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Abstract. Cell polarization, in which substances previously uniformly dis-
tributed become asymmetric due to external or/and internal stimulation, is a

fundamental process underlying cell mobility, cell division, and other polarized

functions. The yeast cell S. cerevisiae has been a model system to study cell
polarization. During mating, yeast cells sense shallow external spatial gradients

and respond by creating steeper internal gradients of protein aligned with the

external cue. The complex spatial dynamics during yeast mating polarization
consists of positive feedback, degradation, global negative feedback control,

and cooperative effects in protein synthesis. Understanding such complex reg-

ulations and interactions is critical to studying many important characteristics
in cell polarization including signal amplification, tracking dynamic signals,

and potential trade-off between achieving both objectives in a robust fashion.

In this paper, we study some of these questions by analyzing several models
with different spatial complexity: two compartments, three compartments, and

continuum in space. The step-wise approach allows detailed characterization of
properties of the steady state of the system, providing more insights for biologi-

cal regulations during cell polarization. For cases without membrane diffusion,

our study reveals that increasing the number of spatial compartments results in
an increase in the number of steady-state solutions, in particular, the number of

stable steady-state solutions, with the continuum models possessing infinitely

many steady-state solutions. Through both analysis and simulations, we find
that stronger positive feedback, reduced diffusion, and a shallower ligand gra-

dient all result in more steady-state solutions, although most of these are not

optimally aligned with the gradient. We explore in the different settings the
relationship between the number of steady-state solutions and the extent and

accuracy of the polarization. Taken together these results furnish a detailed

description of the factors that influence the tradeoff between a single correctly
aligned but poorly polarized stable steady-state solution versus multiple more

highly polarized stable steady-state solutions that may be incorrectly aligned

with the external gradient.

1. Introduction. Breaking symmetry is fundamental to all biological systems [29].
Components that were previously uniformly distributed become asymmetrically lo-
calized. This anisotropy or polarization creates specialized structures that produce
complex behaviors. Cell polarization or anisotropy is involved in the differentiation,
proliferation, morphogenesis of organisms and activation of the immune response
[20, 2, 32]. A key challenge during these processes is robust polarization: polarizing
in the right direction, at the right time, and to the proper extent under uncertain
conditions.

Internal and external cues direct cells to localize components to specific cellular
locations leading to morphological changes. For example, haploid cells of the yeast
Saccharomyces cerevisiae typically form a new bud at the site of the previous bud,
which acts as an internal cue. In addition, haploid yeast cells can sense an external
gradient of mating pheromone and form a mating projection toward the source.
In both cases, a large number of proteins adopt a polarized distribution, being
concentrated at the site of the morphological change [7, 25].

Cell polarization can be thought of as a type of pattern formation. Turing orig-
inally proposed that complex spatial patterns could arise from simple reaction-
diffusion systems [31]. In particular, Meinhardt demonstrated that local positive
feedback balanced by global negative feedback could give rise to cell polarization
[18]. More recently, researchers have constructed detailed mechanistic models in
which specific molecular species and reactions are represented. One popular class
of models employs a local excitation, global inhibition (LEGI) mechanism [10, 12].
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From a biology perspective, it is known that the cell polarity behavior is quite
robust [3], in the sense that the polarization can be established even under very
shallow gradient. In the literature, the focus has been on understanding how a
shallow external gradient can be amplified to create a steep internal gradient of
cellular components. High amplification can result in an all-or-none localization
of the internal component to a narrow region. Detailed biochemical models are
proposed in [16, 11, 24, 26, 13, 9, 15, 27] and reviewed in [5, 12, 4], while some
models aim to account for the symmetry breaking [19, 28, 22, 24, 8].

In addition to the establishment of polarity, the tracking of a moving signal source
has also been acknowledged to be important. Devreotes and colleagues [5] made
the distinction between directional sensing (low amplification, good tracking) and
polarization (high amplification, poor tracking). Meinhardt first highlighted the
potential tradeoff between amplification and tracking [19]. Dawes et al. categorized
some models according to gradient sensing, amplification, polarization, tracking of
directional change, persistence when the stimulus is removed (i.e. multi-stability)
([4] and references therein). These models varied in the degree of amplification
(polarization), presence of multiple steady states, response to a rotating gradient,
etc.

While mathematical modeling provides great insight into how this robustness is
achieved and sheds light on the tradeoff between polarization and tracking, simple
models are particularly favorable because it permits more rigorous theoretical inves-
tigations. Most of the literature and work on mathematical analysis of the models
of cell polarization have mainly focused on the establishment and maintenance of
polarity, without emphasis on the tracking of the stimuli.

Compartmental analysis has also been frequently used for analyzing models [1].
The substance with a spatial distribution can be considered as distributed among
a number of separate and connected compartments. The dynamics of the sub-
stance within the system is then described by ordinary differential equations in
each compartment, allowing to obtain more quantitative information of the entire
system. To explain both adaptation to uniform increases in chemoattractant and
persistent signaling in response to gradients, Levchenko et al. [14] put forth a set
of differential equations and analyzed the steady-state solutions by investigating
the algebraic equations of the associated steady-state system. Recently, Mori et al.
studied a simple system composing of a single active/inactive Rho protein pair with
cooperative positive feedback and conservation requirement [21], based on a single
unified system of actin, Rho GTPases and PIs in [4]. Through analysis, the authors
[21] elucidated the phenomenon of wave-pinning and demonstrated how it could
account for spatial amplification and maintenance of polarity as well as sensitivity
to new stimuli typical in polarization of eukaryotic cells.

Previously, we constructed both generic and mechanistic models of yeast cell po-
larization in response to mating pheromone spatial gradients [3], in which we used
only numerical simulations of a system of reaction-diffusion equations in continuum
version to demonstrate the tradeoff between the amplification necessary to tightly
localize proteins at the front of the cell and the tracking necessary to follow a change
in the gradient direction. In this paper, we analyze several models with similar
structures but in different and simple spatial description: two-compartment,three-
compartment, and continuum space. Using this approach, we are able to investigate
both analytically and numerically on several important characteristics and proper-
ties of the system that have not been carefully explored in [3]. One of the key
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features in the model is the existence of multiple steady state solutions for the
system in the absence of membrane diffusion, showing the important role of mem-
brane diffusion in regulating polarity. We systematically explore and compare three
types of models with and without diffusions in this paper to examine the important
factors that influence the tradeoff between a single correctly aligned but poorly
polarized stable steady-state solution versus multiple more highly polarized stable
steady-state solutions that may be incorrectly aligned with the external gradient.

This paper is organized as follows. In Section 2, we introduce models with two
spatial compartments having different forms of positive feedback; in Section 3, we
study the three-spatial-compartment version of some of the models in Section 2; in
Section 4, we investigate the continuum model with the same mechanisms as in the
compartment models; in Section 5, we discuss and summarize.
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Figure 1. Schematic descriptions of two-compartment and con-
tinuous models of cell polarization. In both, the polarized species
x1 (red) becomes localized to the front of the cell through coop-
erative interactions (red arrow, Pf ) in response to the input and
through positive feedback (red +). There is a global negative feed-
back mediated by the species x2 (blue). (A) Two-compartment
model of cell polarization. The cell is divided into compartment 1
(front where the ligand concentration is higher) and compartment 2

(back). The species x1 polarizes to the front (xf1 ) and is less abun-
dant at the back (xb1). (B) Continuous model of cell polarization.
The input gradient and spatial localization of x1 is represented in
a continuous fashion.

2. Two-compartment models. Throughout this paper, we will consider the in-
teraction of two intracellular species x1 and x2. Species x1 is a membrane bound
protein that polarizes when exposed to a ligand gradient input, and x2 is a global
inhibitor of x1 which is homogeneous in space. The basic dynamics in the system
include membrane diffusion of x1, cooperative production of x1, positive feedback
of x1, degradation of x1 and x2, and global inhibition of x1 by x2 (see Fig. 1 for
illustration). The simplest model that accounts for the basic dynamics of x1 and x2

is a two-compartment model, in which the cell is divided into two compartments:
front and back. Herein “front” refers to the end exposed to higher ligand concen-
tration, with the back to lower ligand concentration. In this case, the front end
will be where x1 localizes. In the two-compartment setting, the membrane diffusion
corresponds to a linear transport of x1 between the compartments, and the gradient
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dependent cooperative production of x1 corresponds to a higher production of x1

at the front and lower at the back compartment.
In the following subsections, four models with different forms of positive feedback

will be discussed. In those models, superscripts f and b will be used to distinguish
x1 at the front and back compartments, respectively. Since x2 is homogeneous in

space, in the two-compartment model, we have totally three variables xf1 , x
b
1 and

x2. The rate of transport of x1 from the back to the front is denoted by Db, and
Df for the rate from the front to the back. This transport between compartments
corresponds to the surface lateral diffusion in a continuum setting, so we will refer
to this inter-compartment transport by the term “diffusion” in this paper. The
cooperative production of x1 induced by the ligand gradient at the front and back
compartments are denoted by Pf and Pb, respectively. Therefore, the case of Pf
higher than Pb corresponds to that in which the ligand gradient is from the back to
the front. The degradation rate of x1 is denoted by k2, and the negative feedback
term is k3x1x2, which depends on the global inhibitor x2 as well as x1. Parameter k1

modulates the rate of positive feedback. The rate of change of the global inhibitor
x2 is k4, and it is proportional to the difference between a constant kss and the
averaged amount of x1 throughout the cell. This control of x2 will be referred to as
“integral constraint”, which regulates x2 according to the total amount of x1.

2.1. Model 1A. The first model we consider has the positive feedback of x1 (nor-
malized by a constant kss) taking place in an exponential fashion, with the power

h. The dynamics of xf1 , x
b
1 and x2 can be described by the following ordinary dif-

ferential equations:

dxf1
dt

= Pf +Dbx
b
1 −Dfx

f
1 − k2x

f
1 − k3x2x

f
1 + k1(

xf1
kss

)h, (1)

dxb1
dt

= Pb −Dbx
b
1 +Dfx

f
1 − k2x

b
1 − k3x2x

b
1 + k1(

xb1
kss

)h, (2)

dx2

dt
= k4(

xf1 + xb1
2

− kss)x2, (3)

It is expected that the extent of polarization highly depends on, beside all other
parameters, the power h in the positive feedback term, which is the major spatial
amplification mechanism in our model that localizes x1 to a narrow region in the
front. As will be seen in the following analysis, h also dictates the number of steady
states of the system: the higher h is, the more steady-state solutions there are. Since
we are interested in the polarized solution with nonzero x2, we assume x2, k4 > 0;
in addition, we fix kss to be 1 to focus on the role of diffusion, cooperativity and
positive feedback on polarization. We will use h = 1, 2 to study the steady states
of the system.

2.1.1. Linear case: h = 1. The steady state is unique, and the solutions of xf1 and
xb1 are

xf1 =
4Db + 2Pf

2Df + 2Db + Pf + Pb
,

xb1 =
4Df + 2Pb

2Df + 2Db + Pf + Pb
.
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To examine the polarization of x1, we take the difference of xf1 and xb1

xf1 − xb1 =
2(Pf − Pb)− 4(Df −Db)

2Df + 2Db + Pf + Pb
.

It can be seen that whether x1 is higher at the front or at the back of the cell depends
on the balance between the difference of production and the difference of diffusion
between the two compartments. Since the cooperative production is induced by the
pheromone gradient, we have Pf > Pb when the gradient is along the back-to-front
direction. In particular, if the diffusion is spatially homogeneous, namely Df = Db,

it is easy to see that xf1 > xb1, a solution polarizing at the front. Generally, as long
as (Pf −Pb) > 2(Df −Db), x1 will polarize at the front of the cell. This expression
also reveals that diffusion counteracts the input-dependent cooperative production
term.

2.1.2. Quadratic case: h = 2. The steady-state equations of Eqs. (1)-(3) can be

reduced to a cubic equation of xf1 , whose three roots are

(s1 +s2)+1, −1

2
(s1 +s2)+1+i

√
3

2
(s1−s2), and − 1

2
(s1 +s2)+1−i

√
3

2
(s1−s2)

where

s1 = (r + d
1
2 )

1
3 , s2 = (r − d 1

2 )
1
3 ,

with

r = −a1 + a0

2
+ 1, d = (

a1

3
− 1)3 + (−a1 + a0

2
+ 1)2,

and

a1 =
Df +Db + (Pf + Pb)/2 + 2k1

k1
, a0 = −Pf + 2Db

k1
.

This system has multiple real steady states if and only if s1 = s2, namely, d = 0. Due
to the complexity of the formula, the explicit forms of the conditions under which
the system has a unique real steady state are difficult to obtain. However, knowing
that this model has at most three steady states, one observes that if a1 > 3, i.e,
Df+Db+(Pf+Pb)/2 > k1, d will be positive, and consequently this system has only
one real solution. In other words, if the diffusion and the cooperative production
Pf or Pb is strong enough compared to the positive feedback, the system has a
unique steady state. This expression illustrates how the number of steady states
in the quadratic case depends on diffusion, input-dependent polarized production,
and the positive feedback.

In order to understand the behavior of steady-state solutions of this system,
we numerically solve the steady-state equations, and evaluate the local stability of
each steady state by computing the eigenvalues of its Jacobian. Fig. 2 shows some
examples when varying parameters Pf , Pb, Df , Db and k1, with other parameters
fixed. According to Fig. 2 and other extensive numerical simulations not shown

here, if we further define c1 =
Pf

k1
, c2 = Pb

k1
, several numerical observations were

obtained: (1) three real steady-state solutions appear only when c1 < 1, c2 < 1; (2)
there is at most one stable steady-state solution, which occurs only when c1 > 1 or
c2 > 1; (3) as k1 increases (i.e. c1 decreases), there are more steady-state solutions;
(4) small diffusion rates Df , Db result in multiple steady-state solutions. Thus, the
ratio of input-dependent cooperative production to the positive feedback is a key
parameter.
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Figure 2. Steady-state solutions of xf1 versus Pf for Model 1A
with h = 2. The parameters used for these figures are k1 = k2 =
k3 = k4 = kss = 1. Red represents unstable steady-state solu-
tions, and blue represents stable steady states. (A) Df = Db = 0;
the solutions marked by ‘.’, ‘o’, ‘/’ correspond to those with
Pb = 0.4, 0.8, 1.2, respectively; (B) Pb = 0.8; the solutions marked
by ‘.’, ‘o’, ‘/’ correspond to those with Df = Db = 0.001, 0.1, 1,
respectively; (C) Pb = 0.8, Df = Db = 0; the solutions marked by
‘.’, ‘o’, ‘/’ correspond to those with k1 = 0.1, 1, 10, respectively.

2.2. Model 1B. The second model is a modified version of Model 1A. The positive
feedback term of Model 1B is a product of the exponential positive feedback of Model

1A and a term (kT − xf
1+xb

1

2 ), where kT is a constant. The system of equations is

shown in Eqs. (4)-(6). The whole k1 term is positive when
xf
1+xb

1

2 < kT and negative

when
xf
1+xb

1

2 > kT . Therefore, kT acts as a threshold at which the regulation
is positive when the average amount of x1 is lower than kT , and it is negative
otherwise. In this manner, the additional term prevents the positive feedback from
growing in an unstable fashion.

dxf1
dt

= Pf +Dbx
b
1 −Dfx

f
1 − k2x

f
1 − k3x2x

f
1 + k1(

xf1
kss

)h(kT −
xf1 + xb1

2
), (4)

dxb1
dt

= Pb −Dbx
b
1 +Dfx

f
1 − k2x

b
1 − k3x2x

b
1 + k1(

xb1
kss

)h(kT −
xf1 + xb1

2
), (5)

dx2

dt
= k4(

xf1 + xb1
2

− kss)x2. (6)

If we only consider steady-state solutions with nonzero x2, then
xf
1+xb

1

2 has to be

kss, and the term k1(kT − xf
1+xb

1

2 ) will be a constant k̄1 ≡ k1(kT − kss). In other
words, at steady states, Model 1B is essentially the same as Model 1A except that
the rate of positive feedback term is scaled by the constant (kT − kss). Therefore,
all the conclusions for the number of steady states of Model 1A can be applied to
this model by replacing k1 in Model 1A with k̄1 ≡ k1(kT − kss).

When h = 1 and without diffusion, Model 1B has a unique solution which pre-
serves the monotonicity of the ligand concentration at the front and back compart-
ments. When h = 2, multiple steady states may arise, with at most 3 steady states,
and the steady state is unique while Df + Db + (Pf + Pb)/2 > k̄1. We performed
numerical simulations with varying parameters Pf , Pb, Df , Db, k1, and the steady
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states are shown in Fig. 3. All the parameters used are the same as in Fig. 2,
except k̄ = 1 is used for Fig. 3. The steady states in Fig. 2 and 3 are the same,
and we also have the same observations as for Model 1A: (1) three real steady-state

solutions appear only when c̄1 < 1, c̄2 < 1 (c̄1 =
Pf

k̄1
, c̄2 = Pb

k̄1
); (2) a unique stable

steady-state solution occurs only when c̄1 > 1 or c̄2 > 1; (3) as k̄1 increases (i.e. c̄1
decreases), there are more steady-state solutions; (4) small diffusion rates Df , Db

result in multiple steady-state solutions.
Although the behavior of steady states is similar to Model 1A, Model 1B is

very different from Model 1A in the local stability of the steady states. It can
be observed in Fig. 3 that the number of stable steady states (blue symbols) is
much more than in Fig. 2 for Model 1A, which implies that this model has more
admissible solutions. Extensive numerical simulations also reveal that there are at
most 2 stable steady-state solutions, which occurs only when c̄1 < 1, c̄2 < 1.
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Figure 3. Steady-state solution of xf1 versus Pf for Model 1B
with h = 2. The parameters used for these figures are k̄1 = k2 =
k3 = k4 = kss = 1, kT = 1.5 (i.e. k1 = 2). Red represents
unstable steady states, blue represents stable steady states, and
green represents neutrally stable steady states. (A) Df = Db = 0;
the solutions marked by ‘.’, ‘o’, ‘/’ correspond to those with
Pb = 0.4, 0.8, 1.2, respectively; (B) Pb = 0.8; the solutions marked
by ‘.’, ‘o’, ‘/’ correspond to those with Df = Db = 0.001, 0.1, 1,
respectively (C) Pb = 0.8, Df = Db = 0; the solutions marked by
‘.’, ‘o’, ‘/’ correspond to those with k̄1 = 0.1, 1, 10, respectively.

2.3. Model 2A. In this subsection, we consider a model with the positive feedback
term in a Hill function form, which possesses the Hill exponent h and the Hill half-
maximal constant 1/γ. In this manner, we replaced the exponential form of the
positive feedback term with a Hill form that is more common to biological reaction
descriptions. This positive feedback achieves its maximal value k1 as x1 approaches
infinity, and it assumes its minimal value 0 as x1 approaches 0. When h is large,
the feedback response becomes switch-like. The system is as follows:

dxf1
dt

= Pf +Dbx
b
1 −Dfx

f
1 − k2x

f
1 − k3x2x

f
1 +

k1

1 + (γxf1 )−h
(7)

dxb1
dt

= Pb −Dbx
b
1 +Dfx

f
1 − k2x

b
1 − k3x2x

b
1 +

k1

1 + (γxb1)−h
(8)
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dx2

dt
= k4(

xf1 + xb1
2

− kss)x2 (9)

We consider two cases when h = 1 or h = 2.

2.3.1. Linear case: h = 1. The steady-state equations can be reduced to a cubic

equation and the relation
xf
1+xb

1

2 = kss, in which xf1 satisfies the cubic equation

γ2(a1+1)(xf1 )3+(−a0−2a1−3)γ2(xf1 )2+(2a0γ
2−a1−2γa1+2γ2)xf1 +a0(1+2γ) = 0.

where

a1 =
Df +Db + (Pf + Pb)/2 + 2k1

k1
, a0 =

Pf + 2Db

k1
.

Since a1 will always be positive, the leading coefficient of the polynomial will be
nonzero. Hence, there are at most three steady states.

2.3.2. Quadratic case: h = 2. The steady state of xf1 satisfies

2(Pf + 2Db)(1 + γ2(xf1 )2)[1 + γ2(2− xf1 )2]− (2Db + 2Df + Pf + Pb)x
f
1

(1 + γ2(xf1 )2)[1 + γ2(2− xf1 )2]− k1γ
2(xf1 )3[1 + γ2(2− xf1 )2]

−k1x
f
1γ

2(2− xf1 )2(1 + γ2(xf1 )2) + 2k1γ
2(xf1 )2[1 + γ2(2− xf1 )2] = 0. (10)

The leading coefficient of the polynomial is −(2Db+2Df+Pf+Pb+2k1)γ4, which is
always negative; therefore, the above equation has at most 5 steady-state solutions.

Due to the complexity of the coefficient of Eq. (10), we directly solve the steady-
state system (7)-(9) numerically with MATLAB, and analyze the local stability of
the steady states. The results of varying parameters Pf , Pb, Df , Db, k1 is displayed in

Fig. 4. With the definitions c1 =
Pf

k1
, c2 = Pb

k1
, we made four numerical observations:

(1) under some parameter sets, we did find five real steady states, all observed when
c1 < 0.1, c2 < 0.1. (2) at most three stable steady state are observed, which occurs
only when c1 < 0.1, c2 < 0.1; therefore, Model 2A not only has more steady states,
but also more stable steady states than Models 1A and 1B; (3) as k1 increases
(i.e. c1 decreases), there are more steady-state solutions, which is also observed in
Models 1A and 1B; (4) small diffusion rates Df , Db result in multiple steady-state
solutions, which is also observed in Models 1A and 1B.

2.4. Model 2B. We consider a variation of Model 2A in the positive feedback
term. The new feedback terms are k1

1+(γxf
1Pf )−h

and k1
1+(γxb

1Pb)−h , in which the Hill

term includes not only x1, but also the cooperative production induced by the ligand
gradient. The inclusion of Pf and Pb in the positive feedback term can be interpreted
as a type of feedforward/feedback coincidence detection [23] in the positive feedback
loop. The result is that the positive feedback term has a dependence on both x1

and the input. The input-dependence of the positive feedback is modulated by the
cooperativity. Thus, the feedback amplification of x1 has a feedforward component
from Pf and a feedback component from x1, and these must coincide to obtain
the most robust amplification. Biologically, one can implement such a mechanism
by the convergence of two signaling pathways, one of which is part of a positive
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Figure 4. Steady-state solution of xf1 versus Pf for Model 2A with
h = 2. The parameters used for these figures are k1 = 10, k2 =
k3 = k4 = kss = 1, γ = 1. Red represents unstable steady-state
solutions, and blue are stable steady states. (A) Df = Db = 0;
the solutions marked by ‘.’, ‘o’, ‘/’ correspond to those with
Pb = 0.5, 0.8, 1.2, respectively; (B) Pb = 0.8; the solutions marked
by ‘.’, ‘o’, ‘/’ correspond to those with Df = Db = 0.001, 0.1, 1,
respectively; (C) Pb = 0.8, Df = Db = 0; the solutions marked by
‘.’, ‘o’, ‘/’ correspond to those with k1 = 1, 10, 20, respectively.

feedback loop. The full model is:

dxf1
dt

= Pf +Dbx
b
1 −Dfx

f
1 − k2x

f
1 − k3x2x

f
1 +

k1

1 + (γxf1Pf )−h
(11)

dxb1
dt

= Pb −Dbx
b
1 +Dfx

f
1 − k2x

b
1 − k3x2x

b
1 +

k1

1 + (γxb1Pb)
−h (12)

dx2

dt
= k4(

xf1 + xb1
2

− kss)x2 (13)

2.4.1. Linear case: h = 1. The steady-state equation of xf1 becomes,

(Pf + 2Db)(γx
f
1Pf + 1)[(2− xf1 )γPb + 1]

+(−Db −Df −
Pf + Pb

2
)xf1 (γxf1Pf + 1)[(2− xf1 )γPb + 1]

−1

2
k1γ(xf1 )2Pf [(2− xf1 )γPb + 1]− 1

2
k1γx

f
1 (2− xf1 )Pb(γx

f
1Pf + 1)

+[(2− xf1 )γPb + 1]k1γx
f
1Pf = 0.

The above equation is a cubic equation, so there are at most 3 steady-state solutions.

2.4.2. Quadratic case: h = 2. The steady-state equation is,

[Pf + 2Db − (Db +Df +
Pf + Pb

2
)xf1 ][(γxf1Pf )2 + 1]{[γ(2− xf1 )Pb]

2 + 1}

−1

2
xf1k1(γxf1Pf )2{[γ(2− xf1 )Pb]

2 + 1} − 1

2
xf1k1[γ(2− xf1 )Pb]

2[(γxf1Pf )2 + 1]

+k1(γxf1Pf )2{[γ(2− xf1 )Pb]
2 + 1} = 0.

This equation is a quintic equation of xf1 , so there are at most 5 steady-state solu-
tions. By solving the steady state system (11)-(13) directly, numerical simulations
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with different Pf , Pb, Df , Db, k1 are displayed in Fig. 5. Five real steady-state so-
lutions were found under some parameter sets as shown in Fig. 5C. Different from
Model 2A, this model requires larger k1 to obtain 5 steady-state solutions and 3
stable steady-state solutions. In general, for high k1, Model 2B exhibited strong

polarization (i.e. xf1 ≈ 2) but a reduced region of multi-stability than Model 2A.
Similar to all Models 1A, 1B and 2A, it is observed that small diffusion rates result
in multiple steady-state solutions, and a larger k1 results in more steady states.
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Figure 5. Steady-state solution of xf1 versus Pf for Model 2B with
h = 2. The parameters used for these figures are k1 = 10, k2 =
k3 = k4 = kss = 1, γ = 1. Red represents unstable steady-state
solution, and blue represents stable steady states. (A) Df = Db =
0; the solutions marked by ‘.’, ‘o’, ‘/’ correspond to those with
Pb = 0.5, 0.8, 1.2, respectively; (B) Pb = 0.8; the solutions marked
by ‘.’, ‘o’, ‘/’ correspond to those with Df = Db = 0.001, 0.1, 1,
respectively; (C) Pb = 1.2, Df = Db = 0; the solutions marked by
‘.’, ‘o’, ‘/’ correspond to those with k1 = 1, 10, 40, respectively.

3. Three-compartment models. In this section, we study three-compartment
models in which the cell is divided into three segments: front, middle and back.
The mechanisms included in our models are the same as in Section 2, but the
increase in the number of spatial compartments provide greater spatial detail while
still being analytically approachable. The concentration of x1 at the front, middle

and back compartments are denoted by xf1 , x
m
1 and xb1, respectively. The diffusion

rate of x1 from the front/back to the middle compartment is Df/Db; the rates at
which x1 is transported from the middle to the front and back compartment are
denoted by Dmf and Dmb, respectively. The cooperative production of x1 at the
three compartments are Pf , Pm and Pb. All the other parameters have the same
definitions as in Section 2.

In the rest of this section, we study two models that assume the same form of
positive feedback, as in Model 1A and 2B in Section 2. We still call those three-
compartment versions Model 1A and Model 2B without confusion.
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3.1. Model 1A. With the positive feedback in an exponential form, a three-
compartment Model 1A can be described by the following system:

dxf1
dt

= Pf +Dmfx
m
1 −Dfx

f
1 − k2x

f
1 − k3x2x

f
1 + k1(

xf1
kss

)h (14)

dxm1
dt

= Pm −Dmfx
m
1 +Dfx

f
1 −Dmbx

m
1 +Dbx

b
1 − k2x

m
1 − k3x2x

m
1 (15)

+ k1(
xm1
kss

)h

dxb1
dt

= Pb +Dmbx
m
1 −Dbx

b
1 − k2x

b
1 − k3x2x

b
1 + k1(

xb1
kss

)h (16)

dx2

dt
= k4(

xf1 + xm1 + xb1
3

− kss)x2 (17)

In the following subsections, we will study the cases of h = 1 and h = 2, which
correspond to different strengths of positive feedback.

3.1.1. Linear Cases: h = 1. For the simplicity of notation, we denote the sum of
the cooperative production to be a positive constant c, namely, Pf + Pm + Pb = c.

Then the steady-state solutions of xf1 , x
m
1 , x

b
1 are

xf1 =
3(3DmbPf + 3DmfPf + PbPf + P 2

f + 3Db(3Dmf + Pf ) + 3DmfPm + PfPm)

3Df (3Dmb + c) + 3Db(3Df + 3Dmf + c) + c(3Dmb + 3Dmf + c)

xm1 =
3(3Db(3Df + Pb + Pm) + 3Df (Pf + Pm) + Pmc)

3Df (3Dmb + c) + 3Db(3Df + 3Dmf + c) + c(3Dmb + 3Dmf + c)

xb1 =
3(3Df (3Dmb + Pb) + 3Dmb(Pb + Pm) + Pb(3Dmf + c))

3Df (3Dmb + c) + 3Db(3Df + 3Dmf + c) + c(3Dmb + 3Dmf + c)

If one assumes that the diffusion rates between the compartments are uniform,
namely, Dmf = Dmb = Df = Db = D, then the above solutions can be simplified
as

xf1 =
3(9DPf + 3DPm + 9D2 + Pfc)

(3D + c)(9D + c)
(18)

xm1 =
3(3D + Pm)

(9D + c)
(19)

xb1 =
3(9DPb + 3DPm + 9D2 + Pbc)

(3D + c)(9D + c)
(20)

By Eqs. (18)-(20), we are able to conclude that the monotonicity and linearity of

the cooperative production Pf , Pm, Pb are correlated with those of xf1 , x
m
1 , x

b
1, with

the proof in Proposition 1. In other words, a graded external signal would result in
a graded response of x1, which guarantees polarization in the correct direction, and
that is a desirable property for the gradient sensing model because the polarization
with the input gradient is in the correct direction.

Proposition 1. Suppose the diffusion rates between each compartment are uniform,
namely, Dmf = Dmb = Df = Db = D. If Pf , Pm, Pb is monotonically decreasing,



MATHEMATICAL ANALYSIS OF MODELS OF CELL POLARIZATION 1147

then xf1 , x
m
1 , x

b
1 is monotonically decreasing. In particular, if Pf , Pm, Pb is linear,

i.e. Pf − Pm = Pm − Pb = α for some α, then xf1 , x
m
1 , x

b
1 is linear, with

xf1 − xm1 =
3α

3D + c
. (21)

Proof. Using Eqs. (18)-(20), one gets

xf1 − xm1 =
9D[(Pf − Pm) + (Pf − Pb)] + 3c(Pf − Pm)

(3D + c)(9D + c)

xm1 − xb1 =
9D[(Pm − Pb) + (Pf − Pb)] + 3c(Pm − Pb)

(3D + c)(9D + c)

If Pf ≥ Pm ≥ Pb, we have xf1 ≥ xm1 ≥ xb1; if Pf ≤ Pm ≤ Pb, then one gets

xf1 ≤ xm1 ≤ xb1 . Therefore, the monotonicity of the input to the system is preserved
at the steady state.

In particular, if Pf − Pm = Pm − Pb = α, then it can be easily seen that

xf1 − xm1 = xm1 − xb1 =
(27D + 3c)α

(3D + c)(9D + c)
=

3α

3D + c
.

Next, we would like to examine how the diffusion rate D affects the polariza-
tion. Intuitively, faster diffusion of the molecules inhibits the accumulation of the
molecules, and one would expect a decrease in polarization when the diffusion rate
is enhanced. Proposition 2 proves the above statement, in which we define the
extent of the polarization by the difference of x1 at the front versus the back com-
partment. Moreover, if the cooperative production is linear, increasing D does
not change the response in the middle compartment (xm1 ), but only decreases the

polarization (xf1 − xb1).

Proposition 2. Suppose the diffusion rate between each compartment is uniform,

i.e. Dmf = Dmb = Df = Db = D, if Pf > Pb, then as D increases, xf1 − xb1
decreases. In particular, if Pf , Pm, Pb are linear with Pf − Pm = Pm − Pb, xm1 will
be invariant with respect to D.

Proof. By Eqs. (18) and (20), we have xf1−xb1 =
3(Pf−Pb)

3D+c , and therefore if Pf > Pb,

xf1 − xb1 is a decreasing function of D. As D decreases, the difference of x1 at the
front and the back will increase.

By Eq. (19), xm1 = 3(3D+Pm)
9D+c . Using the relation Pf + Pm + Pb = c, one can

easily verify the following conclusions: 1) if Pf −Pm > Pm−Pb, xm1 is an increasing
function of D; 2) if Pf − Pm < Pm − Pb, xm1 is a decreasing function of D; 3) if
Pf −Pm = Pm−Pb, xm1 is invariant with respect to D. Case (3) corresponds to the
situation when the cooperative production Pf , Pm, Pb are linear. The analysis tells
us that in that case, changing D does not affect xm1 but only affects the polarization
of x1 at the front and back.

3.1.2. Quadratic Cases: h = 2. Throughout this subsection, we will assume Df =
Dmf = Dmb = Db for the simplicity of analysis. We first investigate a case when
there is no diffusion, in which the communication between the compartments is
merely through the global integral control. The no-diffusion case renders a relatively
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simple system to analyze, and we prove in the following proposition that there will
be at most 9 steady states with D = 0.

Proposition 3. Let c1 =
Pf

k1
, c2 = Pm

k1
, c3 = Pb

k1
, kss = 1, and replace xf1 , x

m
1 , x

b
1, x2

by x, y, z, w respectively to avoid super- and subscripts in the equations, we have the
following properties for the steady-state equations with D = 0.

• If 2y2−3y+ c2 6= 0, the steady-state system is equivalent to the following system:

12y7 − 84y6 + (207 + 8c1 + 20c2 + 8c3)y5

−6(36 + 4c1 + 19c2 + 4c3)y4 + (81 + c21 + 11c22 + c23 + 18c1
+198c2 + 18c3 + 8c1c2 − 2c1c3 + 8c2c3)y3 − 6c2(18 + 2c1

+8c2 + 2c3)y2 + (45c22 + 2c1c
2
2 + 2c32 + 2c3c

2
2)y − 6c32 = 0,

(4y2 − 6y + 2c2)x+ [2y3 − 9y2 + (9 + c2 + c3 − c1)y − 3c2] = 0,
(c1k1 + c2k1 + c3k1 − 3k2 + k1(x2 + y2 + z2))/(3k3) = w,

x+ y + z = 3,

(22)

• If 2y2 − 3y + c2 = 0 in system (22), the system is consistent only if c1 = c3 and
it has real solutions only if c2 ≤ 9

8 .
• There are at most 9 steady-state solutions.

Proof. The steady-state equations of Eqs. (14)-(17) when h = 2 with D = 0 are:

k1x
2 − (k2 + k3w)x+ Pf = 0, (23)

k1y
2 − (k2 + k3w)y + Pm = 0, (24)

k1z
2 − (k2 + k3w)z + Pb = 0, (25)

x+ y + z = 3, (26)

• Summing Eqs. (23)-(25), one gets

w =
Pf + Pm + Pb − 3k2 + k1(x2 + y2 + z2)

3k3
. (27)

Using (23) and (24), we have

x2y − y2x− Pm
k1

x+
Pf
k1
y = 0. (28)

With Eqs. (26) and (27), Eq. (24) becomes

2y3 + 2x2y + 2xy2 − 9y2 − 6xy + 9y + (
Pf
k1

+
Pm
k1

+
Pb
k1

)y − 3
Pm
k1

= 0, (29)

If we further eliminate x2y in (29) and use (28), we get

(4y2 − 6y + 2c2)x+ [2y3 − 9y2 + (9 + c2 + c3 − c1)y − 3c2] = 0. (30)

Substitute x in Eq. (28) with Eq. (30), one gets the following equation for y:

[−2y3 + 9y2 − (9 + c3 + c2 − c1)y + 3c2]2y − [−2y3 + 9y2 − (9 + c3 +

c2 − c1)y + 3c2](y2 + c2)(4y2 − 6y + 2c2) + c1y(4y2 − 6y + 2c2)2 = 0 (31)

After expansion, it becomes

12y7 − 84y6 + (207 + 8c1 + 20c2 + 8c3)y5 − 6(36 + 4c1 + 19c2 + 4c3)y4

+(81 + c21 + 11c22 + c23 + 18c1 + 198c2 + 18c3 + 8c1c2 − 2c1c3 + 8c2c3)y3

−6c2(18 + 2c1 + 8c2 + 2c3)y2 + (45c22 + 2c1c
2
2 + 2c32 + 2c3c

2
2)y − 6c32 = 0. (32)

Therefore, the solutions of the steady-state equations (23)-(25) are solutions of
system (22). Conversely, it is easy to verify that if 2y2−3y+c2 6= 0 and if (x, y, z)
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is a solution of system (22), then it is a solution to the steady-state equations
(23)-(26).
• If system (22) has solutions and if 2y2 − 3y+ c2 = 0, then 2y3 − 9y2 + (9 + c2 +
c3−c1)y−3c2 = 0. So 2y3−9y2 +(9+c2 +c3−c1)y−3c2− (2y3−3y2 +c2y) = 0,
i.e. −6y2 + (9 + c3 − c1)y − 3c2 = 0. Because 6y2 − 9y + 3c2 = 0, c3 = c1.

Furthermore, if system (22) has real solutions under the condition 2y2 − 3y +
c2 = 0, then 9− 8c2 ≥ 0, i.e. c2 ≤ 9

8 .
• All the solutions of system (23)-(26) must satisfy Eq. (32). So system (23)-(26)
has at most 7 solutions for y. If 2y2 − 3y + c2 6= 0, one y corresponds to one x
based on Eq. (30). If 2y2 − 3y + c2 = 0, each y corresponds to at most 2 real
solutions for x according to Eq. (28), so system (23)-(26) has also at most 9 real
solutions (x, y, z, w).
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Figure 6. Number of steady-state solutions (xf1 , x
m
1 , x

b
1) of system

(14)-(17) with h = 2 under a range of parameters (c1, c2, c3) ≡
(
Pf

k1
, Pm

k1
, Pb

k1
). Other parameters used are as follows: Dmf = Df =

Dmb = Db = 0, k2 = k3 = k4 = kss = 1. The solutions are
evaluated within the range 0.2 ≤ c1, c2, c3 ≤ 2, with discretized
space 0.2. Colors of red, magenta, yellow, green, cyan, blue and
black stand for 1, 2, 3, 4, 5, 6, 7 real positive solutions respectively.

Although Proposition 3 provides clues about the number of steady states when
D = 0, due to the complexity of the system, one still relies on numerical simulations
to obtain more details about how the number of steady states changes with respect
to different parameters. In Fig. 6, the number of steady states is evaluated within
a range of parameters c1, c2, c3, with different colors indicating different number
of solutions. It can be observed from Fig. 6 that without diffusion, when c1, c2, c3
are all very small, there are more steady-state solutions (up to 7 steady states for
the parameters we used); as one of the cj ’s is increased, the number of steady
states decreases. This implies that either increasing the cooperative production or
decreasing the positive feedback can reduce the number of steady states.

Next, we studied how the solution of xf1 changes with parameters (Pf , Pb, k1

and Df , Dmf , Dmb, Db) in Fig. 7, without assuming diffusion rates zero. According
to Fig. 7 and other numerical simulations not shown here, we made the following
observations: (1) Model 1A has 7 steady-state solutions only when c1, c2, c3 are less
than 1; (2) steady-state solutions are stable only when c1 > 1; no more than 2
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stable steady-state solutions are found, and 2 stable steady states occur only when
Pf = Pm; (3) as k1 increases, the number of steady-state solutions increases but the
number of stable solutions decreases; (4) small diffusion results in more steady-state
solutions. In particular, Fig. 7D shows that an increase in the diffusion rates results
in a decrease of the number of steady states, and also results in more stable steady
states. This implies that the diffusion improves the system by both reducing the
number of steady states and increasing their stability.
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Figure 7. Steady-state solution of xf1 versus Pf for three-
compartment Model 1A with h = 2. Other parameters used for
these figures are k1 = k2 = k3 = k4 = kss = 1. Red represents
unstable steady-state solutions, and blue represents stable steady
states. (A) Df = Dmf = Dmb = Db = 0 and Pb = 0.1; the
solutions marked by ‘.’, ‘o’, ‘/’ correspond to Pm = 0.2, 1, 1.8 re-
spectively; (B) Df = Dmf = Dmb = Db = 0 and Pm = 1.5; the
solutions marked by ‘.’, ‘o’, ‘/’ correspond to Pb = 0.2, 1, 1.8 re-
spectively; (C) Df = Dmf = Dmb = Db = 0 and Pm = 1.5, Pb = 1;
the solutions marked by ‘.’, ‘o’, ‘/’ correspond to k1 = 0.1, 1, 10 re-
spectively; (D) Pm = 1.5, Pb = 0.8, the solutions marked by ‘.’, ‘o’,
‘/’ correspond to Df = Dmf = Dmb = Db = 0.001, 0.1, 1 respec-
tively.

Comparing three-compartment and two-compartment models with the exponen-
tial form of feedback (Model 1A), it is found from our numerical tests that they
are mainly different in the total number of steady-state solutions and the num-
ber of stable steady states: (1) there are at most 7 steady-state solutions for
the three-compartment model and at most 3 steady-state solutions for the two-
compartment model; (2) there are at most 2 stable steady-state solutions for the
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three-compartment model and at most 1 stable steady-state solution for the two-
compartment model.

However, these two models have more in common: (1) the number of steady-
state solutions is reduced as Pb or Pm increases ; (2) the maximal number of steady
states occurs only when c1, c2, c3 < 1; (3) there are stable steady states only when
c1 > 1; (4) as k1 increases, there are more steady-state solutions and fewer stable
steady-state solutions; (5) as the diffusion increases, the number of steady-state
solutions is reduced, and there are more stable steady states.

Next, we consider if the monotonicity of the input Pf , Pm, Pb can be preserved
by the model. The simulations with all diffusion being zero is shown in Fig. 8A,
in which there are 7 steady states for the set of parameters simulated. Only one
steady state out of these seven is polarized toward the right direction, while the
others either have the maximum at the middle compartment or polarize at the
back. However, when the diffusion rates Df , Dmf , Dmb, Db are increased, the total
number of steady states is reduced (Fig. 8B-8D). At a high diffusion rate such as
Df = Dmf = Dmb = Db = 1, only the front-polarizing solution is found. In
summary, in the quadratic case h = 2, the monotonicity of the input may not
be preserved as in the linear case, and increasing the diffusion could reduce the
number of steady states, enhance the stability, and at the same time select the
correctly polarized solution.
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Figure 8. Steady-state solutions of xf1 , x
m
1 , x

b
1 of three-

compartment Model 1A with h = 2. xf1 , x
m
1 , x

b
1 are connected

by straight lines to distinguish different sets of solutions. Red,
blue, and yellow respectively represent the front-polarizing solution

(xf1 > xm1 > xb1), back-polarizing solution (xf1 < xm1 < xb1), and the

non-polarizing solution (xm1 > xf1 , x
m
1 > xb1 or xm1 < xf1 , x

m
1 < xb1);

The parameters used are k1 = k2 = k3 = k4 = kss = 1, and Pf =
0.3, Pm = 0.2, Pb = 0.1. (A) Df = Dmf = Dmb = Db = 0; (B)
Df = Dmf = Dmb = Db = 0.1; (C) Df = Dmf = Dmb = Db = 0.5;
(D) Df = Dmf = Dmb = Db = 1.
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3.2. Model 2B. With the positive feedback loop implemented in the Hill form
and having the feedback/feedforward coincidence detection mechanism, the three-
compartment model can be described by the following equations:

dxf1
dt

= Pf +Dmfx
m
1 −Dfx

f
1 − k2x

f
1 − k3x2x

f
1 +

k1

1 + (γxf1Pf )−h
(33)

dxm1
dt

= Pm −Dmfx
m
1 +Dfx

f
1 −Dmbx

m
1 +Dbx

b
1 − k2x

m
1 − k3x2x

m
1 (34)

+
k1

1 + (γxm1 Pm)−h

dxb1
dt

= Pb +Dmbx
m
1 −Dbx

b
1 − k2x

b
1 − k3x2x

b
1 +

k1

1 + (γxb1Pb)
−h (35)

dx2

dt
= k4(

xf1 + xm1 + xb1
3

− kss)x2 (36)

We numerically investigated the steady states of the system with h = 2, shown
in Fig. 9. By comparing Fig. 5 and Fig. 9, we can compare Model 2B with two-
compartment and three-compartment. It can be observed that the general behavior
of these two models are quite similar except that the three-compartment model has
more steady states and more stable solutions than the two-compartment model.
More precisely, in the two-compartment Model 2B, we found up to 5 steady states
and 3 stable steady states, and in the three-compartment Model 2B, we found up
to 17 steady states and 6 stable steady states.

If one compares the three-compartment Models 1A and 2B by comparing Fig. 7
and Fig. 9, it can be seen that there are more steady states found in Model 2B than
1A under the same sets of parameters.

3.2.1. Diffusion barrier at the front compartment enhances polarization. So far, all
the analysis and numerical simulations conducted are based on the “uniform dif-
fusion” scenario, even though our model does not require the diffusion rates to be
the same. However, there is abundant evidence that the plasma membrane is quite
heterogeneous and that lateral diffusion can be restricted by the cytoskeleton [17].
In yeast, it is known that the septins can act as a diffusion boundary during the
polarization that accompanies budding [6]. Here we use this model to analytically
explore how differential diffusion rates could affect cell polarization.

Two sets of parameters are compared in Fig. 10. One is with uniform diffusion
Df = Dmf = Dmb = Db. As expected, one observes in Fig. 10A that as diffusion
increases, the polarization decreases. Another set of parameters is with a diffusion
barrier in which we set Df = 0 and assume that the barrier is between the front
and middle compartment that prevents the substance in the front compartment
from diffusing to the middle compartment, but does not impede the transport from
the middle to the front compartment. In Fig. 10B, it is observed that with Df =
0, as other diffusion rates increased, the polarization is not decreased but rather
enhanced. The “unidirectional diffusion” from middle to front can be thought of as
polarized transport, and according to our result, this unidirectional transport could
serve as a mechanism for establishing polarization.

3.3. Comparison between the two-compartment and three-compartment
models. We close this section by comparing the two-compartment models with
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Figure 9. Steady-state solution of xf1 versus Pf for the three-
compartment Model 2B with h = 2. The parameters used for these
figures are k1 = k2 = k3 = k4 = kss = 1. Red represents unstable
steady-state solution, and blue represents stable steady states. (A)
Df = Dmf = Dmb = Db = 0 and Pb = 0.1; the solutions marked
by ‘.’, ‘o’, ‘/’ correspond Pm = 0.2, 1, 1.8 respectively. (B) Df =
Dmf = Dmb = Db = 0 and Pm = 1.5; the solutions marked by ‘.’,
‘o’, ‘/’ correspond Pb = 0.2, 1, 1.8 respectively. (C) Df = Dmf =
Dmb = Db = 0 and Pm = 1.5, Pb = 1; the solutions marked by
‘.’, ‘o’, ‘/’ correspond k1 = 0.1, 10, 200 respectively. (D) Pm =
1.5, Pb = 0.8; the solutions marked by ‘.’, ‘o’, ‘/’ correspond to
Df = Dmf = Dmb = Db = 0.001, 10, 40 respectively.

the three-compartment models, and summarizing some of the results described in
Sections 2 and 3.

The two-compartment Models 1A, 1B, 2A, and 2B and the three-compartment
Models 1A and 2B share the following common properties:

• c1 =
Pf

k1
, c2 = Pm

k1
or c3 = Pb

k1
are critical parameters which dictate the number

of steady states. The systems tend to have more steady states when c1, c2, c3
are small. In other words, enhancing the level of gradient input or decreasing
the positive feedback can reduce the number of steady states.

• As the diffusion increases, the number of steady states decreases.
• For the two-compartment and three-compartment Model 1A, stable steady

states are found only when c1 > 1, c2 > 1 or c3 > 1. For the two-compartment
and three-compartment Model 2B, stable steady states are found only when
c1, c2 or c3 are small (for example, less than 1).

The differences of those models are:
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Figure 10. Steady-state solution of x1 versus Pf for three-
compartment Model 2B with h = 2 and differential diffusion. The
parameters used for these figures are k2 = k3 = k4 = kss = 1, k1 =
10, γ = 1, Pm = 1.5, Pb = 0.8. Red represents unstable steady-
state solutions, and blue are stable steady states. (A) The solutions
marked by ‘.’, ‘o’, ‘/’ correspond to Df = Dmf = Dmb = Db =
0.001, 10, 40, respectively; (B) the solutions marked by ‘.’, ‘o’, ‘/’
correspond to Df = 0, Dmf = Dmb = Db = 0.001, 10, 40, respec-
tively.

• Generally, three-compartment models have more steady-state solutions than
the two-compartment models. For example, the three-compartment Model
2B has up to 17 solutions while the two-compartment Model 2B has at most
5 solutions.

• With a fixed number of compartments, models with positive feedback in
the Hill form have more steady states and more stable steady states than
those with the exponential positive feedback term. For example, the two-
compartment Model 2A and 2B have up to 5 solutions while the two-
compartment Model 1A and 1B can have at most 3 solutions.

• For Model 1A, stable steady states are found only when c1 > 1, c2 > 1 or
c3 > 1, but for Model 2B, stable solutions are found only when c1, c2 or c3 are
small (for example, less than 1).

4. A continuum model. In this section, we will extend our cell polarization model
from the compartmentalized setting to a continuum spatial setting. A continuum
model on the geometry of a cell membrane will be considered. In order to simplify
the analysis, we assume that the cell membrane is a sphere embedded in a spatial
gradient of ligand. With the symmetry of the geometric setup, we further assume
that the distributions of the polarized membrane proteins are axisymmetric with
respect to the axis aligned with the ligand gradient. Thus, the geometry of this
problem can be simplified as a one-dimensional curve, from the back to the front of
the cell, being parameterized by a parameter α. We denote the Cartesian coordinate
of each point along this curve by (z(α), r(α)). While the cell is set to be of radius 1
µm, we choose the parameterization to be z = − cosα, r = sinα, with 0 ≤ α ≤ π.
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We consider a model equipped with the same mechanisms included in the 2- and
three-compartment models:

∂x1

∂t
= Dm∇2

mx1 +
k0

1 + [δu(α)]−q1
+

k1

1 + [γx1p(α)]−h
− k2x1 − k3x2x1 (37)

∂x2

∂t
= k4(

∫
s
x1 ds

SA
− kss)x2 (38)

This continuum model has been proposed and discussed in our previous work [3]. In
Eq. (37), the Dm term is the lateral surface diffusion with a constant diffusion rate
Dm. This diffusion mechanism was implemented in the compartment models by the
transport terms (Df , Db, Dmb, Dmf ). The k0 parameter represents the cooperative
production which depends on the input gradient u, where u = Lmid + Lslopez is a
linear function of z. The form of this term is a Hill expression possessing a Hill
cooperativity parameter q and a Hill half-maximal constant 1/δ. This cooperative
production term corresponds to the Pf , Pm, Pb terms in the compartment models.
The k1 term is the positive feedback in which x1 stimulates its own production. This
autocatalytic reaction is also a cooperative reaction possessing a Hill cooperativity
parameter h and a Hill half-maximal constant 1/γ. Note that there is a space
dependent function p(α) in the positive feedback term. If p = 1, then the whole k1

term is a regular positive feedback term. Here, we mostly consider p = 1
1+[δu(α)]−q2

,

which is a type of feedforward/feedback coincidence detection [23] in the positive
feedback loop. As a result, the positive feedback term has a dependence on both
x1 and u, and the input-dependence is modulated by the cooperativity parameter
q2 in the Hill term. When q1 = q2, p takes the same form as the k0 term, and the
implementation of the positive feedback loop will be the same as Model 2B in the
compartment models.

In Eq. (38),
∫
s
x1 ds represents the surface integral of x1 over the cell membrane,

a unit sphere, and SA is the total surface area, which is 4π in our model. This
global regulation mechanism was also implemented in the compartment models by
the averaged x1 term in the equations for x2.

Having the basic mechanisms in common, we would like to ask: What is in com-
mon to the continuum and compartment models? What are the differences? In the
following, we perform analysis on the continuum model, followed by a comparison
with the compartment models.

4.1. Without lateral surface diffusion. We start the analysis of system (37)-
(38) with Dm = 0, i.e. there is no membrane diffusion. This happens when some
membrane proteins after synthesis become anchored to the cytoskeleton and hence
move locally but not globally, resulting in an effective macroscopic diffusion constant
of Dm = 0 [30]. The steady-state equations of the system thus become a system of
algebraic equations involving a global integral constraint:

k0

1 + [δu(α)]−q1
+

k1

1 + [γx1p(α)]−h
− (k2 + k3x2)x1 = 0 (39)∫

s
x1 ds

SA
− kss = 0 (40)

To simplify the notations, we let

y ≡ k2 + k3x2, g(α) ≡ k0

1 + [δu(α)]−q1
, z(α) ≡ − cos(α). (41)
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Eq. (39) then becomes

[−yγhp(α)h]x1
h+1 + [(g(α) + k1)γhp(α)h]x1

h − yx1 + g(α) = 0. (42)

Note that since Eq. (42) is a polynomial equation with the power h+ 1, and hence,
as h increases, the numbers of steady states will increase. With no general analytic
solutions available, one way to solve the system (37)-(38) is to solve x1 as a function
of α from Eq. (42), and then check if x1(α) satisfies the integral constraint Eq. (40).
Since x1 could have multiple roots at each α, there could be multiple x1(α) that
globally satisfy the integral constraint. Due to the difficulties of describing the
solutions analytically, in the rest of this section, we will solve the steady-state
system numerically.

In the meanwhile, we would like to consider how to determine the local stability
of a steady state, especially for our system which is not typical in the sense that it
involves an integral constraint. First, we consider Eq. (37) with Dm = 0

d

dt
x1 = f(x1, y, α) = g(α) + w(x1, α)− (k2 + k3x2)x1. (43)

where w(x1, α) ≡ k1
1+[γx1p(α)]−h . Suppose (x̄1(α), ȳ) is a solution to Eqs. (39)-

(40), taking ȳ as a constant, the solution is stable with respect to Eq. (43) alone if
∂
∂x1

f(x̄1, ȳ, α) = wx1(x̄1, α)−(k2+k3x̄2) ≤ 0 for all α, and unstable if ∂
∂x1

f(x̄1, ȳ, α)

> 0 for some α. In the following proposition, we prove that the stability of Eq. (43)
alone, taking ȳ as a fixed constant, is equivalent to the stability of the full system
Eqs. (37)-(38). Therefore, to check the stability of a steady state, one only needs
to consider the sign of ∂

∂x1
f(x̄1, ȳ, α).

Proposition 4. If (x̄1, ȳ) is a solution to Eqs. (39)-(40), and it is stable with
respect to Eq. (43), this solution is stable with respect to the system Eqs. (37)-(38).

Proof. Using the notation in Eq. (43), Eqs. (37)-(38) can be written as:

∂x1

∂t
= g(α) + w(x1, α)− (k2 + k3x2)x1

∂x2

∂t
= k4(

∫
s
x1 ds

SA
− kss)x2 (44)

Let (x̄1(α), x̄2) be the steady-state solution. To analyze the stability of the steady
states of Eqs. (37)-(38), we perturb the steady state by (e−λtφ1(α), e−λtφ2):

x1(α, t) = x̄1(α) + e−λtφ1(α), x2(t) = x̄2 + e−λtφ2

where φ1, φ2 are negligible compared to x̄1, x̄2. Substitute x1 and x2 into equation
(44) we get

∂(x̄1 + e−λtφ1)

∂t
= g(α) + w(x̄1 + e−λtφ1, α)− [k2 + k3(x̄2 + e−λtφ2)](x̄1 + e−λtφ1)

∂(x̄2 + e−λtφ2)

∂t
=k4(

∫
s
(x̄1 + e−λtφ1) ds

SA
− kss)(x̄2 + e−λtφ2)

After linearization and using the fact that x̄1 and x̄2 are steady-state solutions, one
obtains

−λe−λtφ1 = g(α) + w(x̄1, α) + wx1
(x̄1, α)e−λtφ1 − (k2 + k3x̄2)x̄1

−(k2 + k3x̄2)e−λtφ1 − k3e
−λtφ2x̄1 − k3e

−λtφ2e
−λtφ1

−λe−λtφ2 = k4(

∫
s
x̄1 ds

SA
− kss)(x̄2 + e−λtφ2) + k4x̄2

∫
s
e−λtφ1 ds

SA
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and

− λφ1 = wx1
(x̄1, α)φ1 − (k2 + k3x̄2)φ1 − k3φ2x̄1 (45)

−λφ2 = k4x̄2

∫
s
φ1 ds

SA
(46)

By substituting the Eq. (46) into Eq. (45), we get

−λφ1 = wx1
(x̄1, α)φ1 − (k2 + k3x̄2)φ1 − k3x̄1(−k4x̄2

∫
s
φ1 ds

SA× λ
)

Thus

φ1 =
−(k3x̄1)(k4x̄2)

SA× [λ+ wx1
(x̄1, α)− (k2 + k3x̄2)]λ

∫
s

φ1 ds (47)

Integrate equation (47) on both sides over the surface∫
s

φ1 ds =

∫
s

−(k3x̄1)(k4x̄2)

SA× [λ+ wx1(x̄1, α)− (k2 + k3x̄2)]λ
ds×

∫
s

φ1 ds

Therefore, either
∫
s
φ1 ds = 0 or

∫
s

−(k3x̄1)(k4x̄2)
SA×[λ+wx1 (x̄1,α)−(k2+k3x̄2)]λ ds = 1. If

∫
s
φ1 ds =

0 and λ 6= 0, then φ1 ≡ 0. Hence,
∫
s

−(k3x̄1)(k4x̄2)
SA×[λ+wx1

(x̄1,α)−(k2+k3x̄2)]λ ds = 1 and if we

assume wx1
(x̄1, α)− (k2 + k3x̄2) < 0 and k3x̄1 > 0, λ has to be positive, otherwise

the integrand would be negative for all α and the integral cannot be 1.

Having the simple criterion for local stability of the solution, we numerically
analyze the steady states and their stability for h = 1 and h = 2.

4.1.1. Linear case: h=1. The steady-state system (39)-(40) becomes

[−yγp(α)]x1
2 + [(g(α) + k1)γp(α)− y]x1 + g(α) = 0 (48)∫

s
x1 ds

SA
− kss = 0 (49)

Eq. (48) has the roots:

x̂1(α; y) =
−[y − γp(α)g(α)− k1γp(α)]

2γp(α)y

±
√

[y − γp(α)g(α)− k1γp(α)]2 + 4γp(α)g(α)y

2γp(α)y

The “hat” is to emphasize that x̂1 satisfies Eq. (48) pointwise in space, but not
necessarily a solution to Eq. (49). Since only the root with the positive sign makes
x̂1 non-negative, there is at most one solution.

Note that in solving the roots of the polynomial (48), one views y as a constant,
but since the integral constrain Eq. (49) also has to be satisfied, y cannot be arbi-
trary. It will be natural to ask how many y’s there are such that solution of Eq. (48),
x̂1(α; y), satisfies the integral constraint? The following proposition ensures that
there is at most one steady-state solution for system (48)-(49) in the case of h = 1.

Proposition 5. If h = 1, system (37)-(38) has at most one steady-state solution.

Proof. Define

F (y) =

∫
s
x̂1(α; y) ds

SA
, (50)
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where x̂1(α; y) is defined as a solution of Eq. (48). To prove that there is at most
one solution, it suffices to show that F (y) is monotonic. Here, we denote

a(α) ≡ γp(α)g(α) + k1γp(α), b(α) ≡ γp(α),

and it suffices to examine F ′(y):

d

dy
F (y) =

d

dy

∫
s
x̂1(α; y) ds

SA
=

1

SA

∫
s

∂

∂y
x̂1(α; y) ds

=
0.5

SA

∫ π

0

(
[−
√

(y − a(α))2 + 4b(α)g(α)y + (y − a(α)) + 2b(α)g(α)]y

b(α)y2
√

(y − a(α))2 + 4b(α)g(α)y

+
(y − a(α))

√
(y − a(α))2 + 4b(α)g(α)y − (y − a(α))2 − 4b(α)g(α)y

b(α)y2
√

(y − a(α))2 + 4b(α)g(α)y

)
J(α) dα

where J(α) = 2π sin(α)
√

cos(α)2 + sin(α)2 is the Jacobian and is non-negative.
Note that here we assume x1 is axisymmetric, and the geometry is a sphere. We
further denote θ ≡ y − a(α), ω ≡ 2b(α)g(α)y and simplify the above equation to

d

dy
F (y) =

∫ π

0

b(α)[−y
√
θ2 + 2ω + θy + θ

√
θ2 + 2ω − (θ2 + ω)]

b(α)y2
√
θ2 + 2ω

J(α) dα

=

∫ π

0

b(α)[−a(α)
√
θ2 + 2ω + θy − θ2 − ω)]

b(α)y2
√
θ2 + 2ω

J(α) dα

=

∫ π

0

b(α)[−a(α)
√
θ2 + 2ω + θa(α)− ω]

b(α)y2
√
θ2 + 2ω

J(α) dα

=

∫ π

0

b(α)[−a(α)(
√
θ2 + 2ω − θ)− ω]

b(α)y2
√
θ2 + 2ω

J(α) dα

Because −a(α)(
√
θ2 + 2ω − θ) − ω < 0 and other terms are non-negative, we can

conclude that F ′(y) < 0 and hence F (y) is monotonically decreasing. Therefore,
there is at most one y satisfying F (y) = constant, in particular for our case F (y) =
kss.

Although h = 1 is a good model in the sense that it gives rise to a unique solution,
the polarization is usually poor (Fig. 11A). When we examine how the polarization
of the solution, measured by the solution at the front z = 1, changes with respect
to the slopes of ligand concentration Lslope, it is found that as Lslope increases,
the polarization increases, but peaks around Lslope = 4 and slightly decreases for
higher Lslope. It can be seen from Fig. 11B that even with very steep slope, the
polarization is still poor.

4.1.2. Quadratic case: h=2. One normally expects better polarization with stronger
positive feedback, which in our model corresponds to a larger h. Here we explore
the case h = 2, for which the steady-state system (39)-(40) becomes

[−yγ2p(α)2]x1
3 + [(g(α) + k1)γ2p(α)2]x1

2 − yx1 + g(α) = 0 (51)∫
s
x1 ds

SA
− kss = 0 (52)

In Eq. (51), for a given y and α, there are at most three roots, and Fig. 12 depicts
how the real roots change as y changes. For a given y, we denote the set of stable
real roots by Ay(α), which may contain up to three elements for a fixed α. To
look for solutions of Eqs. (51)-(52), we first consider a solution of Eq. (51), named
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Figure 11. Polarization of x1 for the continuum model; Dm = 0
and h = 1. The parameters used for these figures are: k0 = k2 =
k3 = 1, k1 = 10, q1 = q2 = 10, γ = 1, δ = 0.1, Lmid = 10 and
kss = 1. (A) A typical plot of polarized x1; Lslope = 2; (B) slope
of ligand (Lslope) versus x1 at the front z = 1.

x̂1(α), which is a single-valued function in α. As in the h = 1 case, the notation
“hat” here is to emphasize the fact that x̂1(α) is a root of Eq. (51), therefore a
subset of Ay(α), but not necessarily globally satisfies the integral constraint. Since
we are only interested in the polarized solutions, namely, solutions non-decreasing
from the back z = −1 to the front z = 1, a natural way to form x̂1(α) through the
stable solution set Ay(α) is:

x̂1(α) = x̂s(α) =

{
min{Ay(α)} if α < αs
max{Ay(α)} if α ≥ αs

(53)

where αs is in the range [αmin, αmax], in which more than one real stable roots exist.
This choice of x̂s does not exhaust all the possible solutions, but will only pick the
most polarized solution while keeping the minimal number of jumps in the function,
which is a desirable property for our model. Fig. 13A shows that for a fixed y, two
solutions x̂s corresponding to αs = αmin (black) and αs = αmax (green), which we
later refer to as x̂min and x̂max, respectively. It can be seen from Fig. 13A that in
between x̂min and x̂max, there are infinitely many functions x̂s satisfying Eq. (51)
pointwise and has a jump between [αmin, αmax]. However, the actual solutions of
the system (51)-(52) will then be determined by the integral constraint in Eq. (52)
as explained in the following.

In order to evaluate the integral in Eq. (52), we define the quantity as in the case
of h = 1,

Fx̂s
(y) =

∫
s
x̂s(α; y) ds

SA
.

Obviously, we have

Fx̂min
(y) ≤ Fx̂s

(y) ≤ Fx̂max
(y).

Hence, the solutions to the system (51)-(52) exist if and only if Fx̂min
(y) ≤ kss ≤

Fx̂max
(y). In order words, by evaluating Fx̂min

(y) and Fx̂max
(y), we can know if

for the given y, there exists a solutions to the system (51)-(52). Moreover, for each
given y, there is at most one solution x1, in the form of x̂s, to the system (51)-(52).
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Fig. 13B displays Fx̂min(y) and Fx̂max(y) as functions of y. As shown in Fig. 13B,
by drawing a horizontal line at F (y) = kss, one can identify the interval for y,
[ymin, ymax], that admits polarized solutions satisfying both Eqs. (51)-(52).

To summarize, the steps to find the solution of system (51)-(52) are

• Scanning a wide range of y; for each y, find x̂max and x̂min.
• Evaluating Fx̂max

(y) and Fx̂min
(y), and determine if kss is in the interval

[Fx̂min
(y), Fx̂max

(y)]; if it is, then y ∈ [ymin, ymax].
• Identifying ymin and ymax with the previous step.
• For each y ∈ [ymin, ymax], one can get exactly one solution satisfying Eqs.

(51)-(52).

In Fig. 14A, we display solutions for a set of fixed parameters. Theoretically, there
could be infinitely many solutions for this set of parameters, forming an “envelope
of solutions” bounded by the red and green colored solutions. Only 11 solutions
out of the envelope are shown in Fig. 14A. This “envelope of steady states” can be
found for any h greater than 2. In Fig. 14B-D, one can observe how the solution
envelope gets wider when h is increased. For a very large h, one can even find a
solution polarizing at the wrong direction (magenta curve in Fig. 14D). This multiple
steady state property of the model contributes to the difficulty of the system to track
when the ligand gradient is reversed to the front-to-back direction, as mentioned
in the introduction. The widening of the solution envelope as h becomes larger is
also consistent with the argument in our previous work [3] that there is a tradeoff
between tracking and amplification.
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Figure 12. Real roots of Eq. (51) with y from 1 to 5. The
parameters used for the figure are k0 = k2 = k3 = 1, k1 = 10,
q1 = q2 = 10, γ = 1, δ = 0.1, Lmid = 10, Lslope = 2 and kss = 1.
The symbols with blue colors are stable roots while those with red
color are unstable roots.

Next we examine systematically how the solution envelope changes with respect
to different parameters or model variations. Typically, we use the value of x1 at
z = 1 to indicate the extent of polarization. Here, we additionally define an indicator
called “polarization factor (PF )” to measure the extent polarization based on the
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Figure 13. (A) All the real roots are plotted in circles, with
blue circles representing the stable solutions and red for unstable
ones; the black solid line is x̂min and the green solid line is x̂max;
(B) y versus Fx̂min

(y) (green) and y versus Fx̂max
(y) (blue); the

horizontal gray dashed line is kss (taken as 1 in this figure), and it
crosses the two curves at ymin and ymax, respectively. [ymin, ymax]
is the interval that will give rise to solutions satisfying both Eqs.
(51)-(52). The parameters used for the figures are k0 = k2 = k3 =
1, k1 = 10, q1 = q2 = 10, γ = 1, δ = 0.1, Lmid = 10, Lslope = 2
and kss = 1.

width of the global distribution of the polarized component:

PF ≡1− 2
Sp
SA

Sp= min

{
|C|, C ⊂ Ω :

∫
C

x1 dA =
1

2

∫
Ω

x1 dA, Ω is the surface of the sphere

}
.

Sp(x1) is the surface area at the front of the cell that encompasses 50% of the
polarized component x1 and SA is the total surface area of the cell. An unpolarized
cell would have a PF of 0 and an infinitely polarized cell would have a PF of 1. We
concluded from our simulations that in most cases, both measures (PF and x1|z=1)
conveyed the same information.

In Fig. 15, the ligand slope Lslope is plotted against the two measures of po-
larization, PF and x1|z=1, for two variations of models. Fig. 15A corresponds to
the model with a feedforward/feedback coincidence detection (p(α) = 1

1+[δu(α)]−q2
),

while Fig. 15B corresponds to a normal positive feedback (p(α) = 1). Although
our attention has always been on the feedforward/feedback coincidence detection
model, we use this comparison to show the reason for favoring this model than the
one with usual positive feedback. As analyzed above, the steady-state solutions
generally forms an envelope, and in Fig. 15, we plotted the measures of the up-
per bound (red) and the lower bound (green) of the envelope. It is observed that
the polarization of the feedforward/feedback model is much better than the normal
feedback model. For both models, as the ligand slope increases, the envelope be-
comes narrower, and the trend is more obvious in the feedforward/feedback model
with the envelope almost collapses to a single solution when the gradient is very
steep.

We also investigate how the strength of the positive feedback, k1, affects the
width of the envelope. In Fig. 16, k1 is plotted against PF and x1 at z = 1. It can
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Figure 14. (A) h = 2; 11 solutions out of infinitely many solu-
tions in the envelope, bounded by the red and green colored solu-
tions, are plotted. (B)-(D) The root curves displaying the steady-
state solutions for increasing values of h; each curve represents the
roots for a particular value of x2 that satisfies the integral con-
straint; both stable roots (green circles) and unstable roots (red
circles) are present. The highest polarized solution for each root
curve is traced in blue. For h = 8, a reversed polarization solu-
tion is shown in magenta. The parameters used for the figures
are k0 = k2 = k3 = 1, k1 = 10, q1 = q2 = 10, γ = 1, δ = 0.1,
Lmid = 10, Lslope = 2 and kss = 1.

be seen that when k1 is small enough, the steady-state solution is unique, but as
k1 is increased, multiple solutions appear and the width of the envelope becomes
larger. That implies with high gain of positive feedback, the range of steady states
becomes wider, which will make the tracking harder.

4.2. With lateral surface diffusion. As shown in the last section, when Dm =
0, h ≥ 2 in the model (37)-(38), there may be an envelope of solutions which contains
infinitely many solutions. It was also shown that the larger the feedback parameter
h is, the wider the solution envelope is. In this section, we discuss how the envelope
of solutions of model (37)-(38) may change when the diffusion Dm is changed from
zero to non-zero.

4.2.1. Adding surface lateral diffusion decreases the number of solutions. As in-
dicated by the analysis and numerical simulations for 2- and three-compartment
models, the surface lateral diffusion improves the stability of the the solutions, and
also reduces the number of steady states. Here we will investigate if the statement
is still true for the continuum model. While the study of number of steady states is
motivated by the concept of “tracking of directional change of the ligand gradient”,
we first compare how the tracking of the solution is different under different h and
Dm. In Fig 17, h = 2, 4, 8 and Dm = 0 and Dm = 0.001 are tested, with the
original polarization induced by u(α) = Lmid + Lslopez; after the system reaches
steady state, the input u(α) is changed to a reversed gradient Lmid − Lslopez. It is
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observed that as Dm = 0, for all h = 2, 4, 8, the tracking is not perfect, meaning that
the tracked polarization is not of the symmetric shape as the original polarization.
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However, the difference between those test cases is that for h = 2, 4, the solution
gets to track to the reversed side, with the shape slightly different than the original
polarization, while for h = 8, the solution does not track but rather is stuck at the
front. According to the previous section, for h = 2, 4, 8, the steady-state solutions
are within an envelope, but the width of the envelope increases as h increases, and
h = 8 even has a reversely polarized solution. That explains why for h = 2 and
h = 4, the solutions tracks when the gradient is flipped but not for h = 8.

Surprisingly, when the diffusion coefficient is increased a little, for example
Dm = 0.001, the results for the same simulations are very different from the no-
diffusion case (lower panel of Fig 17): the tracking is perfect for all h. Although
these simulations do not exhaust all the possible initial conditions and parameters,
they somehow shed light on the functions of surface lateral diffusion, in terms of
“collapsing the envelope of solutions with Dm = 0”.

To examine the role of diffusion, we explore many different initial conditions,
trying to find out as many steady states as possible. In our simulations, numerous
initial conditions which are analytic solutions with Dm = 0 are used. The choice of
those initial condition is based on the expectation that by adding a small amount
of diffusion, the solutions are likely to converge to functions close to one of the
steady states with Dm = 0. The same simulations and choice of initial conditions
are performed for both h = 2, 4, 8. For h = 2, 4, we only found one steady-state
solution for Dm = 0.001, 0.01, 0.1, with polarization at the front (data not shown).
In Fig. 18, results for h = 8 are shown. The initial conditions are displayed in
Fig. 18A. For small diffusion Dm = 0.001, 0.01, two steady states are found, but as
the diffusion increases to Dm = 0.1, only one steady state is found.

Although we did not exhaust all the initial conditions, this extensive exploration
implies that for h = 2 and h = 4, the diffusion seems to “collapse” the solution
envelope (Dm = 0) to a single solution, and in the case of h = 8, the number of
solutions is also greatly reduced, but multiple solutions may still exist. Table 1
summarizes the results, and it also contains the measure of polarization of each
case. It can be seen from Table 1 that as h increases, the polarization is improved,
but the number of steady states increases. This again supports our claim in [3] that
there is a tradeoff between polarization and tracking. On the other hand, increased
diffusion helps with picking a single solution, but at the cost of loss of polarization.

Number of steady states Polarization (x1 at z = 1)

Dm h = 2 h = 4 h = 8 h = 2 h = 4 h = 8

0 M M M 3.16 6.59 10.3

0.001 S S M 2.84 3.27 3.24

0.01 S S M 2.82 3.28 3.25

0.1 S S S 2.73 3.29 3.30

Table 1. Number of steady states and the polarization with
different Dm and h. M: multiple solution; S: single solution.

4.3. Connections between the discrete and continuum model. So far, we
have analyzed two-compartment, three-compartment and the continuum model.
The emphasis of the analysis has been on the number of steady states and their
stability. Here we summarize some important connections between those models:
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• As the number of compartments increases, the number of steady states is
dramatically increased. For example, the two-compartment models have up to
5 steady-state solutions, and three-compartment models have up to 17 steady
states while the continuum model could have infinitely many solutions.

• As the membrane lateral diffusion rate increases, the number of the steady
states decreases.

• As the rate constant of the positive feedback k1 increases, the number of the
steady states increases.
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• When the gradient is steep, for example, in the compartment model when
Pf is large while keeping Pb, Pm fixed, and in the continuum model when the
slope of the concentration is large, the number of steady state becomes small.

5. Conclusions. In this paper, mathematical models for the polarization of pro-
teins in a cell induced by external chemical gradients were developed and analyzed.
Two different species – a polarized membrane bound protein, and a spatially homo-
geneous protein that is an inhibitor of that polarized protein – were considered, and
amplification mechanisms such as cooperativity and positive feedback were included
in the models.

We investigated these models in three different spatial settings: two-compartment,
three-compartment and continuum space. The purpose was to study in a progressive
fashion the number of steady states and their stability properties. It was found that
as the number of compartments increased, the number of steady-state solutions also
increased: in the two-compartment models, there are up to 5 steady states; in the
three-compartment models, there are up to 17 steady states; and in the continuum
models, one could have infinitely many steady states.

We also examined different types of models in which the functional form of the
positive feedback was either exponential (Models 1A and 1B) or described by Hill
terms (Models 2A and 2B). In the exponential models, the steady states tended to
be less stable.

The compartmental models facilitated more detailed analysis including explicit
relationships among the various parameters with respect to the steady states. These
results were supported by numerical explorations over a range of parameter values.
From this work, we found an interesting relationship between the number of sta-
ble steady states and the ratio of the cooperative production term to the positive
feedback term. In general, stronger positive feedback relative to input-dependent
cooperative amplification resulted in more stable steady states.

Interestingly, diffusion exerted a strong effect on the number of steady states
in all of the models. This effect was most pronounced in the continuum models
in which an envelope of infinitely many steady-state solutions in the absence of
diffusion collapsed to a single solution by the presence of even low diffusion.

Finally, the simulations of the various models revealed that scenarios in which
many stable steady-state solutions arose often correlated with the existence of one
strongly polarized solution in the correct direction, but also with many solutions
that were in the wrong direction. These incorrect solutions reduced the ability of
the system to track a change in gradient direction because the simulated cell would
get trapped in one of the misaligned steady states.

This analysis of the steady states and their stabilities in the different cell polar-
ization scenarios highlights the challenges faced by the cell in its real environment
with respect to performance tradeoffs. Importantly, this work also points out po-
tential strategies for overcoming these challenges by modulating the ratio between
positive feedback and cooperative production or by regulating diffusion.

In yeast cells, we believe that under wild-type conditions, the system may at-
tempt to be monostable in order to track the direction of the gradient. However,
there are circumstances in which wild-type cells will commit to a certain direction
and ignore the gradient information by increasing the positive feedback resulting in
the multiple steady-states depicted in the models in which the direction of the pro-
jection does not align with the direction of the gradient. In addition, mutant yeast
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cells may exhibit partial polarization or irregular polarization (Yi, data not shown)
that is indicative of the more unusual steady-states observed in the modeling.

In the future, we plan to explore other challenges to robust cell polarization in-
cluding broad dynamic range and noise attenuation. Ultimately, we are interested
in how the complexity of the biological network and the regulation of spatial dynam-
ics through positive and negative feedback helps to balance the various constraints
that arise as the cell localizes its components in an asymmetric fashion according
to uncertain internal or external cues.
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