at the wrong end of the cell where the
ligand concentration was lower (magenta line; Fig. 3, h= 8); such a
situation may arise from flipping the gradient.
We examined these root plots as we varied other parameters. In

general, increasing the contribution of the positive feedback to
polarization (e.g. increasing k1, decreasing Lslope, etc.) resulted in
more ‘‘S’’ shaped root curves, a broader envelope of possible

solutions, and greater maximum polarization. Thus, a more
comprehensive picture of the spatial dynamics of the model
emerges from the steady-state analysis, which highlights potential
tradeoffs.

Tradeoff between Tracking and Amplification
When the gain (strength) of the positive feedback was high,

amplification was substantial when considering the most polarized
solution. However, what happens when the gradient is flipped?
Biologically, the source of a gradient (e.g. yeast mating partner)
may be moving with respect to the sensing cell. We tested the
ability of the model to track a 180u change in the gradient
direction for different parameter values. In this section, we used
simulations to select a single steady-state solution instead of using
analytic methods to define all possible solutions. In the case of the
pure cooperativity model with no positive feedback (k1 = 0),
tracking was perfect; the polarized distribution of a always aligned
with the gradient (Fig. 4A, k1 = 0). Adding positive feedback by
increasing k1 improved polarization, but at the cost of tracking.
With k1 = 10 s21 and h=4, flipping the gradient resulted in
polarization that partially tracked the change, and when h=8, the
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Figure 2. Cooperativity and positive feedback produced polarization and amplification. (A) Cooperativity alone (k1 = 0) resulted in
amplification of shallow gradients for larger values of q. Polarization was measured by af, the value of a at the front of the cell. We plotted polarization
as the slope of the external gradient, Lslope, was varied (Lmid=1). (B)With cooperativity alone, polarization increased by fine-tuning the Hill constant b.
The variable a was plotted as a function of position along the axial length z. Lmid= 1, Lslope= 0.1 mm21, k0 = 10 s21, q=100. (C) Cooperativity alone
showed limited dynamic range. We varied Lmid over a narrow range from 1 to 2 (Lslope= (0.16Lmid) mm21) and determined af for different values of q.
(D) Increasing the positive feedback gain (k1.0, h$1) enhanced polarization and produced multiple steady-states. We plotted the envelope of
possible steady-state solutions. For cases with multiple solutions, the red trace represents the maximum polarization solution in the envelope. (E)
Infinite amplification of shallow gradients with positive feedback. For k1 = 10 s21, we plotted af for three values of h as we varied the gradient slope
(Lmid= 1). The dashed lines represent the minimum polarization in the solution envelope for each value of h. (F) Positive feedback produced broad
dynamic range. We plotted af as a function of Lmid (Lslope= 0.01 mm21) for three values of h (k1 = 10 s21). Dashed lines represent minimum polarization
solutions.
doi:10.1371/journal.pone.0003103.g002
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polarized species became stuck in the initial direction and did not
track the 180u change in direction at all (Fig. 4A). Thus, there was
a tradeoff between amplification and tracking.
A simple explanation is that tracking was impaired because of the

presence of multi-stability (multiple steady-states) arising from the
positive feedback, including steady-states in which the polarization
was not correctly aligned in the same direction as the gradient.
Cooperativity alone has a single-steady-state and hence can track
perfectly, but without positive feedback, amplification is limited in
terms of the magnitude and dynamic range. For moderate levels of
positive feedback the polarization can be greater, but tracking was
compromised because of the existence of partially polarized solutions
that can be reached when the gradient direction was switched. For
high levels of positive feedback, there was infinite amplification
(spontaneous polarization), but also solutions in which the
polarization was reversed with respect to the gradient.
Intuitively, the positive feedback overwhelms any dependence

on the current input. As a result, hysteresis can arise in which the
polarization depends on the past history of inputs to the cell, as
well as the current input, so that tracking is impaired. Thus,

positive feedback increases amplification, but also results in multi-
stability and the loss of tracking.

Feedforward/Feedback Coincidence Detection in Positive
Feedback Loop Improves Tracking
It would be desirable to obtain a compromise between the

potent amplification obtained from high-gain positive feedback
with the perfect tracking obtained from pure cooperativity in order
to achieve good tracking and polarization under a range of
environmental conditions. We developed a modified version of the
model that could better balance amplification and tracking. We
adjusted the positive feedback term to include a dependence on

the input u: c~c0 1

1z buð Þ{q0

 !

, c9=1 and q9= q. One can

interpret this modification as a type of feedforward/feedback
coincidence detection [23] in the positive feedback loop. The
result is that the positive feedback term has a dependence on both
a and u (Fig. 1C). The input-dependence of the positive feedback is
modulated by the cooperativity parameter q9 in the Hill term. Thus,

Figure 3. Root curves of steady-state equations definemultiple steady-state solutions.The root curves displaying the steady-state solutions of
one model for increasing values of h. Each curve represents the roots for a particular value of b that satisfies the integral constraint; both stable roots
(green circles) and unstable roots (red circles) are present. The highest polarized solution for each root curve is traced in blue. For h=8, a reversed
polarization solution is shown in magenta, which arises from a ‘‘three-tier’’ root curve that is not contiguous within the dimensions of the cell.
doi:10.1371/journal.pone.0003103.g003
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the feedback amplification of a has a feedforward component from u
and a feedback component from a, and these must coincide to obtain
the best amplification. Biologically, one can implement such a
mechanism by the convergence of two signaling pathways, one of
which is part of a positive feedback loop.
We tested the feedforward/feedback (FF) model by switching the

gradient 180u using the default input values of Lmid=1 and
Lslope=0.01 mm21. As before, increasing h resulted in better
polarization, but decreased tracking. Compared to the standard
positive feedback model (SF), however, the FF model displayed better
tracking, but reduced polarization (Fig. 4B). For h=2, the tracking
was nearly perfect whereas in the standard model tracking was
impaired for h=2 (data not shown). For h=4, again there was better
tracking than the comparable SF model although the fact that the
forward and reverse gradient solutions were not the same indicates
multi-stability, which was associated with some loss of tracking. For
h=8, there was no tracking as was observed with the SF model.
Like the SF model, the FF model showed constant polarization

and hence infinite amplification (spontaneous polarization) as the
gradient slope approached 0. Interestingly, at steeper slopes the
polarization actually decreased. We hypothesized that at the higher
slopes there was stronger input-dependence of the polarization and
hence reduced amplification, but better tracking. To check this
possibility we examined the results from a 180u directional change
for a small gradient slope and for a large gradient slope. As expected,
when Lslope=0.0001 mm21, there was no tracking but good
polarization, whereas when Lslope=1 mm21, there was some tracking
but reduced polarization (Fig. 4C). In this figure, we also indicated
the transition to the appearance of ‘‘three-tier’’ root curves described
previously that can give rise to reversed polarization solutions. This
transition occurred as Lslope decreased and the polarization jumped to
a higher value. Thus, decreasing the input-dependence of the
positive feedback by reducing the gradient slope, results in an
increase in polarization but a loss in tracking.

Multi-Stage Amplification Can Improve Amplification or
Tracking
In Model 1, the amplification resulting in polarization is

achieved through the dynamics (i.e. positive feedback and
cooperativity) of one species. We explored a model containing
two polarized species in a cascade resulting in two amplification
stages. The first polarized species a1 serves as the input to the
second stage which gives rise to the polarization of the second
species a2. We essentially duplicated Model 1 to form Model 2:

La1
dt

~Ds+2
s a1z

k0
1z buð Þ{q1 z

k1

1z ca1ð Þ{h1
{k2a1

{k3b1a1{k5âa1

ð2:1Þ

db1
dt

~k4âa1b1 ð2:2Þ

La2
dt

~Ds+2
s a2z

k0
1z ba1ð Þ{q2 z

k1

1z ca2ð Þ{h2
{k2a2{

k3b2a2{k5âa2

ð2:3Þ

db2
dt

~k4âa2b2

âai~!aai{aiss

!aai~

Ð
s ai dsÐ
s ds

u~LmidzLslope z{z0ð Þ

ð2:4Þ

One advantage of two stages is that amplification can be combined
to achieve a larger net amplification. For example, a single reaction
may produce a limited amount of cooperativity. Cascading two
cooperative reactions together can result in a higher total
cooperativity. In Model 2, we let k1= 0 so that there was no positive
feedback. In Figure 4D we redrew the amplification ofModel 1 using
q=10 or q=100. It may be difficult for a single reaction to produce a
Hill cooperativity of 100. However, when we cascaded two reactions
with q1 = q2= 10, then the final cooperativity approached that of
100. Indeed, it is common practice in engineering to link together
amplifiers to attain greater amplification [24].
A second advantage for two stages is better tracking. The first

stage can amplify the external gradient so that the input to the
second stage is steeper than the original input. In Figure 4B, we
observed that for h=8 and Lslope=0.01 mm21, there was no tracking
(but excellent polarization) whereas at Lslope=0.1 mm21, the
polarization was reduced but the tracking was better (data not
shown). We constructed a multi-stage model in which the first-stage
amplification was approximately 100 (AF,100) so that the initial
ligand slope Lslope=0.001 mm21 was transformed into a slope of a1
that was approximately 0.1 mm21. In the second stage (h=8), there
was some tracking of the directional change by the polarized species
a2 because of the steeper input gradient of a1 (Fig. 4E).
A third advantage, which is not investigated here, is that having

two stages can produce a broader dynamic range. The input to the
first stage produces a normalized input to the second stage. Thus,
the negative feedback in the first stage effectively shrinks the
dynamic range being fed into the second stage. From a biological
standpoint, one can propose that the cascaded arrangement of the
heterotrimeric and the Cdc42p G-protein cycles results in multiple
amplification stages, and we exploited this concept in our model of
yeast cell polarization.

Polarization and Tracking in 2D Simulations
To this point, the simulations and analyses employed an axisym-

metric 1D geometry so that it was only possible to change the
direction of the gradient 180u. A greater challenge would be respond-
ing to more subtle directional changes. To this end, we constructed a
two-dimensional (2D) model of the cell, which was represented as a

feedback (SF) model, the no positive feedback case (k1 = 0) is to the left. For (k1 = 10 s21, h=4 or 8), the SF model cannot track the directional change.
(B) In the feedforward/feedback (FF) model (k1 = 10 s21, q= 100), we observed better tracking but at the expense of the polarization. The dashed
green line represents the mirror-image of the forward gradient polarization. (C) The maximum polarization solutions for the FF model as the gradient
slope was varied for h=2, 4, 8. For each h, at lower slope values, there was a transition denoted by the lighter shading to the presence of ‘‘three-tier’’
roots and higher polarization but reduced tracking. For h=8, the polarization at the shallower slope (Lslope=1024 mm21) was greater than at the
steeper slope (Lslope=1 mm21), but some tracking was possible only at the steeper slope. (D) The polarization solution for the single-stage (Model 1)
model with only cooperativity (k1 = 0, q= 10 or 100) is redrawn in black (solid and dashed, respectively). The multi-stage (MS) Model 2 with only
cooperativity is drawn for q1 = q2 = 10 (red line). (E) Gradient directional switch in the MS model. There was amplification of the input gradient
(Lslope= 1023 mm21) to a steeper gradient of a1 (h1 = 1), and as a result, we observed tracking even after the more substantial amplification in the
second stage (h2 = 8).
doi:10.1371/journal.pone.0003103.g004
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circle, so that the gradient could be applied in any direction on the
circle. Using this new model, cells were polarized with an initial
gradient and then the direction of the gradient was changed. After
the shift, we compared the direction of the polarization with the
direction of the gradient as a measure of tracking.
Model 1 with only cooperativity (k1= 0) displayed perfect tracking

for directional changes of 180u, 90u, and 45u as expected since there
is a single solution (data not shown). For the feedforward/feedback
model described above (h=4, q=100) we observed tracking of the
180u degree directional change (although a different polarization
solution), but the polarization was not aligned with the gradient for
the 90u and 45u changes (Fig. 5A). Thus, the 2D simulations offer a
more stringent test of tracking, and more accurately reflects the
conditions of a cell confronted with a shifting gradient.

Surface Diffusion in Membrane Reduces Number of
Steady-States
Diffusion can exert a profound effect on spatial dynamics [4].

The small size of the yeast cell and the fast rate of diffusion in the
cytoplasm for a freely diffusible protein caused us to focus on
lateral surface diffusion in the membrane. Proteins in the

membrane are able to diffuse laterally in the plane of the
membrane [25]. One would expect surface diffusion would
dampen cell polarization by allowing proteins to diffuse away
fr7om sharp concentration peaks. However, what would happen
to the multiple steady-states in the presence of lateral diffusion?
Would the envelope of solutions become less polarized or would
the envelope be modified in some way?
Introducing diffusion caused the envelope of solutions to

collapse to a single solution. In Figure 6A, we overlay the single
solution with Ds=0.001 mm2/s among the envelope of steady-state
solutions with Ds=0; the diffusion solution is positioned toward
the rear of the envelope. It is important to note that the presence
of diffusion prevents analytic solutions to the model. Instead, we
employed exhaustive simulations from a wide variety of initial
conditions to identify any stable steady-states, but simulations
cannot guarantee that we have found all solutions.
However, the response of the FF model with diffusion to

changes in gradient direction also argues for a single steady-state.
When Ds=0, a 180u change in direction resulted in a polarized
solution different from the initial polarization. When
Ds=0.001 mm2/s, the initial and final polarization were identical
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Figure 5. Tracking changes in gradient direction using simulations of two-dimensional polarization model. The gradient direction
(Lmid= 1, Lslope= 0.01 mm21) was initially at 0u (3 o’clock position), and then shifted 45u, 90u or 180u in the counterclockwise direction. The response of
the cell was depicted either on a disk (left figures) in which the value of a is color-coded (dark red = high, blue= low) or in a perimeter plot in which x-
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doi:10.1371/journal.pone.0003103.g005

Robust Cell Polarization

PLoS ONE | www.plosone.org 9 September 2008 | Volume 3 | Issue 9 | e3103



Figure 6. Lateral surface diffusion enhances the robustness of polarization. In the gradient, Lmid= 1 and Lslope= 0.1 mm21. (A) Surface
diffusion selects a single solution among multiple steady-states. The polarization envelope (blue lines) is shown for the FF model (k1 = 10 s21, h= 8)
with no diffusion (red line, maximum polarization; purple line, minimum polarization). The single steady-state solution in the presence of diffusion
(Ds= 0.001 mm2/s), (thick green line). (B) Diffusion improves tracking. A 180u directional change is shown with and without diffusion (green line
represents initial polarization, red line represents reversed polarization, dashed green line represents the reversed polarization solution symmetric to
initial polarization). The overlap between the dashed green and red lines in the presence of diffusion suggests a single steady-state solution and
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(Fig. 6B). A more stringent test was with the 2D models. In the
presence of diffusion, the cell could accurately track directional
changes in the gradient of 90u and 45u (Fig. 5B). Thus, in
biological systems, lateral diffusion in the membrane may play an
important role in preventing multi-stability during polarization.
Polarization in the presence of diffusion for the FF model

increased when the gradient slope decreased (Fig. 6D) just as it did
in the absence of diffusion (Fig. 4C). Again, we interpret this result
in terms of the input-dependence of the polarization. Furthermore,
polarization maintained a constant value even as LslopeR0
indicative of the infinite amplification (spontaneous polarization)
that was observed in the model without diffusion. For the h=8
case, decreasing the slope led to two additional solutions; one is the
unpolarized solution with b=0 and the other is a reversed
polarization solution (Fig. 7B). Thus, at high levels of positive
feedback gain, multiple steady-state solutions could arise with
diffusion, but there was no envelope of solutions. Varying Lmid
showed a peak at Lmid=1 (Fig. 6E). When Lmid.1, there was a
modestly polarized solution (af,2). For Lmid,1, there was not
sufficient activation to achieve polarization. The degree of
polarization was much more modest when compared to the no
diffusion case, but the dynamic range was still broad.

Surface Diffusion Limits Extent of Polarization in a Robust
Fashion
In the absence of surface diffusion, increasing the positive

feedback gain increased the maximum possible polarization
among the multiple steady-state solutions. Introducing membrane
diffusion prevented the more extreme polarization states from
being reached and reduced the number of steady-states. Indeed,
one would expect diffusion to counteract the positive feedback
concentrating components at the front.

Surprisingly, the presence of surface diffusion also caused the
degree of polarization to become robust to changes in the gain
of the positive feedback. In the Ds=0 case, as we increased k1,
we dramatically increased the maximum polarized solution
(Fig. 6C). For Ds=0.001 mm2/s, increasing k1 had only a
modest effect on the maximum polarized solution. Diffusion
pushed the polarization back toward the least polarized solution
in the envelope of steady-state solutions that exist in the absence
of diffusion.
More generally, we found that when Ds.0 the extent of

polarization became relatively insensitive to changes in a wide
range of internal and external parameters (e.g. Lslope, Lmid, k1, h,
etc.). Thus, surface diffusion adds robustness to polarization. From
a biological standpoint, it may be beneficial to cells to have
consistent polarization under different conditions. For example,
yeast cells may not want the width of the mating projections to be
too sensitive to variations in the concentration or gradient slope of
mating pheromone.

Regulating Diffusion Enhances Polarization
The presence of lateral diffusion in the model, prevents the

appearance of highly polarized states in Model 1. Yet, there are
circumstances when a cell will want a particular protein localized
to a narrow region at the front [3]. One possibility is to regulate
the diffusion coefficient in some manner. We postulated that the
diffusion coefficient could depend on a and developed the

following functional form: Ds~
Dmax

1z cað Þm, where c~

c0 1

1z buð Þ{q0

% &
and we let q= q9=100 and m=8. This term

effectively creates a diffusion barrier so that positions in the cell
where a is high (front), DsRDmax, whereas at positions where a is
small DsR0.

perfect tracking. (C) Presence of diffusion ensures that polarization is robust to variations in the positive feedback. When Ds= 0, increasing k1 results
in a dramatic increase in the maximum polarization solution. In the presence of diffusion there is almost no change in polarization for larger k1 (note
reduced scale of y-axis in right graph). (D) Polarization as a function of Lslope (Lmid=1) in the FF model with diffusion (Ds= 0.001 mm2/s). For h= 8,
there were two additional solutions for smaller Lslope values: an unpolarized b=0 solution (dashed green line) and a reversed polarized solution
(dotted green line). (E) Polarization as a function of Lmid, Lslope= (0.016Lmid) mm21, in the FF model with diffusion (h= 8). (F) Regulating diffusion can
produce stronger polarization. Using the regulated diffusion term described in the text, enhanced polarization seen compared to constant diffusion
(dashed lines). There were two forward polarization solutions, and both gave the same reversed solution when the gradient was flipped.
doi:10.1371/journal.pone.0003103.g006
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For Dmax = 0.001 mm2/s, we examined polarization in the high
positive feedback case (k1 = 10 s21, h=8). Compared to unregu-
lated diffusion, we observed more pronounced polarization which
peaked at af,9. There was also the appearance of more than one
steady-state, but the number of steady-states was smaller than in
the Ds=0 case; only two steady-states were found from extensive
simulations (Fig. 6F). Consistent with the fewer solutions, tracking
of a 180u change in gradient direction was good. Thus, regulating
diffusion balances polarization with tracking, and biologically this
additional level of modulation could be important in optimizing
the polarization response.

Increasing Diffusion Promotes Oscillations
Increasing the positive feedback gain results in multi-stability

and extremely polarized solutions. Increasing diffusion reduces
multi-stability and polarization. What happens with high levels of
both positive feedback and diffusion?
Using simulations, we constructed a bifurcation diagram

summarizing the dynamical behaviors for different values of h
and Ds in a version of the FF model possessing integral but not
proportional negative feedback (i.e. k5 = 0). In Figure 7A, we
explored values of Ds from 1023 to 10 mm2/s and values of h from
2 to 8. For lower values of h and Ds, we observed a single steady-
state solution. Increasing h with small Ds resulted in two steady-
state solutions; interestingly, the second solution was a reversed
solution in which the polarization was at the rear of the cell
relative to the gradient (Fig. 7B). Increasing Ds and to a lesser
extent increasing h produced limit-cycle oscillations. Thus, there is
a danger of instability for biological systems when diffusion and
positive feedback are too high. It is important to emphasize that
these results were derived from exhaustive simulations, and thus
we cannot exclude the possibility that additional solutions exist.

Constructing a New Model of Yeast Cell Polarization
Induced by Mating Pheromone Gradients
This research was motivated by an interest in yeast cell

polarization, and one of the primary goals was to apply the insights
gained from the generic models to models more specific to yeast.
Our past efforts modeling yeast cell polarization [19] were
hampered by the complexity of the model. The work described
above helped us to understand the model behavior and make
improvements. This model was based on the spatial dynamics of
the heterotrimeric and Cdc42p G-protein cycles. Receptor (R)
binds ligand (L) and becomes activated (RL). Activated receptor
converts heterotrimeric G-protein (G) into activated a-subunit
(Ga) and free Gbc (Gbg). All of these species are on the
membrane. The connection between the two cycles is the fact
that free Gbc recruits cytoplasmic Cdc24p to the membrane.
Membrane-bound Cdc24p (C24m) activates Cdc42p. Activated
Cdc42p (C42a) recruits the scaffold protein Bem1p (B1) to the
membrane. Finally, a positive feedback loop is created because
membrane-bound Bem1p can bind and recruit Cdc24p to the
membrane. All components residing on the membrane were
subject to the same lateral diffusion. It is important to note that the
model lacks an explicit consideration of ligand-stimulated
endocytosis and polarized synthesis which are known to be crucial
for many aspects of cell polarity [26,27] and are the subjects of
future research. For this work, we focused on the fast positive
feedback loop mediated by Bem1p [28].
The connection between the yeast model and the generic model

(Model 1) is best seen in equation describing the dynamics of
membrane-bound, active Cdc24p (C24m, Eq. (3.5)). There,
recruitment of Cdc24p to the membrane depends on a cooperative
term that is a function of Gbc, (k24cm0 Gbg#n

' (
C24c½ %), and a

positive feedback term, (k24cm1(B1
*)[C24c]), that depends on

Bem1p which in turn is a function of active Cdc42p and hence
active Cdc24p. We made two important modifications to the
previous model. First, we added a negative feedback loop for
better regulation. The loop includes the protein kinase Cla4p
which is activated by Cdc42p and which phosphorylates and
inhibits Cdc24p resulting in negative feedback [29]. Second, there
is a feedforward/feedback coincidence detection term in the
positive feedback loop for better tracking that involves Gbc. The
input to the model was a gradient of the mating pheromone alpha-
factor; the output was active Cdc42p ([C42a]).
The first four equations (3.1 to 3.4) describe the spatial

dynamics of the heterotrimeric G-protein cycle, and the next five
equations (3.5 to 3.9) describe the spatial dynamics of the Cdc42p
G-protein cycle. The two-stage structure of the model was
important for extending its dynamic range.

L R½ %
Lt

~Ds+2
s R½ %{kRL L½ % R½ %zkRLm RL½ %{kRd0 R½ %zkRs ð3:1Þ

L RL½ %
Lt

~Ds+2
s RL½ %zkRL L½ % R½ %{kRLm RL½ %{kRd1 RL½ % ð3:2Þ

L G½ %
Lt

~Ds+2
s G½ %{kGa RL½ % G½ %zkG1 Gd½ % Gbg½ % ð3:3Þ

L Ga½ %
Lt

~Ds+2
s Ga½ %zkGa RL½ % G½ %{kGd Ga½ % ð3:4Þ

L C24m½ %
Lt

~Ds+2
s C24m½ %zk24cm0 Gbg#n

' (
C24c½ %

zk24cm1 B1#ð Þ C24c½ %{k24mc C24m½ %

{k24d Cla4a½ % C24m½ %

ð3:5Þ

L C42½ %
Lt

~Ds+2
s C42½ %{k42a C24m½ % C42½ %zk42d C42a½ % ð3:6Þ

L C42a½ %
Lt

~Ds+2
s C42a½ %zk42a C24m½ % C42½ %{k42d C42a½ % ð3:7Þ

L B1m½ %
Lt

~Ds+2
s B1m½ %zkB1cm C42a½ % B1c½ %{kB1mc B1m½ % ð3:8Þ

L Cla4a½ %
Lt

~kCla4a C42a#t
) *

{kCla4d Cla4a½ % ð3:9Þ

A more detailed description of the model is in the Appendix S1
(Supporting Information).

Modeling the Effect of Surface Diffusion on the
Robustness of Yeast Cell Polarization
Using the yeast model, we wished to estimate the range of

surface diffusion coefficients that would permit robust polarization
in yeast cells in response to mating pheromone. When Ds=0,
there was good polarization, but also multi-stability, which was
manifested when we reversed the gradient and an alternative
polarized solution appeared that was not identical to the initial
polarization (Fig. 8). Adding lateral diffusion with Ds=0.001 mm2/
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s resulted in a single steady-state with perfect tracking for the input
conditions. Increasing Ds ten-fold (Ds=0.01 mm2/s) maintained a
comparable level of polarization, although the shape of the
distribution was altered. For Ds=0.1 mm2/s, polarization was
abolished. Thus, in this model, the highest range of Ds that
produced good polarization was between 0.01 and 0.001 mm2/s.
In a previous section, we demonstrated that larger values of
diffusion were associated with better tracking and a reduced

likelihood of multi-stability. In yeast, the measured value of Ds was
0.0025 mm2/s [30], and so our simulations suggest that membrane
fluidity in yeast has been tuned for robust polarization.
We also examined the dynamic range and sensitivity to shallow

gradients of the yeast model with Ds=0.001 mm2/s. Interestingly,
the yeast model displayed similar qualitative behavior to the generic
FF model with diffusion (compare Figs. 6 and 8). For h=4 and h=8,
polarization in the yeast model was observed even at relative slopes
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Figure 8. Simulations of spatial model of yeast cell polarization. (A) Effect of lateral surface diffusion on mating factor induced polarization
in yeast cell model. The input was an alpha-factor gradient (Lmid=10 nM and Lslope=1 nM/mm) and the output was the steady-state concentration of
active Cdc42p ([C42a]), which was plotted along the axial length of the cell. The results were for different surface diffusion coefficients. (B)
Polarization in yeast model as a function of Lslope (Lmid=10 nM) in the yeast model with diffusion (Ds= 0.001 mm2/s). Polarization is described in terms
of the polarization factor (maximum polarization= 1; unpolarized= 0; PF= 0.8 corresponds to af,5; PF=0.5 corresponds to af,2). Three values of h
were examined: h= 2 (red), h= 4 (blue), h= 8 (green). For h= 8, there was an additional unpolarized solution (dashed green line) for smaller Lslope
values. (C) Polarization as a function of Lmid, Lslope= (0.016Lmid) mm21, in the yeast model with diffusion for three values of h.
doi:10.1371/journal.pone.0003103.g008
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less than 0.01 mm21 (Fig. 8B). For h=8, there was an additional
steady-state solution in which the cell was unpolarized (Fig. 8B, green
dashed line). The dynamic range of gradient-sensing and polariza-
tion was excellent in the yeast model for h=4 and h=8, extending
beyond Lmid=1000 nM (Fig. 8C). Polarization was greater than in
the generic model in part because of the two-stage (two-cycle)
structure of the yeast model. For h=2, polarization declined at
higher values of Lmid, and for h=8, there was an additional
unpolarized solution; h=4 represented a compromise. Finally, we
ran 2D simulations of the yeast model (h=4) which exhibited good
tracking to changes in the gradient direction (data not shown) again
resembling the generic FF model with diffusion. Thus, the yeast
model could show robust performance with a balance of
amplification, dynamic range, and tracking. It should be noted that
recent experiments have demonstrated that yeast cells can sense
pheromone gradients possessing relative slopes as shallow as
0.001 mm21 and at concentrations as high as 1000 nM (T.I. Moore,
C.S. Chou, Q. Nie, N. L. Jeon and T.-M. Yi, submitted), and so this
modeling can help serve as a framework for future more realistic
models that contain more detailed reaction mechanisms.

Discussion

In this paper, we investigated the spatial dynamics of cell
polarization induced by chemical gradients focusing on the
tradeoff between amplification and tracking and on the impact
of lateral surface diffusion on polarization. Previous work has
noted this tradeoff, but we wished to explore its nature in greater
depth by using a generic model and steady-state analysis. A highly
cooperative response to the input resulted in good tracking of a
moving signal source, but amplification to produce potent
polarization was limited to a very narrow range of concentrations.
Adding high-gain positive feedback resulted in strong amplifica-
tion over a broad range of concentrations, but tracking was poor.
Intuitively, one can understand this tradeoff in terms of the

input-dependence of the amplification. High input-dependence is
necessary for tracking, but then weaker inputs (i.e. shallow
gradients) will not be amplified as well. On the other hand, low
input-dependence results in good amplification regardless of the
input strength, but then tracking a directional change in the input
becomes difficult (i.e. polarization becomes stuck).
An important technical tool was the application of steady-state

analysis to the model. The positive feedback led to multiple steady-
states, which we were able to describe by analytical solutions to the
model equations. We could then see the connection between
increased positive feedback, a larger envelope of steady-states,
amplification that was not input-dependent, and the loss of
tracking. With a single steady-state, tracking is perfect, whereas
with multiple steady-states, there could exist solutions in which the
polarization is not aligned in the same direction as the gradient.
Living systems evolve to find the appropriate balance for this

tradeoff in a given environment. There must be sufficient
amplification to induce the proper polarization for gradients
typically encountered. Likewise, tracking is a significant consider-
ation if the signal source is expected to move. In the context of the
yeast mating response, there must be sufficient polarization to
form a mating projection over a range of background pheromone
concentrations, which may vary according to the number and
proximity of mating partners, and at the same time, the ability to
redirect the projection if the partner moves or mates with another
cell. We constructed a modified model in which feedforward/
feedback coincidence detection improved tracking with some loss
in dynamic range. Tracking performance could be further
improved using multi-stage amplification to split the amplification.

The presence of lateral surface diffusion significantly altered
polarization behavior. First, at low diffusion coefficients, it collapsed
the multiple solutions to fewer solutions, and in certain cases, to a
single solution. As a result, tracking was improved, but the extent of
polarization was reduced. When combined with the feedfoward/
feedback coincidence detection, low levels of lateral diffusion
produced perfect tracking over a range of input gradient conditions.
A second effect of lateral diffusion was that the degree of polarization
was quite robust to changes in the parameter values. It may be
advantageous to cells that polarization is robust to variations in
internal and external conditions. Third, high levels of diffusion
coupled to high positive feedback resulted in oscillations. Together,
these results argue that maintaining the proper level of diffusion in
the membrane is critical for robust polarization. It is important to
mention that there is a concern that some of these conclusions may
depend on the particular model structure. Although we attempted to
formulate a ‘‘general’’ generic model structure, further research is
needed to address this concern.
We took the lessons from the simple model and incorporated them

into a more complex model of yeast polarization. In particular, we
implemented feedforward/feedback coincidence detection via Gbc
influencing the Cdc24p-Cdc42p-Bem1p positive feedback loop, and
also implemented negative feedback regulation of Cdc24p. The
resulting model exhibited good polarization, gradient sensitivity, and
dynamic range. In the future, we plan to improve the model by
adding multi-stage amplification that takes advantage of polarized
synthesis and endocytosis of the pathway components. In addition,
we would like to add more mechanistic elements and evaluate the
robustness of the models.
From this research, certain predictions and explanations arise.

First, we expect the cellular polarization apparatus to contain
elements that generate both cooperativity and positive feedback,
and the amount of each depends on the appropriate amplifica-
tion/tracking balance suitable for the cell in its natural
environment. Second, we identify feedforward/feedback coinci-
dence detection and multi-stage feedback as important strategies
for improved tracking ability of cells. Third, we demonstrated that
lateral surface diffusion contributes significantly to the robustness
of polarization, and predict that this diffusion will be carefully
regulated. Fourth, we used simulations of yeast cells to show that
proper polarization was achieved using values of the diffusion
coefficient between 0.01 mm2/s and 0.001 mm2/s, and indeed
Valdez-Taubas and Pelham [30] have measured a value of
0.0025 mm2/s.
In the future, we will address additional robustness issues

relating to cell polarization induced by spatial gradients. Foremost
among these is handling the presence of noise. Stochastic noise
arises from fluctuations in the gradient, Brownian motion of the
cell, the random nature of the discrete binding events between
ligand and receptor [31], etc. These stochastic variations must be
distinguished from more meaningful changes in the gradient signal
such as a directional change caused by the movement of the signal
source. Separating signal from noise is a classic problem in
engineering and requires some type of noise filtering [32]. In
addition to external noise, there is internal noise arising from
variations in the levels and functioning of system components.
Regulatory systems must exist to ensure robust polarization in the
presence of this internal uncertainty. Furthermore, it is important
to investigate different control strategies for improving robustness.
For example, an adaptive control strategy involving the self-tuning
of key system parameters could make the system more robust to
both internal and external variations. Finally, we would like to
connect this research more closely to the biology of yeast cell
gradient-sensing and polarization.
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Materials and Methods

Simulations
The surface diffusion of a quantity W on an axisymmetric

surface in a three dimensional space has the following expression:
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where s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 að Þzr2 að Þ

p
is the arclength of the cell membrane.

Consequently, the equations in Model 1 becomes one-dimensional
in terms of the parameterization variable a$, even though the cell
is a three dimensional axisymmetric ellipsoid.
For a system in the two-dimensional space, in which the cell

surface is a curve, the expression of the surface diffusion of a
quantity W becomes

+2
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where s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 að Þzr2 að Þ

p
is the arclength of the cell membrane.

Numerical discretizations of each variable on the cell membrane
were carried out in a for both cases. All spatial derivatives in the
equations were approximated using a second-order finite difference
discretization. The temporal discretization was carried out using a
fourth order Adams-Moulton predicator-corrector method.
In a typical simulation, the number of grid points in space was 200

with a time-step of 561024 s. We tested a range of grid and time-
step sizes to assure convergence of the simulations. The simulations
in this paper were well-resolved with the above discretization.

Steady-State Analysis
Without diffusion, the steady state equations 1.1 and 1.2 of

Model 1 have a simple form,
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By rewriting Eq. (6) and eliminating the zero solution b=0 in Eq.
(7), the steady state system consists of a polynomial equation of a,
with at most h+1 roots, and an equation for the integral control of
a. The system was solved using the MATLAB polynomial solver
‘ROOT’. We carried out linear stability analysis around each
steady-state. We selected the stable steady-state solutions satisfying
the integral control equation.
For the system with surface diffusion, a nonlinear Gauss-Seidel

iteration procedure [33] was used for the simulations.

Performing Lslope and Lmid Scans in Models Containing
Diffusion
We calculated the polarization as a function of Lslope and Lmid in

the models containing diffusion by running a series of simulations.
In the Lslope scan, we fixed Lmid and scanned through a series of
Lslope values evenly distributed on a log scale. We first scanned from
lower Lslope values to higher values. At each succeeding scan point,
the initial values were taken as the steady-state computed at the
previous scan point. The second scan started with the highest Lslope
value and proceeded backwards. The Lmid scans were performed in
an analogous manner.

Supporting Information

Appendix S1

Found at: doi:10.1371/journal.pone.0003103.s001 (0.20 MB
PDF)
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