Math 5651: Mathematical Modeling of Biological Processes Spring 2016

Lecture MWF 9:10-10:05 at Jennings Hall 50, 1735 Neil Ave

Instructor Avner Friedman (afriedman@math.osu.edu) and Ching-Shan Chou (chou@math.osu.edu)

Office hours Friedman: M 11:30-12:30pm at JE 372 or by appointment; Chou: MW 3:55-5:00pm at Math Tower 412 or by appointment

Course homepage for announcements, HWs, handouts, etc. will be posted on Carmen.

Textbook: Lecture Notes on Mathematical Modeling in the Life Sciences, Springer, 2014, by Avner Friedman and Chiu-Yen Kao.

Grading Policy:

- Homework: 40% theoretical, 40% computational
- Final project and oral presentation: 20%

No credit for late homework or project. Homework problems will include both analytical problems and computational problems. General policies of academic honesty applies to this course. Theoretical problems should be submitted to Dr. Friedman on Mondays of the following week, and computational problems should be submitted to Dr. Chou on Fridays of the following week. Course projects will be announced after the spring break and students will be paired with a partner. Each group is expected to give a project presentation during lecture time near the end of the semester, and write a project report. Students are required to attend all lectures and presentations. Excessive absences without any medical or other valid documentation will result in low grades in class participation.

Important dates:

- Jan 18: MLK Day, no class
- Mar 14-18: Spring break, no classes

The instructors reserve rights to make necessary changes for the course any time during the semester. The students are responsible for keeping up with possible changes.

Week	Monday	Wednesday	Friday
1	Friedman	Friedman	Chou
	Chemical Reaction Kinetics, Mass action kinetics	Michaelis-Menten kinetics, Hill type kinetics	Introduction to MATLAB
2	MLK Day	Friedman	Chou
	NO Class	Basic ODE theory (HW 3.3, 3.5)	Root Finding
3	Friedman	Chou	Chou
	Basic ODE theory	ODE solvers	ODE solvers
4	Friedman	Friedman	Chou
	SIR model SEIR model	SIR model SEIR model	Lab for Disease model
5	Friedman	Friedman	Chou
	Chemostats Competing Populations	Competing Populations Recap	Eigenvalue solver Lab for Chemostat
6	Friedman	Friedman	Chou
	Bifurcation Hopf Bifurcation	Hopf Bifurcation Recap	Lab for Bifurcation
7	Friedman	Friedman	Chou
	Neuronal Oscillations	Conservation Laws	Lab for Phase plane analysis
8	Friedman	Chou	Chou
	Conservation Laws	Numerical methods for conservation laws	Numerical methods for conservation laws
9	Friedman	Friedman	Chou
	Neurofilaments transport	Recap for HW	Lab

	Spring break	Spring break	Spring break
10	Friedman	Chou	Chou
	Chemotaxis	Lab for diffusion equation	Lab for chemotaxis equation
11	Friedman	Friedman	Chou
	Angiogenesis	Cancer	Lab for Cancer
12	Friedman	Friedman	Chou
	Cancer Therapy	Granuloma	Lab for Free boundary problems
13	Friedman	Project	Project
	Project Demo		
14	Project	Project	Project
15	Project		Final exam time used for 2 projects