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Abstract. Studies of developing and self-renewing tissues have shown that
differentiated cell types are typically specified through the actions of multi-
stage cell lineages. Such lineages commonly include a stem cell and multiple
progenitor (transit amplifying; TA) cell stages, which ultimately give rise to
terminally differentiated (TD) cells. In several cases, self-renewal and differen-
tiation of stem and progenitor cells within such lineages have been shown to
be under feedback regulation. Together, the existence of multiple cell stages
within a lineage and complex feedback regulation are thought to confer upon
a tissue the ability to autoregulate development and regeneration, in terms of
both cell number (total tissue volume) and cell identity (the proportions of
different cell types, especially TD cells, within the tissue). In this paper, we
model neurogenesis in the olfactory epithelium (OE) of the mouse, a system in
which the lineage stages and mediators of feedback regulation that govern the
generation of terminally differentiated olfactory receptor neurons (ORNs) have
been the subject of much experimental work. Here we report on the existence
and uniqueness of steady states in this system, as well as local and global sta-
bility of these steady states. In particular, we identify parameter conditions for
the stability of the system when negative feedback loops are represented either
as Hill functions, or in more general terms. Our results suggest that two fac-
tors – autoregulation of the proliferation of transit amplifying (TA) progenitor
cells, and a low death rate of TD cells – enhance the stability of this system.

1. Introduction. Tissue development is charged with the difficult task of speci-
fying correct types of terminally differentiated (TD) cells (whose function typically
characterizes the tissue), at the same time it must specify correct numbers and
proportions of the various TD and progenitor cell types that compose the tissue.
Studies have shown that multistage cell lineages, which typically include a multi-
potent stem cell that gives rise to successively more differentiated progenitor cell
types (transit amplifying cells; TA cells), underlie the specification of TD cells in
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many tissues [22, 28, 37]. In some tissues, control and coordination of development
is mediated by feedback signals, which regulate proliferation and differentiation at
specific lineage stages [38]. Although often established during embryonic develop-
ment, the continued presence of feedback controls in adult organisms is believed
to enable tissues to respond robustly to injury, rapidly and accurately regenerating
appropriate cell numbers and proportions [11, 18].

The olfactory epithelium (OE) of the mouse is a useful model system for un-
derstanding how feedback regulation controls tissue development and regeneration
[26]. The OE is a neuroepithelium similar in structure to the early embryonic cen-
tral nervous system, but simpler in that it possesses only one major type of neuron,
the olfactory receptor neuron (ORN). ORNs, the TD cells of the OE, extend apical
(dendritic) cytoplasmic processes to the surface of the OE; these dendrites are in
direct contact with the external environment via the nasal cavity. ORNs also ex-
tend axonal cytoplasmic processes basally; these axons traverse the basal lamina of
the OE, grow through the connective tissue stroma that underlies the OE, and then
make contact with the olfactory bulb of the forebrain; olfactory sensory informa-
tion is conducted from the periphery to the central nervous system via the axons
of the ORNs [4, 10]. The OE is subject to constant environmental impact due to
its exposed position in the body, and therefore must regenerate ORNs continually,
throughout the lifetime of the organism [7].

Studies of mouse OE have supported the view that ORNs derive from a multi-
stage lineage with three proliferating cell types (reviewed in [5]): (1) self-renewing
stem cells, which give rise to (2) TA progenitors that can be identified by their
expression of the proneural gene Mash1. Mash1-expressing progenitors give rise to
(3) immediate neuronal precursors (INPs), which comprise a second TA population,
whose members expresses Ngn1, a proneural gene distinct from Mash1. INPs divide
to give rise to daughter cells that undergo terminal differentiation into (4) ORNs.
The four stages in the ORN lineage are depicted in Figure 1.

It has long been known that cell proliferation in the OE is rapidly up-regulated
when death of a large number of ORNs is induced (reviewed in [7]). More recently,
in vitro observations showed that proliferation and generation of ORNs by cultured
OE neuronal progenitors is inhibited by the presence of large numbers of ORNs [24].
These results suggest that ORNs produce signals that normally inhibit neurogenesis,
such that the elimination of such signals upon ORN loss leads to an increase in
ORN production. Subsequently, it has emerged that growth and differentiation
factor 11 (GDF11), and ActivinβB, two members of transforming growth factor-β
(TGFβ) superfamily, are strong candidates for such factors [13, 18, 31, 32, 38]. In
particular, in vitro and in vivo experimental data indicate that GDF11, which is
produced by INPs and ORNs, inhibits the proliferation of INPs, while ActivinβB,
which appears to be produced by all cells in the lineage, inhibits proliferation of
the stem cell [13]. There is evidence that both molecules slow the rates at which
their target cells divide and increase the probability that the products of those
divisions differentiate into cells at the next lineage stage [13, 18]. Other types of
molecules, such as Follistatin (an inhibitor of GDF11 and ActivinβB), and bone
morphogenetic proteins (BMPs), may also regulate the lineage [13, 18, 31, 32, 38].
It has been proposed that a multiplicity of feedback mechanisms and target lineage
stages is required for tight control of cell population sizes and regeneration rates
[18].
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Evidence for feedback strategies analogous to those used in the OE has been found
in many tissues and organs. For example, muscle cells produce myostatin/GDF8, a
molecule closely related to GDF11, which exerts an inhibitory effect on myogenesis
[19, 23]. In well-studied hematopoietic and epithelial lineages, other proliferative
feedback mechanisms have been proposed or described [1, 29].
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Figure 1. A schematic diagram of the OE lineage. Adapted from
[5, 6, 17].

Various models have been proposed for different cell lineages. One of the influ-
ential works by Tomlinson and Bodmer [36] was a study of tumorigenesis based
on discrete cell models, later followed by Johnston et al. [16] for cell population
dynamics in the colonic crypt and colorectal cancer. Continuum models were also
proposed for the same biological systems [15, 16]. Recently, using stochastic and
discrete modeling, Mangel and Bonsall [21] studied variability and replacement in
multistage cell lineages, and Glauche et al. [12] considered lineage specification of
hematopoietic stem cells. Most of these works primarily used numerical simula-
tions for model exploration. Other biological systems involving multiple cell types,
such as hematopoiesis for myelogenous leukemia [8, 9] and T-cells in autoimmune
diabetes [20], were studied using dynamic systems approach. On mathematical
analysis, a linear stability analysis was performed in [3, 30] for a class of cyclic sys-
tems and a cellular control process with positive feedback; a global stability analysis
was carried out for monotone cyclic systems [34] using the Poincaré-Bendixon The-
orem in multi-dimension based on the discrete Lyapunov function method [33]. In
particular, global stability may be studied using ω−limit set [2], Lyapunov function
method [3] or standard Poincaré-Bendixon Theorem in two-dimension [14].

In this paper, we study the OE lineage (and analogous multistage cell lineages)
using a continuum dynamic model. In the system, the feedbacks considered are
negative feedbacks of the type supported by experiments [13, 38]. First, we study
a system with a constant stem cell population, and two feedbacks on proliferation
of TA cells. For this simplified system, the existence and uniqueness of the steady
state, and local and global stability of the steady state are analyzed. It is found that
a unique positive steady state exists, and both self-regulation of the proliferation of
TA cells, and a low death rate of TD cells, enhances global stability of the steady
state. Next, we consider more general lineages involving potentially dynamic stem,
TA and TD cells, with a general form of negative feedback. For existence and
stability of three possible steady states, conditions on the feedback are derived,
with detailed analysis on parameter ranges when the feedbacks take the form of
Hill functions. We find that self-regulation on the proliferation of stem cells and
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TA cells, as well as a large ratio of stem cell cycle length to TA cell cycle length,
can enhance local stability. While the existing models typically used computational
tools to explore the mechanisms of the cell population control, our work utilizes
mathematical analysis to explain the functions of different feedback loops.

This paper is organized as follows. In Section 2, we introduce the mathematical
model; in Section 3, we study the model with a lineage in which the size of the stem
cell population is constant (not influenced by feedback); in Section 4, we consider
the more general case in which the populations of all three cell types are dynamically
regulated; in Section 5, we discuss and summarize.

2. A cell lineage model with endogenous negative feedback. The cell lin-
eage system is assumed to have three types of cells: stem cells, transit amplifying
(TA) cells and terminally differentiated (TD) cells, with the populations at time
t denoted by χ0(t), χ1(t) and χ2(t) respectively. In the model, the stem cells and
TA cells proliferate with a probability pi and differentiate with its complementary
probability 1 − pi, where 0 < pi < 1, i = 0, 1. The TD cells undergo apoptosis
(programmed death) with rate δ. ζi (i = 0, 1, 2) represents the cell cycle length
divided by log 2 for each type of cell.

In many systems, such as the OE lineage, the proliferation of cells may be in-
hibited by substances produced by the cells at the same or later stages in their
lineage. By assuming the amounts of substances are proportional to the sizes of the
cell populations that produce the substances, the proliferative probabilities become
functions of the cell populations, p0 = p0(χ0, χ1, χ2) and p1 = p1(χ1, χ2). Figure
2 shows a schematic relationship and possible negative regulation among different
types of cells in the cell lineage.

Figure 2. Three-stage lineage of cells with negative feedback on
cell proliferation.

A continuum model of Figure 2 takes the form:

dχ0

dt
=

χ0

ζ0
(2p0(χ0, χ1, χ2) − 1) (1)

dχ1

dt
= 2

χ0

ζ0
(1 − p0(χ0, χ1, χ2)) +

χ1

ζ1
(−1 + 2p1(χ1, χ2)) (2)

dχ2

dt
= −δχ2 +

2χ1

ζ1
(1 − p1(χ1, χ2)) (3)

with 0 < p0(χ0, χ1, χ2) < 1, 0 < p1(χ1, χ2) < 1. Because proliferation is nega-
tively regulated by different types of cells (as motivated data on the OE lineage),
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the functions pi are assumed to be decreasing in all variables, with their partial
derivatives satisfying piχj

≤ 0 (piχj
= ∂pi/∂χj). To non-dimensionalize the system,

we scale time by the cell cycle length parameter ζ1 through t̂ := t/ζ0, ζ̂ := ζ1/ζ0,

δ̂ := δζ0. After discarding the hat on each variable, the non-dimensional form of
system (1)-(3) becomes

dχ0

dt
= χ0 (2p0(χ0, χ1, χ2) − 1) (4)

dχ1

dt
= 2χ0 (1 − p0(χ0, χ1, χ2)) +

χ1

ζ
(−1 + 2p1(χ1, χ2)) (5)

dχ2

dt
= −δχ2 +

2χ1

ζ
(1 − p1(χ1, χ2)) . (6)

3. A model with a constant stem cell population. A special case of system
(4)-(6) is that the stem cell population does not change in time and the proliferation
of the stem cells is not regulated. This can be achieved if and only if, in equation
(4), p0(χ0, χ1, χ2) = 0.5 with a positive χ0 (see Figure 3). In this case, half of the
stem cells progeny remain stem cells and the other half differentiate; as a result
the stem cell population remains unchanged. The three-equation system (4)-(6)

Figure 3. Lineage of cells with a fixed stem cell population.

therefore becomes a two-equation system:

dχ1

dt
= χ∗

0 +
χ1

ζ
(−1 + 2p1(χ1, χ2)) (7)

dχ2

dt
= −δχ2 +

2χ1

ζ
(1 − p1(χ1, χ2)) (8)

with χ∗

0 a given positive constant. The reduced system (7)-(8) can be regarded as a
two-cell lineage with a constant supply. In this model, only two negative feedbacks
occur at the proliferation probability of the TA cells, and this simplicity allows a
comprehensive analysis for the existence and uniqueness of the steady state, and
their local and global stability of the system (7)-(8). As a result, roles of the two
negative feedbacks are better understood.

3.1. Existence and uniqueness of the steady state. Because χ1 and χ2 rep-
resent the size of cell populations, only non-negative steady state solutions are
considered in this paper.
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The steady state equations of system (7)-(8) can be obtained by setting their
left-hand side zero. Adding the two steady state equations yields

χ2 =
1

δ
(χ∗

0 +
χ1

ζ
); (9)

and substituting equation (9) into the first steady state equation yields

χ∗

0 +
χ1

ζ

(
−1 + 2p1(χ1,

1

δ
(χ∗

0 +
χ1

ζ
))

)
= 0. (10)

The steady state (χ∗

1, χ
∗

2) can be found by first solving equation (10) for χ1 and then
using (9) to derive χ2. The number of the steady states of system (7)-(8) equals
the number of roots in equation (10), and the function p1 determines the number
of steady states.

3.1.1. The steady state is unique if the minimal proliferation probability is smaller
than its corresponding differentiation probability. As shown below, a necessary and
sufficient condition for the existence and uniqueness of a positive steady state of
system (7)-(8) is:

lim
χ1,χ2→∞

p1(χ1, χ2) < 1/2. (11)

With the assumption that p1 is non-increasing and using (11), one-half is an upper
bound for the minimum of p1 if and only if the unique postive steady state exists.
Biologically, this condition means that the inhibition on the proliferation probabil-
ity, from either the TA cells or the TD cells, must be strong enough such that at a
certain time, more than half of the TA cells differentiate to the next stage per cell
cycle.

To prove (11), consider the function

K(χ1) := χ∗

0 +
χ1

ζ

(
−1 + 2p1(χ1,

1

δ
(χ∗

0 +
χ1

ζ
))

)
. (12)

With δ > 0 and ζ > 0, it is straightforward to show K(0) = χ∗

0 > 0, and
limχ1→∞ K(χ1) = −∞ if and only if (11) is satisfied. By continuity of K, there
exists a positive χ∗

1 such that K(χ∗

1) = 0, if and only if (11) is true; therefore, (11)
is necessary and sufficient for the existence of a positive root for K. Next, we claim
that χ∗

1 is the only positive root of K = 0. Consider

K(χ1)

χ1
=

χ∗

0

χ1
+

1

ζ

(
−1 + 2p1(χ1,

1

δ
(χ∗

0 +
χ1

ζ
))

)
, (13)

the first term is strictly decreasing and the second term is monotonically decreasing
in χ1 so K(χ1)

χ1
is strictly decreasing in χ1. Therefore, K(χ1)

χ1
has at most one root for

χ1 > 0. Since K(χ1)
χ1

and K(χ1) share same positive roots, K(χ1) has at most one
root. It implies that (11) is a necessary and sufficient condition for the existence of
the steady states, and if a steady state exists, it must be positive and unique.

3.1.2. A system with negative feedback represented by Hill functions has a unique
steady state. The feedback in biological models is often represented in terms of Hill
functions [25]. Two possible Hill function forms of p1 are

p1(χ1, χ2) =
p1

1 + (g1χ1)m + (g2χ2)n
, (14)
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and

p1(χ1, χ2) =
p1

[1 + (g1χ1)m][1 + (g2χ2)n]
(15)

with the feedback coefficients g1, g2 ≥ 0 and at least one of them being positive, p̄1 >
0 the maximal differentiation probability, and m, n denoting the Hill exponents.
Hence, p1(χ1, χ2) in (14) and (15) satisfies the conditions (11) and the system has
a unique positive steady state. In the rest of this section, when the Hill function
form of p1 is referenced, only the first expression (14) is considered. However, the
same results can be obtained for (15) through similar arguments.

3.2. Local stability analysis. Assume the system has a non-negative steady state
χ∗ = (χ∗

1, χ
∗

2), (i.e. p1 satisfies (11)). Denoting p∗1 = p1(χ∗

1, χ
∗

2), p∗1χ1
= ∂p1

∂χ1
(χ∗

1, χ
∗

2)

and p∗1χ2
= ∂p1

∂χ2
(χ∗

1, χ
∗

2), the Jacobian matrix evaluated at the steady state is

J(χ∗) =




2p∗

1
−1

ζ
+

2p∗

1χ1
χ∗

1

ζ

2p∗

1χ2
χ∗

1

ζ
2(1−p∗

1
)

ζ − 2p∗

1χ1
χ∗

1

ζ −δ − 2p∗

1χ2
χ∗

1

ζ



 . (16)

The characteristic equation of the Jacobian matrix (16) is

λ2 −
(

2p∗1 − 1

ζ
+

2p∗1χ1
χ∗

1

ζ
− δ −

2p∗1χ2
χ∗

1

ζ

)
λ (17)

−
2p∗1 − 1

ζ
δ −

2p∗1χ1
χ∗

1

ζ
δ −

2p∗1χ2
χ∗

1

ζ2
= 0.

Then, the steady state χ∗ is locally asymptotically stable if and only if both the
roots of equation (17) have negative real parts, namely, if and only if

2p∗1 − 1

ζ
+

2p∗1χ1
χ∗

1

ζ
− δ −

2p∗1χ2
χ∗

1

ζ
< 0 (18)

and

−
2p∗1 − 1

ζ
δ −

2p∗1χ1
χ∗

1

ζ
δ −

2p∗1χ2
χ∗

1

ζ2
> 0. (19)

Because (χ∗

1, χ
∗

2) is a steady state, by equation (10), 2p∗1 − 1 is negative. Also, by
the fact that p∗1χ1

≤ 0 and p∗1χ2
≤ 0, inequality (19) is always satisfied. Therefore,

equation (18) dictates the local stability.

3.2.1. The inhibition by TD cells determines stability. To find p1 satisfying (18),
here we consider p1 in the Hill function form (14). The partial derivative of the
function p1(χ1, χ2) is

p1χ2
= −

2np1g
n
2 (χ2)n−1χ1

(1 + (g1χ1)m + (g2χ2)n)2
. (20)

Because the first two terms are negative, the inequality (18) is proved if

− δ −
2p∗1χ2

χ∗

1

ζ
< 0. (21)

By equation (9), we have χ∗

1 ≤ ζδχ∗

2, so equation (21) is true if

−1 − 2p∗1χ2
χ∗

2 < 0,

which is equivalent to

−1 +
2np1(g2χ∗

2)
n

(1 + (g1χ∗

1)
m + (g2χ∗

2)
n)2

≤ 0.
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When the Hill exponent n = 1, by p∗1 < 1
2 we obtain

−1 +
2p1(g2χ∗

2)

(1 + (g1χ∗

1)
m + (g2χ∗

2))
2
≤ −1 +

g2χ∗

2

1 + (g2χ∗

2)
< 0.

When n = 2, by p̄1 < 1 we obtain

−1 +
4p1(g2χ∗

2)
2

(1 + (g1χ∗

1)
m + (g2χ∗

2)
2)2

≤ −1 +
4(g2χ∗

2)
2

(1 + (g2χ∗

2)
2)2

< 0.

Therefore, when n = 1, 2, condition (21) (and hence (18)) is satisfied, the steady
state is unique and locally asymptotically stable.

3.2.2. Negative regulation from TA cells increases the range of parameters for local
stability. For n ≥ 3, the above analysis cannot be carried out directly. In fact,
unstable steady states for n ≥ 3 are observed through direct numerical simulations.
Here, we study the linear stability for two cases: 1) n = 3 and g1 = 0, a case with
feedback only from the TD cells; and 2) n = 3, m = 1, a case with both feedbacks.

Figure 4 plots the stability regions for p̄1 and δ at four different g2, a parameter
measuring the feedback coefficient of the TD cells and thus the gain of the feedback.
The area of unstable region increases as g2 decreases, as shown in Figure 4. A
low death rate for the TD cells leads to stability of the steady state without any
oscillations. A high death rate for the TD cells requires a low maximal proliferation
probability p̄1 to guarantee a stable steady state without oscillations (because the
perturbed solutions away from the steady state converge to the steady state in the
Stable (2C) region with oscillations). When both the death rate of TD cells and the
proliferation probability of TA cells are high, the steady state becomes unstable.
This instability can be removed when a negative feedback from TA cells to its own
proliferation probability is included (see Figure 5). This suggests both negative
feedbacks help improve the stability of the steady state.

Finally, a limit cycle exists when the steady state is unstable for the systems in
Figure 4 and Figure 5. This can be proved by Poincaré-Bendixson Theorem [27]
using the fact that the real parts of the two eigenvalues of the Jacobian matrix at
the unique steady state have the same sign. The detailed proof is not presented
here.

3.3. Global stability analysis. Local stability analysis studies the behavior of a
system when the solution is a small perturbation away from a steady state. For
an arbitrary perturbation of the steady state solution, a global stability analysis
[35] is needed. The following theorem gives a condition on p1(χ1, χ2) for the global
stability of a positive steady state of system (7)-(8).

Theorem 3.1. Suppose system (7)-(8) has a unique positive steady state. If p1

satisfies

[1 − p1(χ1, χ2)](χ
∗

0 + δχ1) − χ1p1χ1
(χ1, χ2)(χ

∗

0 +
χ1

ζ
) (22)

+δχ1χ2p1χ2
(χ1, χ2) > 0

for all non-negative (χ1, χ2), the steady state is globally stable.

The proof of the theorem is a direct application of Poincaré-Bendixson Theorem
[27] and it is sketched as follows with details presented in Appendix A.1.
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Figure 4. Stability regions at four different g2 with ζ = 1, g1 = 0,
n = 3 and χ∗

0 = 1. The Jocobian J(χ∗) has two negative real eigen-
values in Stable(2R) region, two complex eigenvalues with negative
real parts in Stable(2C), and two complex eigenvalues with positive
real parts in Unstable(2C).
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1. If the system satisfies (22), there are no limit cycles in the non-negative region
{(χ1, χ2)|χ1 ≥ 0, χ2 ≥ 0}.

2. A solution starting in the non-negative region {(χ1, χ2)|χ1 ≥ 0, χ2 ≥ 0} stays
non-negative and remains bounded at all time.

3. If the system satisfies (22), the steady state solution is locally stable.

4. Using the Poincaré-Bendixson Theorem and the above three statements, one
can prove the global stability of the steady state.

Based on the theorem, a simpler condition for the global stability can be obtained:

Corollary 1. If p1 satisfies

1 − p1 + χ2p1χ2
> 0, (23)

then it satisfies the condition (22). By Theorem 3.1, the positive steady state is
globally stable.

Because the stability analysis is on the long-time asymptotic behavior of the
solution, Theorem 3.1 and Corollary 1 remain true if the two variables χ1, χ2 are
replaced by lim inft→∞ χ1(t) and lim inft→∞ χ2(t).

3.3.1. Low death rate of TD cells leads to global stability. It can be shown that the
steady state is globally stable if

p1 < max

{
4n

(n + 1)2
, 1 −

n
√

n − 1δ

2g2χ∗

0

}
. (24)

The proof is presented in the Appendix A.2.
One immediate result from (24) is that when n = 1 the steady state is always

globally stable regardless of choice of other parameters.
When n > 1, one possibility of increasing the stability region for p̄1 is decreasing

the death rate δ. Another possibility is to increase the inhibition strength g2, that is,
to increase the level of the negative feedback from the TD cells to the proliferation
probability of the TA cells. Both results are consistent with the linear stability
analysis shown in Figures 4 and 5. For the OE system, the δ is usually very small
[26], and this fact is consistent with the mathematical strategy to enhance the
stability region.

To better analyze (24), one may use a more strict yet simpler inequality to replace
(24):

p1 <
4n

(n + 1)2
, (25)

which says p̄1 is bounded by a decreasing function of the Hill exponent for the
negative feedback from the TD cells on proliferation probability of TA cell. For
example, n = 2 implies p1 < 2/(1.5)2 = 8/9 for existence of a globally stable steady
state while n = 3 implies p1 < 3/22 = 0.75, a more restricted condition than the
case for n = 2.

4. Full model with stem, TA and TD cells. For the full system (4)-(6) with
stem cells, TA cells and TD cells, there exist at most three types of steady state
solutions for a fixed set of parameters:

(0, 0, 0) (S1), (0, χ∗

1, χ
∗

2) (S2), (χ∗

0, χ
∗

1, χ
∗

2) (S3)
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where χ∗

i (i = 0, 1, 2) is positive. We use S1, S2 and S3 to represent each type of
steady state, respectively. By direct examination of the the full system (4)-(6), it
is easy to show that the five other types of solutions, such as (0, χ∗

1, 0), cannot be
the steady state of (4)-(6).

In the rest of the section, we first discuss each type of steady state, without
specifying any functional form for the negative feedback, and present the conditions
for the existence and stability for that type of steady state. Then, by using Hill
functions for the feedback with Hill exponent taken to be one, we are able to classify
four different parameter regimes based on the maximal proliferation probabilities
of the stem and TA cells to identify all steady states in each parameter regime,
and provide stability properties for some of the steady states. Finally, we present a
linear stability analysis for the steady state S3.

4.1. Three types of steady state.

• S1 steady state
It is easy to see from the system (4)-(6) that S1, a case with zero population

for each cell type, is always a steady state for any parameters. The interesting
question is on its stability. Because the eigenvalues of the Jacobian at S1 are

− 1 + 2p0(0, 0, 0),
−1 + 2p1(0, 0)

ζ
, −δ, (26)

S1 is locally stable if and only if p0(0, 0, 0) < 0.5 and p1(0, 0) < 0.5. This
shows that given small populations of each cell type, the populations will
decrease and vanish eventually if the proliferation probabilities of stem cells
and TA cells are both lower than their differentiating rates.

Regarding global stability, S1 is a global attractor if
p0(χ0, χ1, χ2), p1(χ1, χ2) < 0.5 for all (χ0, χ1, χ2), because the right-hand side
of equation (4)-(6) will eventually become negative under this condition. Since
we assume that pi are decreasing functions, the condition of global stability is
equivalent to that of local stability, namely, p0(0, 0, 0) < 0.5 and p1(0, 0) < 0.5.
This suggests that in order to avoid the S1 steady state, the proliferation
probability for either the stem cells or the TA cells must be larger than its
corresponding differentiation probability at some time during the evolution.

• S2 steady state
In the S2 steady state, there are no stem cells and the cell populations are

maintained by the proliferation and differentiation of TA cells. At S2, the
proliferation probability of TA cells has to be the same as the differentiation
probability as seen from the equation (4)-(6). Mathematically, the existence
of S2 thus depends on whether p1 can achieve 0.5 at some nonzero TA and TD
populations. Because p1 is assumed as a non-increasing function, a necessary
condition for existence of S2 is that the maximal proliferation probability

p1(0, 0) ≥ 0.5 (27)

and the feedback is strong enough such that p1(χ1, χ2) ≤ 0.5 at some (χ1, χ2).
If p1 is assumed to be a strictly decreasing function in either χ1 or χ2, then
there exist a unique S2.
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The eigenvalues of the Jacobian matrix at S2 are −1 + 2p0(0, χ∗

1, χ
∗

2) and
the two roots of the quadratic equation

λ2 −
(

2p∗1χ1
χ∗

1

ζ
− δ −

2p∗1χ2
χ∗

1

ζ

)
λ

+
2p∗1χ1

χ∗

1

ζ

(
−δ −

2p∗1χ2
χ∗

1

ζ

)
−

2p∗1χ2
χ∗

1

ζ2

(
1 − 2p∗1χ1

χ∗

1

)
= 0.

So S2 is locally stable if

p0(0, χ∗

1, χ
∗

2) < 0.5 and − δ −
2p∗1χ2

χ∗

1

ζ
< 0. (28)

These conditions may be achieved by allowing a longer cell cycle for TA cells
than stem cells along with a low stem cell proliferation probability.

• S3 steady state
By first adding the steady state equations of system (4)-(6), one obtains

χ0 = −
χ1

ζ
+ δχ2. (29)

Substituting (29) into the first two equations of (4)-(6), one obtains

p0(δχ2 −
χ1

ζ
, χ1, χ2) = 1/2, (30)

2χ1

ζ
(1 − p1(χ1, χ2)) = δχ2. (31)

The number of S3 steady states is determined by the number of roots of
system (30)-(31). From the discussion of S1, S3 exists only if the proliferation
probability of stem cells is larger than its differentiation probability at some
time. One of the necessary condition for existence of S3 is

p0(0, 0, 0) ≥ 0.5. (32)

4.2. Parameter regimes for existence of the three types of steady states.
In order to derive more specific conditions for existence and stability of the three
steady states, we use the following Hill functions for the proliferative feedback:

p0(χ0, χ1, χ2) =
p0

1 + k0χ0 + k1χ1 + k2χ2
, (33)

p1(χ1, χ2) =
p1

1 + g1χ1 + g2χ2
, (34)

where ki (i = 0, 1, 2) ≥ 0 and gi (i = 1, 2) ≥ 0 with at least one of them being
positive, and 0 < p̄0, p̄1 < 1 are constants. Based on the values of p̄0 and p̄1, we
classify the system into four regimes with results summarized in Table 1.

• p0 ≤ 0.5 and p1 ≤ 0.5: S1 is globally stable and there is no other
non-negative steady state.

Because the sign of the right-hand side of equation (4)-(5) becomes negative
as t → ∞ under this condition, χ0, χ1 tend to zero. Consequently, so is χ2 by
(6). Because of (27) and (32), both S2 and S3 cannot be the steady states.
This implies that S1 is a unique and globally stable steady state of the system.
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• p0 ≤ 0.5 and p1 > 0.5: S1 is unstable and there exists a unique
globally stable S2 but no other non-negative steady state.

S1 is locally unstable by using (26). There exists a unique S2 steady state
given by (

0,
δζ(2p1 − 1)

g2 + g1δζ
,

2p1 − 1

g2 + g1δζ

)
. (35)

The eigenvalues of the Jacobian at this S2 steady state can be easily shown
to be negative using a similar discussion as in Section 3.2. So S2 is locally
stable. This steady state can further be proved globally stable for any initial
conditions (χ0, χ1, χ2) when χ0 > 0 or χ1 > 0, using a proof similar to that in
Section 3.3. In addition, it can be shown that for an initial condition (0, 0, χ2),
the solution converges to S1, meaning that if there are only TD cells which
cannot proliferate and only undergo death, the whole population will vanish
eventually.

• p0 > 0.5 and p1 ≤ 0.5: S1 is unstable and there exists a unique S3
but no other non-negative steady state.

S1 is locally unstable by linear stability analysis, but it is stable if the initial
condition is of the form (0, 0, χ2), as explained in the first case. With 2p̄1 ≤ 1,
there exists no non-negative S2. The existence of a unique steady state S3 is
proved in Appendix A.4. The stability of S3 is discussed in subsection 4.3.

• p0 > 0.5 and p1 > 0.5: S1 is unstable and either there exist a unique
stable S2 and no other non-negative steady state, or a unique un-
stable S2 and a unique S3 if

2p0 − 1

k1δζ + k2
>

2p1 − 1

g1δζ + g2
. (36)

Similar to the previous cases, S1 is locally unstable because p0 > 0.5, but
it is stable with initial conditions (0, 0, χ2). If (36) holds, there is a unique,
unstable S2 and a unique S3. On the other hand, if

2p0 − 1

k1δζ + k2
<

2p1 − 1

g1δζ + g2
, (37)

then S2 is locally stable, and steady state S3 does not exist. The proof is
given in Appendix A.4. When the left-hand side of (36) equals the right-hand
side, S3 does not exist, and in our numerical simulations, S2 is found to be
stable. On the δ − χ∗

0 plane, a bifurcation takes place when the inequality in
(36) becomes equality, as shown in Figure 6 with two sets of parameters.
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Figure 6. A bifurcation diagram for δ. (a) g1 = 1.5, g2 = 1, k0 =
1, k2 = 1.02; (b) g1 = 1, g2 = 1.02, k0 = 1, k1 = 1.5, k2 = 1.

Table 1. Existence and stability of S1, S2 and S3. The feedbacks
are Hill functions with exponent one.

S1 S2 S3
p0 ≤
0.5,p1 ≤ 0.5

Globally stable Does not exist Does not
exist

p0 ≤
0.5,p1 > 0.5

Locally unstable Locally stable Does not
exist

If χ(0) = (0, 0, χ2), If χ(0) = (χ0, χ1, χ2)
then χ(t) → (0, 0, 0) when χ0 '= 0 or χ1 '= 0,

as t → ∞ then χ(t) → (0, χ∗∗

1 , χ∗∗

2 )
as t → ∞

p0 >
0.5,p1 ≤ 0.5

Locally unstable Does not exist Exists

If χ(0) = (0, 0, χ2), Stability –
then χ(t) → (0, 0, 0) Section 4.3

as t → ∞
p0 >
0.5,p1 > 0.5

Locally unstable Locally stable Does not
exist

if (36) is not
true

If χ(0) = (0, 0, χ2), If χ(0) = (0, χ1, χ2)

then χ(t) → (0, 0, 0) when χ1 '= 0,
as t → ∞ then χ(t) → (0, χ∗∗

1 , χ∗∗

2 )
as t → ∞

p0 >
0.5,p1 > 0.5

Locally unstable Locally unstable Exists

if (36) is true If χ(0) = (0, 0, χ2), If χ(0) = (0, χ1, χ2) Stability –
then χ(t) → (0, 0, 0) when χ1 '= 0, Section 4.3

as t → ∞ then χ(t) → (0, χ∗∗

1 , χ∗∗

2 )
as t → ∞
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4.3. Stability conditions for the S3 steady state. When a unique S3 steady
state χ∗ = (χ∗

0, χ
∗

1, χ
∗

2) exists, we consider the cubic characteristic polynomial of the
Jacobian at S3,

C(λ)

= (2p∗0χ0
χ∗

0 − λ){−2p∗0χ1
χ∗

0 +
2p∗1χ1

ζ
χ∗

1 +
2p∗1 − 1

ζ
− λ}(−δ −

2

ζ
p∗1χ2

χ∗

1 − λ) (38)

+λ

{
(−2p∗0χ2

χ∗

0 +
2p∗1χ2

ζ
χ∗

1)(
2

ζ
[(1 − p∗1) − p∗1χ1

χ∗

1]) + 2p∗0χ1
χ∗

0(1 − 2p∗0χ0
χ∗

0)

}

−
(

2p∗0χ0
χ∗

0

2p∗1χ2

ζ
χ∗

1 − 2p∗0χ2
χ∗

0

) (
2

ζ
[(1 − p∗1) − p∗1χ1

χ∗

1]

)

−2p∗0χ1
χ∗

0(1 − 2p∗0χ0
χ∗

0)(−δ −
2

ζ
p∗1χ2

χ∗

1).

where p∗iχj
= piχj

(χ∗). Let λ1, λ2, λ3 be the three roots of C(λ), the S3 steady
state χ∗ is locally asymptotically stable if and only if

λ1 + λ2 + λ3 < 0, (39)

λ1λ2λ3 < 0, (40)

C(λ1 + λ2 + λ3) > 0. (41)

These conditions are equivalent to that λ1, λ2 and λ3 are all negative, and its proof
is shown in the appendix A.5. From the property of the cubic polynomial C(λ),
one can easily obtain:

λ1 + λ2 + λ3 = 2p∗0χ0
χ∗

0 − 2p∗0χ1
χ∗

0 +
2p∗1χ1

ζ
χ∗

1 −
2p∗1χ2

ζ
χ∗

1 +
2p∗1 − 1

ζ
− δ

λ1λ2λ3 = 2p∗0χ1
χ∗

0

(
δ +

2p∗1χ2

ζ
χ∗

1

)
. + 2p∗0χ2

χ∗

0

(
2

ζ
(1 − p∗1) −

2p∗1χ1

ζ
χ∗

1

)

+2p∗0χ0
χ∗

0

(
1 − 2p∗1

ζ
δ − δ

2p∗1χ1

ζ
χ∗

1 −
1

ζ
(
2p∗1χ2

ζ
χ∗

1)

)
.

So (39)-(41) give a set of conditions on the parameters for the local stability of
χ∗. For more specific results, we consider several Hill feedback forms with the
corresponding stability results described below and summarized in Table 2.

• p0(χ2) is a Hill function and p1 is a constant less than 0.5
The proliferation probability of stem cells is assumed in terms of Hill func-

tion:

p0(χ2) =
p0

1 + (k2χ2)n
, (42)

with p0 > 0.5 and k2 > 0.
This function and parameters satisfy the conditions (39) and (40), and the
condition (41) is equivalent to

p0 <
1

2




1 + δ + 1−2p1

ζ

1 +
(
1 − 1

n

)(
δ + 1−2p1

ζ

)



 . (43)

When n = 1, δ + 1−2p1

ζ
≥ 1 implies that the steady state is locally stable for

any p0. In general, the range of p0 which allows local stability increases as
δ+ 1−2p1

ζ
increases, that is, if the cell cycle of the TA cell is shorter than that

of the stem cell, or the death rate of TD cells is larger, the S3 steady state is
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stable for a larger range of proliferation probabilities.

• p0(χ1, χ2) is a Hill function with exponent one, and p1 is a constant
less than 0.5

The proliferation probability of stem cells is assumed as

p0(χ1, χ2) :=
p0

1 + k1χ1 + k2χ2
, (44)

with p0 > 0.5 and k1 > 0.
The function and parameters satisfy the conditions (39) and (40), and by (41),
we derive a sufficient condition for the local stability:

δ +
1 − 2p1

ζ
≥ 1, (45)

which is similar to the first example where p0 only depends on χ2. Also, if
the condition (45) is not satisfied, S3 can be stable if

k2

k1
<

δ(1 − 2p1 + 2δζ)

4(1 − δ − 1−2p1

ζ
)(1 − p1)

. (46)

Therefore, if ζ is small (the cell cycle of the TA cell is much shorter than that
of the stem cell) or k2

k1
is small (the feedback strength from TA cells is much

stronger than that from TD cells), S3 is locally stable.

• p0(χ0, χ1) and p1(χ1, χ2) are both Hill functions
The two proliferation probabilities p0 and p1 are assumed to be

p0(χ0, χ1) :=
p0

1 + (k0χ0)r + (k1χ1)s
, p1(χ1, χ2) :=

p1

1 + (g1χ1)m + (g2χ2)n
,

with s = 1 or 2, n = 1 or 2, ki (i = 0, 1) ≥ 0, gj (j = 1, 2) ≥ 0 and one of
them being positive.
Assume a unique S3 exists, using a similar proof in Section 3.2, we obtain

− δ −
2p∗1χ2

χ∗

1

ζ
< 0 and

−1 + 2p∗1
ζ

− 2p∗0χ1
χ∗

0 < 0. (47)

Consequently, the conditions (39)-(41) hold for any parameters, and the
unique S3 is locally stable unconditionally.

5. Conclusion and discussion. In this paper, mathematical models for the Ol-
factory Epithelium (OE) lineage were developed and analyzed. Three different types
of cells – stem cell, transit amplifying (TA) cell, and terminally differentiated (TD)
cell, were considered, and the dynamic modulation of proliferation by secreted sig-
naling molecules (such as GDF11 or ActivinβB) was modeled as negative feedback
between lineage stages. For a simplified system with a constant stem cell popula-
tion size, the conditions for the existence, uniqueness, local and global stability of
the steady state were derived for negative feedback represented in terms of both
general decreasing functions and Hill functions. It was found that a unique positive
steady state exists, and both self-regulation of the proliferation of TA cells, and a
low death rate of TD cells, can enhance global stability of the steady state. This
might explain in the OE system why GDF11, which is secreted by TA and TD cells,
inhibits the proliferation of TA cells. For the full system in which all three cell
populations can vary in time, conditions on existence and linear stability of three
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Table 2. Local stability at S3 for three different feedbacks.

Examples p0(χ0, χ1, χ2) p1(χ1, χ2) Stability of
(χ∗

0, χ
∗

1, χ
∗

2)
1. p0(χ2) :=

p
0

1+(k2χ2)n

p1 = p1 constant (43) is true

less than 0.5 ⇔ Locally Sta-
ble

2. p0(χ1, χ2) :=
p
0

1+k1χ1+k2χ2

p1 = p1 constant (45) or (46) is
true

less than 0.5 ⇒ Locally Sta-
ble

3. p0(χ0, χ1) p1(χ1, χ2) Locally Stable
:=

p
0

1+(k0χ0)r+(k1χ1)s

:= p1

1+(g1χ1)m+(g2χ2)n (unconditionally)

with s = 1 or 2 with n = 1 or 2

possible steady states were obtained for feedback represented by Hill functions. It
was found that self-regulation of the proliferation of stem cells and TA cells can
enhance local stability. In addition, having the cell cycle lengths of stem cells be
larger than those of TA cells also makes the local stability region larger.

The model developed in this study can be used as a generic model of cell lineages
in which three sequential lineage stages cells coupled through negative feedback.
Our analysis of the steady states and their stability in such a system could improve
understanding of interactions and regulation among different cell types, and the
dynamics and stability of different cell populations, and lead to new experimental
approaches.

In OE, as in other epithelial tissues such as the epidermis and the colonic mu-
cosa, cells at different lineage stages are usually stratified along basal-apical axis,
leading to the expectation that the distributions of feedback signaling molecules
(e.g. GDF11) will also be non-uniform [18]. In the future, it will also be important
to incorporate spatial inhomogeneity and spatial dynamics into models such as the
ones described here. Although numerical simulation will likely be the most appro-
priate tool for exploring such models, the analytical results derived in this paper
will provide insights into the choice of parameters, and can serve as a guide for
systematic computational exploration.

APPENDIX.

A.1. Proof of Theorem 3.1.

Proof. The proof consists of three steps:

1. If the system satisfies (22), there is no limit cycle in the non-negative region
{(χ1, χ2)|χ1 ≥ 0, χ2 ≥ 0}.
Define a function

N(χ1, χ2) :=
1

χ1 (1 − p1(χ1, χ2))
(48)
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and (f(χ1, χ2) to be the right-hand side of the system (7)-(8), namely,

(f(χ1, χ2) = (χ∗

0 +
χ1

ζ
(−1 + 2p1(χ1, χ2)) ,−δχ2 +

2χ1

ζ
(1 − p1(χ1, χ2))).

One can verify that

∇ · [N(χ1, χ2)(f(χ1, χ2)] < 0 ⇔ (49)

(1 − p1(χ1, χ2))(χ
∗

0 + δχ1) − χ1p1χ1
(χ1, χ2)(χ

∗

0 +
χ1

ζ
) + δχ1χ2p1χ2

(χ1, χ2) > 0.

By Dulac’s Criteria [27], there is no limit cycle in {(χ1, χ2)|χ1 ≥ 0, χ2 ≥ 0} if
(22) holds.

2. All the solutions which have non-negative initial conditions will be non-negative
and bounded.
Assuming non-negative initial conditions, we consider four cases to exhaust
all the possible behaviors of the trajectories.
(a) If χ1(t) = 0 and χ2(t) > 0 for some time t, then dχ1(t)

dt > 0 and dχ2(t)
dt < 0;

if χ1(t) = 0 and χ2(t) = 0, then dχ2(t)
dt

= 0 and dχ1(t)
dt

> 0, so the
trajectories do not cross the χ2-axis.

(b) If χ2(t) = 0 and χ1(t) > 0 for some time t, then dχ2(t)
dt

> 0; if χ2(t) = 0

and χ1(t) = 0, then dχ2(t)
dt

= 0 and dχ1(t)
dt

> 0, so the trajectories do not
cross the χ1-axis.

(c) If χ1 + 0, then χ2 + 0. Since (−1 + 2p1(χ1, χ2)) goes to some negative
constant as χ1 and χ2 are very large, dχ1

dt goes to some negative constant
and χ1 will decrease. Consequently, with (a), χ1 is bounded in non-
negative region.

(d) If χ2 + 0, then dχ2

dt goes to some negative constant because in (c) we
showed that χ1 is bounded. So χ2 will decrease when χ2 + 0. With (b),
χ2 is bounded in non-negative region.

The above proved that all the solutions with non-negative initial conditions
will remain bounded in the non-negative region {(χ1, χ2)|χ1 ≥ 0, χ2 ≥ 0}.

3. If the system satisfies (22), then the steady state solution is locally stable.
Since (χ∗

1, χ
∗

2) is the steady state, the right-hand side (f(χ∗

1, χ
∗

2) = 0 and we
get

[∇ · (N (f)](χ∗

1, χ
∗

2) = −N(χ∗

1, χ
∗

2)

(
1 − 2p1

ζ
+ δ −

2p1χ1
χ∗

1

ζ
+

2p1χ2
χ∗

1

ζ

)
.

If (22) holds, then

− N(χ∗

1, χ
∗

2)

(
1 − 2p1

ζ
+ δ −

2p1χ1
χ∗

1

ζ
+

2p1χ2
χ∗

1

ζ

)
< 0. (50)

By N(χ∗

1, χ
∗

2) > 0 and (18), the steady state is locally stable.

Combining these three results and using Poincaré-Bendixson Theorem, we proved
that the steady state is globally stable in {(χ1, χ2)|χ1 ≥ 0, χ2 ≥ 0} if the system
satisfies (22).
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A.2. Prove that (24) implies global stability of system (7)-(8).

Proof. Substitute p1 as given by (14) into the left-hand side of (23) and get

1 −
p1

1 + (g1χ1)m + (g2χ2)n
−

p1(g2χ2)n

(1 + (g1χ1)m + (g2χ2)n)2

=
(1 + (g1χ1)m + (g2χ2)n)2 − p1(1 + (g1χ1)m + (g2χ2)n) − np1(g2χ2)n

(1 + (g1χ1)m + (g2χ2)n)2

≥
(1 + (g2χ2)n)2 − p1(1 + (g2χ2)n) − np̄1(g2χ2)n

(1 + (g1χ1)m + (g2χ2)n)2

Inequality (23) will be satisfied if

(1 + (g2χ2)
n)2 − p1(1 + (g2χ2)

n) − np1(g2χ2)
n > 0. (51)

The aim here is to find conditions for p1 such that (51) holds
for χ2 > lim inft→∞ χ2(t).

First, we can prove that the unique steady state is globally stable if (25) holds:

p1 <
4n

(n + 1)2
. (52)

The condition (51) can be simplified by taking y = (g2χ2)n and considering the
function

h(y) = (1 + y − p1)(1 + y) − np1y, for y ≥ 0, (53)

which assumes the minimal value p̄1(n −
(

n+1
2

)2
p1) at ymin = (n+1)p

1

2 − 1. Thus,
if (52) is true, then h(y) ≥ h(ymin) > 0 for any y ≥ 0, equivalent to (51), then the
steady state is globally stable.

The upper bound in (52) can be relaxed due to the fact that only the asymptotic
behavior of the solution is relevant to global stability, so (51) has to be true only
when t is very large. Hence, it is not necessary to require h(y) > 0 for all y ≥ 0 in
(53); instead, we only need to find a lower bound ỹ, associated with the asymptotic
behavior of χ2, with h(y) positive only for y ≥ ỹ. The derivation of the upper
bound in (24) uses the following lemma to be proved in A.3:

Lemma A.1. Suppose x(t), F (t) and G(x(t)) are functions satisfying

x′(t) ≥ F (t) − G(x),

and the following properties:
1) There is a unique solution x̃ of the equation G(x) = lim inft→∞ F (t);
2) G(x) is continuous and strictly increasing in (−∞,∞).
Then,

lim inf
t→∞

x(t) ≥ x̃. (54)

With this lemma and p1 in Hill function form (14), we get by equation (7) and
(8),

dχ1

dt
≥ χ∗

0 −
χ1

ζ
(55)

dχ2

dt
≥

2χ1

ζ
(1 − p1) − δχ2 (56)
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Take x(t) := χ1(t), F (t) := χ∗

0 and G(x) := χ1

ζ , it is easy to verify that (55) and
the two properties in the hypotheses are satisfied, and hence by Lemma A.1

lim inf
t→∞

χ1(t) ≥ ζχ∗

0. (57)

Similarly, we take x(t) := χ2(t), F (t) := 2χ1(t)
ζ (1 − p1) and G(χ1) := δχ2, and

apply Lemma A.1 can be applied with (57) to get

lim inf
t→∞

χ2(t) ≥
2(1 − p1)χ

∗

0

δ
. (58)

In (53), h(y) > 0 if y > n − 1, and by (58), the unique steady state is globally
stable if (

g2
2(1 − p1)χ

∗

0

δ

)n

> n − 1. (59)

Combining (52) and (59), we proved that the unique steady state is globally stable
if (24) is true.

A.3. Proof of Lemma A.1.

Proof. Suppose (54) is not true, that is,

lim inf
t→∞

x(t) < x̃, (60)

we would like to prove Lemma A.1 by contradiction.
By (60), there exists x0 such that

lim inf
t→∞

x(t) < x0 < x̃, (61)

and hence for all t0 > 0, there exists t1 > t0 such that x(t1) < x0.
By property (2), G(x(t1)) < G(x0) < G(x̃) and by the definition of x̃, we get

G(x(t1)) < G(x0) < lim inf
t→∞

F (t). (62)

Therefore, there exists t1 > t0 such that

G(x(t1)) < G(x0) < F (t) for all t > t0. (63)

Here we discuss two possible cases:

1. If there exists t2 > t0 such that x(t2) > x0, then by the same argument as
above, there exists t3 > t2 such that

G(x(t3)) < G(x0) < F (t) for all t > t2. (64)

By (64), x(t3) < x0 < x(t2), and by the continuity of x, there must exist t4
such that t3 > t4 > t2 such that x(t4) = x0 and x′(t4) ≤ 0. Since x′(t4) ≥
F (t4) − G(x(t4)) = F (t4) − G(x0) > 0, contradicting x′(t4) ≤ 0. So there is
no t > t0 such that x(t) > x0.

2. If x(t) < x0 for all t > t0, then

G(x(t)) < G(x0) < lim inf
t→∞

F (t). (65)

There exists a constant C such that

G(x(t)) < G(x0) < C < lim inf
t→∞

F (t). (66)

so for large enough t0, we have

G(x(t)) < G(x0) < C < F (t) for all t > t0. (67)
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Therefore x′(t) ≥ F (t) − G(x(t)) > C − G(x0) > 0, and after integration,

x(t) − x(t0) > (C − G(x0))(t − t0). (68)

If t is large enough, by (C − G(x0)) > 0, x(t) will be greater than x0. This is
a contradiction to the assumption that x(t) < x0 for all t > t0.

With above, we have proved (54).

A.4. Condition for the existence of unique S3.

1. When p0 > 0.5 and p1 ≤ 0.5, there always exists a unique S3 steady state.

Proof. Using p0 and p1 in Hill form (33)-(34) and substituting into (30) and
(31), we get steady states (χ∗

0, χ
∗

1, χ
∗

2), where

χ∗

2 = bχ∗

1 + a, χ∗

0 = δa + (bδ −
1

ζ
)χ∗

1 (69)

and

(2 − bδζ)(g1 + bg2)(χ
∗

1)
2 (70)

+[(1 − bζδ) + (1 − 2p1) + (2 − bδζ)ag2 − aδζ(g1 + bg2)]χ
∗

1 − aδζ(1 + ag2) = 0,

with a and b defined as

a =
2p0 − 1

k0δ + k2
and b =

k0

ζ − k1

k0δ + k2
.

It is easy to verify that a > 0 and 1 − bδζ > 0. To get positive steady states,
we require that χ∗

0 > 0, which is equivalent to

χ∗

1 <
aδζ

1 − bδζ
. (71)

Therefore, the number of S3 depends on the number of χ∗

1 as roots of (70)
satisfying (71). Let Q(χ∗

1) be the left-hand side of (70) and we consider the
following three cases:
• If g1 + bg2 > 0, then −aδζ(1+ag2)

(2−bδζ)(g1+bg2) < 0 and Q(χ∗

1) = 0 has only one

positive root. Since Q( aδζ
1−bδζ ) > 0, (70) has only one positive root which

satisfies the inequality (71).

• If g1 + bg2 < 0, then −aδζ(1+ag2)
(2−bδζ)(g1+bg2)

> 0, so Q(χ∗

1) = 0 has two roots with

the same sign. Because Q( aδζ
1−bδζ

) > 0, there must be a root larger than

the positive number aδζ
1−bδζ . Therefore, Q(χ∗

1) = 0 has only one positive
root that satisfies the inequality (71).

• If g1 + bg2 = 0, then Q(χ∗

1) = 0 has one positive root. By Q( aδζ
1−bδζ ) > 0,

Q(χ∗

1) = 0 has only one positive solution satisfying the inequality (71).
The above shows that in any case, (70) only has one positive root satisfying
(71), so there is a unique S3 steady state when p0 > 0.5 and p1 < 0.5.

2. When p0 > 0.5 and p1 > 0.5, there exists a unique S3 if and only if (36) is
true.

Proof. Following the notations in the first part, where p0 > 0.5 and p1 ≤ 0.5,
we know from the analysis that there exist a unique S3 if and only if

Q

(
aδζ

1 − bδζ

)
> 0. (72)
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When p1 > 0.5, (72) is equivalent to condition (36). Therefore, there is a
unique S3 if and only if (36) holds.

3. S2 is locally unstable if (36) is true.

Proof. One can easily verify that if (36) is ture, p0(0, χ∗

1, χ
∗

2) > 0.5, resulting
in a positive eigenvalue of the Jacobian at the S2 steady state (0, χ∗

1, χ
∗

2), so
it is locally unstable.

Moreover, if
2p0 − 1

k1δζ + k2
<

2p1 − 1

g1δζ + g2
, (73)

by checking (28), one can show that S2 is unstable.

A.5. Proof of the conditions for locally stability of S3.

Proof. Suppose χ∗ is locally asymptotically stable, which means that the three
eigenvalues have negative real parts, possibly three real negative roots or one real
root with two conjugate complex roots, so λ1 + λ2 + λ3 < 0 and λ1λ2λ3 < 0.
Note that the characteristic polynomial C(λ) has a negative leading coefficient, and
therefore limλ→−∞ C(λ) > 0 and limλ→∞ C(λ) < 0. Without loss of generality,
assume λ1 is the most negative real root, and by the fact that λ2 and λ3 has
negative real parts, we have λ1 + λ2 + λ3 < λ1. With limλ→−∞ C(λ) > 0 and the
assumption that λ1 is the most negative real root, C(λ1 + λ2 + λ3) > C(λ1) = 0
when λ1 + λ2 + λ3 < λ1.

Conversely, if (39)-(41) is true, we would like to prove that χ∗ is locally stable.
Suppose χ∗ is not locally stable, then at least one of the three eigenvalues has
positive real part. Because C(0) = λ1λ2λ3 < 0 and limλ→−∞ C(λ) > 0, we know
that there is one negative real eigenvalue, assuming to be λ1. By the assumption,
λ2 or λ3 has positive real parts, but since λ1 < 0, λ2, λ3 are either conjugates or
both positive. Hence, λ1 < λ1 + λ2 + λ3 < 0. Because limλ→−∞ C(λ) > 0 and C
has a unique negative root λ1 and two other roots with positive real parts, C(λ) < 0
if λ1 < λ < 0. Consequently, C(λ1 + λ2 + λ3) < C(λ1) = 0, contradicting (41). We
conclude that (39)-(41) is a sufficient condition.
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