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Abstract. Spotlight mode airborne synthetic aperture radar (SAR) is a coherent imaging modality that is an5
important tool in remote sensing. Existing methods for spotlight SAR image reconstruction from6
phase history data typically produce a single image estimate which approximates the reflectivity7
of an unknown ground scene, and therefore provide no quantification of the certainty with which8
the estimate can be trusted. In addition, speckle affects all coherent imaging modalities causing a9
degradation of image quality. Many point estimate image reconstruction methods incorrectly treat10
speckle as additive noise resulting in an unnatural smoothing of the speckle that also reduces image11
contrast. The purpose of this paper is to address the issues of speckle and uncertainty quantification12
by introducing a sampling-based approach to SAR image reconstruction directly from phase history13
data. In particular, a statistical model for speckle as well as a corresponding sparsity technique to14
reduce it are directly incorporated into the model. Rather than a single point estimate, samples15
of the resulting joint posterior density are efficiently obtained using a Gibbs sampler, which are in16
turn used to derive estimates and other statistics which aid in uncertainty quantification. The latter17
information is particularly important in SAR, where ground truth images even for synthetically-18
created examples are typically unknown. While similar methods have been deployed to process19
formed images, this paper focuses on the integration of these techniques into image reconstruction20
from phase history data. An example result using real-world data shows that, when compared with21
existing methods, the sampling-based approach introduced provides parameter-free estimates with22
improved contrast and significantly reduced speckle, as well as uncertainty quantification information.23
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1. Introduction. Spotlight mode airborne synthetic aperture radar (SAR)1 is a widely-26

used imaging technology for surveillance and mapping. Because SAR is capable of all-weather27

day-or-night imaging, it overcomes several challenges faced by optical imaging technologies28

and is an important tool in modern remote sensing, [42]. Applications where SAR imaging is29

important include areal mapping and analysis of ground scenes in environmental monitoring,30

remote mapping, and military surveillance, [1]. It is imperative in many of these applications31

to obtain practically artifact- and noise-free SAR images on which practitioners can rely. How-32

ever, several issues with existing methods for SAR image reconstruction from phase history33

data pose challenges to this goal.34

First, SAR image reconstruction is a large problem, requiring efficient storage and meth-35

ods. Large image and data sizes prohibit the use of traditional matrix-based methods for36
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2 V. CHURCHILL AND A. GELB

linear inverse problems, as even storing dense matrices of the necessary size is problematic.37

Second, SAR is a coherent imaging system, meaning that both the collected data and the38

reflectivity image are complex-valued. While typically only the magnitude is viewed, the39

phase information should not be neglected in the image formation process, and is important40

for downstream tasks like interferometry, [48]. All coherent imaging modalities are affected41

by speckle, a multiplicative-noise-like phenomenon which causes grainy-looking images. For42

applications such as target identification, removing speckle as well as returns from non-targets43

in order to increase contrast around objects of interest is desirable. Existing methods for SAR44

image reconstruction from phase history data usually do not directly address speckle and post-45

processing operations like smoothing and filtering are typically necessary, [3, 46, 26, 53, 25, 22].46

Critically, even if appropriate modeling is assumed in post-processing, information which was47

lost in the initial image formation process from data cannot be retrieved.48

There are several common image formation methods for SAR. Basic, fast methods that49

rely on an inverse non-uniform fast Fourier transform (NUFFT), [40], provide no speckle re-50

duction, while sparsity-based methods that rely on `1 regularization, [2, 19, 58, 57], disregard51

the physical meaning of speckle and instead choose to place penalties on approximate pixel52

magnitude values. Conflating speckle with the usual additive noise makes parameter selection53

for the `1 regularization penalty term very difficult (and essentially without physical meaning)54

in practice. Generally, using one of these existing methods results in a single image, typically55

a maximum likelihood or maximum a posteriori point estimate, that approximates the un-56

known ground truth. These predictions are statistics of a distribution and not probabilistic57

themselves, and therefore provide no information about the statistical confidence with which58

we can trust the features in the resulting images, e.g., which are more likely objects of interest59

and which are more likely attributed to speckle or noise. This makes forming reliable images60

difficult, particularly in SAR where even many synthetically-created examples have unknown61

true reflectivity.262

The purpose of this paper is to address the issues of speckle reduction and uncertainty63

quantification in SAR image reconstruction, while maintaining enough efficiency to enable64

working with image sizes typical in real-world applications. Significantly, in what follows we65

are able to address these problems within the process of reconstructing SAR images directly66

from phase history data, as opposed to relying on altering images that have already been67

reconstructed or otherwise processed. This is important because the phase history data is the68

primary source of information we have about the scene. When an image is formed, there is a69

loss of information. For example, when an operator is applied to the data in order to form an70

image, it may cause cancellation that an approximate inverse operator (if available) cannot71

retrieve. Any further processing, e.g. speckle reduction, performed on its pixel values therefore72

involves starting at an information deficit. Hence, it is advantageous to work directly from73

the data when possible. We achieve this direct reconstruction first and foremost by taking a74

more robust approach to estimation, sampling an entire posterior density estimate rather than75

just computing a point estimate. This will allow us to compute estimates and uncertainty76

2We point out that there are some instances for which benchmarks for despeckling have been established,
[28]. However, these tests operate on simulated magnitude-only images that have already been formed, while
the focus of this paper is on reconstructing complex-valued images directly from real-world phase history data.
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SAMPLING-BASED SPOTLIGHT SAR IMAGE RECONSTRUCTION 3

quantification information such as standard deviation and confidence intervals for all unknown77

parameters in the model. Our approach uses the hierarchical Bayesian prior structure from78

[60] and directly incorporates coherent imaging and speckle into the prior density. The prior79

density is also formed to encourage sparsity in order to reduce speckle and increase contrast.80

Conjugate priors are used so that the resulting posterior can be efficiently sampled by using81

a Gibbs sampler and a NUFFT. It is important to note that all parameters in the model82

are prescribed, requiring no user input. We note that sampling-based methods using this83

same prior structure have been developed to quantify uncertainty in basic real-valued linear84

inverse problems such as image reconstruction, see e.g. [8], and have also been applied to85

SAR imaging tasks such as moving target inference, [51], passive SAR image reconstruction,86

[62], and speckle noise model selection, [45]. Specifically, the goals and methods described87

here echo part of those developed in [51]. However, whereas [51] operates on SAR images88

that have already been formed, here the focus is on starting the problem earlier with collected89

SAR phase history data and integrating these techniques into the image reconstruction process90

itself rather than as a post-processing in the image domain for reasons aforementioned. In91

[62], a similar procedure is formed for image reconstruction from phase history data in the92

case of passive SAR. In [62], a spike-and-slab prior to encourage sparsity on the unknown93

image, while this paper utilizes an improper prior described below as in [60] and tests on94

spotlight mode airborne SAR data. In [45], an MCMC-based procedure is used to select an95

appropriate noise model for speckle. Here, the fully-developed speckle model [42] is used,96

although later it is discussed that this model is only appropriate in target-free regions. In97

addition, other Bayesian methods for a variety of SAR functions such as classification, [65],98

and image reconstruction, [30, 61, 63, 64], have been developed using the same prior as well99

as the deterministic estimation procedure from [60] known as sparse Bayesian learning (SBL)100

or Bayesian compressed sensing (BCS), [43]. In this paper, the focus is on using the prior101

model in a sampling-based framework for spotlight mode airborne SAR image reconstruction102

directly from phase history data.103

The rest of this paper is organized as follows. Section 2.1 derives the hierarchical Bayesian104

prior of [60] from scratch, emphasizing the incorporation of coherent imaging, speckle, and105

sparsity using conjugate priors. Section 2.2 outlines an efficient sampling method for the106

resulting posterior based on the real-valued method of [8], highlighting the advantages over107

computing point estimates. Section 3 shows a real-world example using the Air Force Research108

Laboratory’s GOTCHA Volumetric Data Set 1.0, [18]. In addition to the added benefit of109

uncertainty quantification information, the results suggest that the proposed method provides110

estimates with better contrast and reduced speckle when compared with other methods for111

reconstructing SAR images from phase history data. Some concluding remarks and ideas for112

future directions are provided in Section 4.113

2. Methods.114

2.1. Hierarchical Bayesian Model for SAR. This section begins by specifying the linear115

system used to model the relationship between SAR images and phase history data. We116

provide background on, as well as issues with, existing SAR image reconstruction methods117

and then describe our approach to address these issues. Next we re-derive the hierarchical prior118

structure from [60] in order to account for the speckle phenomenon, as well as to encourage119
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4 V. CHURCHILL AND A. GELB

sparsity. We work with the fully-developed speckle model to form a posterior density for all120

latent variables, which is analytically computed.121

2.1.1. Discrete Model. We consider the process of reconstructing an image from collected122

SAR phase history data, or electromagnetic scattering data. To collect spotlight mode air-123

borne SAR data,3 an airborne sensor traverses a circular flight path, periodically transmitting124

an interrogating waveform in the form of high bandwidth pulses at equally-spaced azimuth125

angles θ toward an illuminated circular region of interest D = {(x, y)|x2 + y2 ≤ R2}. The126

emitted energy pulses impinge on targets in the illuminated region that scatter electromag-127

netic energy back to the sensor. The sensor measures and processes the reflected signal. The128

demodulated data, called a phase history, is passed on to an image reconstruction processor.129

This paper concerns the image reconstruction step, which produces a reconstruction of the130

two-dimensional electromagnetic reflectivity function of the illuminated ground scene from131

SAR phase history data. For a detailed overview of SAR and basic image reconstruction tech-132

niques, see e.g. [34, 39, 42, 40]. Traditionally, SAR images are formed using back projection,133

see e.g. [40]. However, as back projection can produce streaking and sidelobe artifacts, we134

focus instead on the following linear model for reconstruction.135

The measured SAR phase history data can be modeled as a continuous non-uniform Fourier136

transform of the reflectivity function. Given a constant elevation angle φ between the flight137

path and D, the reflected waveforms are of the form138

f̂(ω(t), θ) =

∫ ∫
D
f(x, y) exp

(
−i4πω(t) cosφ

c
(x, y) · (cos θ, sin θ)

)
dxdy,(2.1)139

140

where c is the speed of light, [56]. Hence the phase history data f̂(ω(t), θ) are the two-141

dimensional Fourier transform of the reflectivity function f(x, y). For details and assumptions142

relied upon to make this realization, see e.g. [42, 56].143

To discretize (2.1), consider f̂(ω(t), θ) for a discrete set of azimuth angles {θj}, and a set144

of time steps corresponding to a discrete set of frequency values {ωk}, [56]. Then we have145

discretized (2.1) as the complex-valued linear system146

f̂ = Ff + n.(2.2)147148

The objective is to infer a posterior density for f given f̂ , where f̂ ∈ CM is the vertically-149

concatenated phase history data, F ∈ CM×N is a two-dimensional discrete non-uniform Fourier150

transform matrix, and the vector f ∈ CN is the vertically-concatenated unknown reflectivity151

image matrix. Note that M is the length of the data and N the number of pixels in the152

image. Also note that by using the discrete Fourier transform in (2.2) we introduce both153

aliasing error and the Gibbs phenomenon. We note that (2.2) is a fairly simple model for the154

relationship between image and data in SAR. It is also common to modify (2.2) to include155

autofocusing for the purpose of phase error reduction, [58]. While such modifications are not156

a primary concern in this investigation, they can be incorporated into the proposed method157

in a straightforward manner. Finally, n ∈ CM represents model and measurement error.158

3While we believe the method developed in this investigation may be suitably modified to fit other SAR
modalities and corresponding models, further study and experimentation is required.
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SAMPLING-BASED SPOTLIGHT SAR IMAGE RECONSTRUCTION 5

Throughout this paper we assume n is complex circularly-symmetric white Gaussian noise.159

That is, for each element i of n, ni ∼ CN (0, β−1) i.i.d., where β−1 > 0 is the noise variance.160

The assumption of white Gaussian noise is often made in SAR, but a diagonal covariance161

matrix implying independently distributed noise across each pixel with a potentially different162

variance can also be accommodated in the proposed sampling procedure. Nevertheless, we163

focus on the white Gaussian noise assumption. This yields the Gaussian likelihood function164

p(f̂ |f , β) ∝ βM exp

(
−β

2
||̂f − Ff ||2

)
,(2.3)165

166

which can be read as “the probability of f̂ given f and β,” and measures the goodness of fit167

of the model (2.2). Note that ||g||2 := gHg with gH the conjugate transpose of g. In the168

Bayesian approach to estimation, all quantities of interest are viewed as random variables,169

with probability distributions describing their behavior. Known quantities, e.g. SAR phase170

history data, are called observable variables, and unknown quantities, e.g. the reflectivity171

image, are called latent variables. The goal is to infer the latent variables from the observable172

variables. Encoding these quantities as random variables does not contradict that they are173

defined quantities, but rather expresses our lack of certainty about their values.174

Recall that Bayes’ theorem tells us that175

Posterior density ∝ Likelihood function× Prior density.176177

The posterior density is built from the prior density on the latent variable, i.e. our belief178

about it before data has been considered, and the likelihood function, which governs how well179

the data fits the model. In this way the posterior is a synthesis of prior belief and information180

carried by the data, [13, 14, 44]. The deterministic approach to SAR image reconstruction,181

explained below in a digression, typically only obtains a single image that estimates the ground182

truth reflectivity of the scene. However, in a Bayesian formulation an entire posterior density183

function for the latent variables is sought. Hence, in an effort to better describe the unknown184

reflectivity, we take an approach to compute an entire posterior density from which samples185

can be drawn and statistics can be computed.186

2.1.2. Digression on existing estimation techniques. Recall that the likelihood function187

is defined as the probability distribution of the observed variables conditional on the other188

variables. In this digression to explain the current state of SAR image reconstruction from189

phase history data, we will use the likelihood function in (2.3) to derive a few different inversion190

techniques used to find an estimate for the unknown quantity f . As of now, the only model191

parameter is the noise variance β−1, which in the deterministic methods is considered a known,192

or at least asserted, quantity (hence observable).193

Perhaps the most straightforward way to estimate f from f̂ is to maximize the likelihood194

function. From the Gaussian likelihood defined above by (2.3), this estimate is195

f∗ML = arg max
f

{
p(f̂ |f , β)

}
= arg min

f

{
||̂f − Ff ||2

}
.(2.4)196

197

For an overdetermined discrete non-uniform Fourier transform, FHF ≈ I, hence we have that198

f∗ML = FH f̂ . Due to the size of F, storing and applying it as a matrix is not practical in real-199

world problems. Hence, a NUFFT, specifically the implementation in [33], is used to efficiently200
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Figure 1: Parking lot SAR image reconstructed using the NUFFT from phase history data in
GOTCHA dataset, [18].

Figure 2: Optical images of parking lot being imaged in GOTCHA dataset, [18]. The scene
contains a variety of calibration targets, such as primitive reflectors like the tophat shown, a
Toyota Camry, forklift, and tractor.

apply the action of this matrix instead to avoid storage and accelerate the computation.4201

General information on NUFFTs can be found in [33, 41, 47]. The preceding estimate is202

therefore frequently referred to as a NUFFT reconstruction, as it only requires an inverse203

NUFFT application in order to invert the data. Generally speaking, the reflectivity image can204

be found by interpolating the typically polar grid of measured samples in frequency space to205

an equally spaced rectangular grid, then computing an inverse uniform fast Fourier transform,206

[1]. Although the NUFFT is computationally efficient, noisy data and model error can cause207

artifacts or a noisy image. An example is shown in Figure 1 using the GOTCHA parking lot208

data set, [18].5 While these SAR images look much different than the optical images shown209

in Figure 2, key features from the parking lot can be recognized such as the roads, curbs,210

and cars. Note that only the magnitude of this complex-valued reflectivity image is viewed211

here. Observe also the very grainy appearance due to the speckle phenomenon, which we later212

discuss at length. Finally, since NUFFT reconstruction provides only this one image, we have213

no means of knowing whether or not all features shown are objects of interest.214

To improve on the maximum likelihood (or NUFFT) estimate given by (2.4), the cost215

4For efficient use of space, we continue to use F and FH notation despite using NUFFTs in their places for
the actual implementation. Using a function as opposed to a matrix as a forward operator is commonly seen
in nonlinear inverse problems, [7, 9, 10].

5The GOTCHA data used are fully specified in Section 3.
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Figure 3: Parking lot SAR images reconstructed with `1 regularization with regularization
parameter λ = (a) 1/80; (b) 1/60; (c) 1/40; (d) 1/20.
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Figure 4: Parking lot SAR images reconstructed with TV regularization with regularization
parameter λ = (a) 1/160; (b) 1/120; (c) 1/80; (d) 1/40.

function is frequently regularized by adding a penalty term on the `1 norm of |f | or a transform216

T|f |217

f∗ = arg min
f

{
β

2
||̂f − Ff ||2 + λ||T|f |||1

}
.(2.5)218

219

In addition to regularizing the ill-posed problem, where more than one f may satisfy the220

model equation, this formulation encourages sparsity in the magnitude |f |. The phase, which221

is not modeled as sparse, [42], is governed only by the least squares fit term. Equation (2.5)222

in general has no direct solution and must be minimized using a convex optimization method223

like the alternating direction method of multipliers (ADMM), [11]. The `1 regularization224

term in (2.5) imposes the sparsity penalty on f . In the field of compressive sensing, [16] the225

sparsity prior parameter λ and noise variance β−1 are often combined and relabeled as the226

regularization parameter, which balances the fidelity term, the sparsity penalty, and noise227

reduction. Figure 3 shows four reconstructed images employing (2.5) with T = I using β = 1228

and four different values of λ. Figure 4 also shows four reconstructed images employing (2.5),229

in this case with T defined as the total variation (approximate gradient) operator, again230
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using β = 1 and four different values of λ. We see that the `1 regularization reconstruction231

does a decent job at sparsifying the image, i.e. drawing values to zero, especially along the232

road area which is fairly smooth and hence won’t scatter much electromagnetic energy back233

to the sensor. This has the effect of increased contrast making targets like the cars more234

clearly visible. However, in the reconstructions using smaller λ values, there is still significant235

speckle causing an overall grainy appearance in some of the rough grassy areas where there236

are in fact no visible targets of interest. Moreover, reconstructions using larger values of λ are237

overly sparse – displaying an overall disconnected appearance in the car reflectivities. The TV238

regularization reconstructions on the other hand handles the grainy speckle issue very well,239

smoothing out much of the image. The issue here is the block-like appearance, which is an240

artifact known to occur in TV regularization.6 These blocky regions occur to a varying degree241

depending on λ, and they increase background values potentially making it more difficult242

to determine the targets in the scene, particularly without any uncertainty quantification243

information. Both methods have been extensively applied in SAR (see e.g. [58, 29, 56, 2, 19]).244

In addition, methods that use weighted `1 or `2 norm regularization have had some success245

over standard `1 regularization, [17, 20, 23, 27], although there are issues with robustness, [23].246

As is clear from Figures 3 and 4, the choice of the regularization parameter λ, which balances247

the model fidelity with a penalty on the magnitude of the sparsity domain, is critical. While248

the option to tune this parameter gives the user the ability to perhaps affect which magnitudes249

are large enough to be considered objects of interest, in the absence of ground truth this choice250

can be very difficult. These `1-norm-based methods also do not properly describe speckle and251

provide no uncertainty quantification. For these reasons we are motivated to use a probabilistic252

framework, which we now describe.253

From the cost function used in (2.5), the observation can be made that had the prior254

probability distribution255

p(f |λ) ∝ exp (−λ||T|f |||1) ,(2.6)256257

been invoked, the resulting posterior density would be258

p(f |̂f , β, λ) ∝ p(f̂ |f , β)p(f |λ) ∝ exp

(
−β

2
||̂f − Ff ||2 − λ||T|f |||1

)
.(2.7)259

260

It is clear that maximizing (2.7) would yield (2.5), and hence (2.5) is known as a maximum261

a posteriori (MAP) estimate. This `1 prior is often chosen in the field of compressed sensing,262

where limited data is collected and sparsity is believed in T|f |. Of course this is not the only263

prior distribution that can be used and others would invoke other a priori beliefs. From this264

discussion above, it is clear that the regularization penalty term within the cost function im-265

poses the a priori belief specified in the prior probability distribution. It is also evident that266

without prior information of λ or β, they will be difficult to choose. Hence we take the view267

that these parameters should also be estimated. We note that due to the difficulty of mini-268

mizing the `1 norm of the magnitude of a complex vector, in SAR, typically an approximation269

6This is also often called the stair-casing effect due to the tendency of TV regularized solutions to be
piecewise constant.

This manuscript is for review purposes only.



SAMPLING-BASED SPOTLIGHT SAR IMAGE RECONSTRUCTION 9

|f | = Θ∗f is made, where Θj,j = angle(f̃j) and f̃ is an approximate cheaply computed solution270

such as the NUFFT image, [56]. This has two negative consequences. First, this method271

no longer regularizes the sparsity of the magnitude of |f |, but just an approximation to the272

magnitude. In addition, the regularization term no longer corresponds to any prior distribu-273

tion as the data was considered in order to form the initial estimate. The proposed method274

corrects both of these issues, working directly from phase history data and incorporating an275

appropriate prior on f . Finally, there are a few issues with MAP estimates in general. The276

maximum is not a categorically strong representative of the posterior density, and in general277

sampling is a better way to interrogate a density than finding its maximum. A consequence278

of only estimating with the maximum is that once again we do not know the certainty with279

which we can trust the estimate or the features thereof. Hence we have no way of knowing280

which structures in the reflectivity estimate are truly there and which are noise or artifacts.281

The above discussion inspires us to form a new approach which directly uses the SAR phase282

history data, which we describe in detail in the following sections. Considering each element283

of the model for SAR image reconstruction, a hierarchical Bayesian model [60] is constructed284

using conjugate priors, and a Gibbs sampler is used to sample the resulting posterior density.285

The result is a set of samples from the posterior density, from which a variety of statistics286

(including the sample mean and sample variance) can be computed and used not only to287

estimate the image but also the speckle and noise and in general to quantify uncertainty.288

2.1.3. Hierarchical Prior. With the likelihood given by (2.3), the next step in computing289

an entire posterior density is to specify a prior density for the latent variable f as mentioned290

above in the digression on existing estimation. Recall that the prior expresses a belief about a291

quantity before observation. The hierarchical prior used in the proposed method is identical292

to the one used in [60], which was formulated for sparse regression and classification. Below293

it is re-derived with coherent imaging and speckle justifying its use. This prior has been294

used in MCMC-based methods for SAR image processing before, including moving target295

inference [51], passive SAR reconstruction [62], and noise model selection, [45], as well as in296

deterministic algorithms for image reconstruction, [64, 61, 30, 63].297

We use the fact that SAR images are affected by the speckle phenomenon as a prior,298

effectively including an appropriate statistical characterization of speckle within our model.299

Speckle, which occurs in all coherent imaging and is often misidentified and mischaracterized as300

noise, causes a complicated granular pattern of bright and dark spots throughout an image,301

[42]. Although speckle is in fact signal and not noise, it nonetheless degrades the image302

quality by lowering the contrast, and hence when attempting to identify targets in a scene it303

is desirable to remove it. We note and recognize that in some applications, removing speckle304

is not desirable and the speckle is in fact leveraged via speckle-tracking for other tasks such as305

change detection. While speckle reduction is the goal in this paper, and hence priors are so-306

chosen, later in this section we describe how our model can in fact be easily adapted to simply307

model speckle and not reduce it. Speckle reduction is often tackled using denoising techniques,308

e.g. the TV scheme described in Section 2.1.2, or by filtering, [3], or by other post-processing309

techniques for speckle denoising, [26, 53, 25, 22].7 Here instead we directly incorporate the310

speckle into the image reconstruction model, so that it is properly characterized as part of311

7Note that the TV scheme described in this paper is incorporated directly into the inverse problem while
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the data. Specifically we employ the fully-developed speckle model, [42, 57, 29, 52]. Although312

this model is really only appropriate when no dominant scatterers are present in a resolution313

cell, it has been previously invoked in spotlight mode airborne SAR, [42, 57]. In addition,314

we hypothesize that since we seek to reduce speckle specifically where there are no dominant315

scatterers (and the fully-developed speckle model applies), dominant scatterers will remain316

and thus we are able obtain the desired result of reducing speckle in regions without targets.317

We note that, unlike despeckling techniques that operate on magnitude-only images, [28], the318

product of the method will be despeckled complex-valued images. While further exploration319

is planned for future work, we expect this will be critical for coherent downstream tasks such320

as interferometry and change detection, where coherent images are required.321

We now provide details of the fully-developed speckle model. Assume the real and322

imaginary parts of each image pixel i, Re(fi) and Im(fi), are respectively i.i.d. Gaussian323

with variance α−1i . That is, Re(fi), Im(fi) ∼ N (0,α−1i ). By independence, Re(f), Im(f) ∼324

N (0, diag(α)−1). This is conveniently encoded by f ∼ CN (0,diag(α)−1) which means that f325

is circularly-symmetric complex Gaussian with density326

p(f |α) ∝
N∏
i=1

αi exp

(
−1

2
||
√
α� f ||2

)
,(2.8)327

328

where � is elementwise multiplication. Thus we see that the prior on the magnitude |fi| =329 √
Re(fi)2 + Im(fi)2 is a Rayleigh probability distribution with mean proportional to α−1i .330

This is the standard specification for fully-developed speckle, [42, 57]. Because a change in331

the magnitude of each pixel |fi| is proportional to a change in α−1i , the speckle phenomenon332

has also been modeled as a multiplicative noise, [4, 21]. As already mentioned, there are333

many techniques developed to reduce speckle, [3]. Of note here is that we address the speckle334

directly by including it in our model with the prior given by (2.8), and later estimating the335

associated speckle parameters α−1i . This is accomplished through sampling as opposed to336

attempting to quantify the remaining speckle via post-image-reconstruction techniques. Note337

that by parameterizing f with α we are introducing another latent variable, which clearly338

provides a computational challenge (but not a methodological one), [50].339

Since we now have a likelihood given by (2.3) and a prior defined in (2.8), we could compute340

a posterior for f if β and α are specified. Specifically, by Bayes’ theorem, the posterior density341

for f would be342

p(f |̂f ,α, β) ∝ p(f̂ |f , β)p(f |α, β) ∝ βM
N∏
i=1

αi exp

(
−β

2
||̂f − Ff ||2 − 1

2
||
√
α� f ||2

)
.(2.9)343

344

We could take the same approach as described in Section 2.1.2 of obtaining a MAP estimate345

leading to the optimization problem346

f∗MAP = arg max
f
p(f |̂f ,α, β) = arg min

f

{
β

2
||̂f − Ff ||2 +

1

2
||
√
α� f ||2

}
.(2.10)347

348

the methods in [26, 53, 25, 22] are used only after the image is formed.
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We can dissect the components in (2.10) as a least-squares fidelity term coming from the likeli-349

hood function which measures the fit of the data to the proposed f followed by a regularization350

term which penalizes the `2 norm of f after being transformed by
√
α. Resulting from the351

Gaussian prior in (2.8), regularization with the `2 norm, known as Tikhonov regularization or352

ridge regression, [38], can be used to encourage smoothness in the solution.353

As mentioned above, using a MAP estimate like (2.10) as the solution is limiting – first354

because it may not be representative of the posterior and second because it provides no355

information about the statistical confidence of the estimate of each recovered pixel value, or356

in any other recovered features of the image, [49]. Finally, the regularization parameters for357

both the cost function and prior in the MAP estimate approach (analogous to β and α here)358

are user-specified. Yet they are truly unknown and therefore should be inferred from the359

data. For these reasons we take a different approach than (2.10) and seek the joint posterior360

p(f ,α, β |̂f). Significantly, we will not only be estimating an entire density for the complex361

image, but also the speckle parameter α, which will lend clarity when determining whether362

or not the speckle reduction techniques are actually working,8 as well as the noise parameter363

β. In order to calculate p(f ,α, β |̂f), we must define prior densities on α and β. In general, we364

have no intuition for the values of α and β, and we can encode that uncertainty by choosing365

uninformative priors to allow as much variation as possible and let the data choose.366

Although there is no theoretical constraint on the type of prior used for β, in order to367

obtain an analytical form of the posterior, we follow [60] and choose a conjugate Gamma prior.368

That is, β ∼ Γ(c, d) with probability density function369

p(β|c, d) ∝ βc−1 exp(−dβ).(2.11)370371

Similarly a conjugate Gamma prior is invoked on each element of α, i.e. αi ∼ Γ(a, b) for each372

element i = 1, . . . , N . By independence, α ∼ Γ(a, b) with373

p(α|a, b) ∝
N∏
i=1

αa−1
i exp

(
−b

N∑
i=1

αi

)
.(2.12)374

375

Because the Gamma prior is conjugate to the Gaussian in (2.8), the prior and the posterior are376

from the same distribution family. That is, the individual posterior densities for β or α will377

be Gamma. Note the dependence of (2.11) and (2.12) on parameters a, b, c, and d, which as378

in [8, 60] are chosen rather than inferred. In [8], analogous parameters in a real-valued model379

are chosen to reflect the uncertainty in the latent variable, making the prior uninformative.380

Specifically, a, c = 1 and b, d = 10−4. While our focus here is on speckle reduction, our tests381

in this direction indicate that these parameters are appropriate for SAR image reconstruction382

in applications where speckle reduction is neither required nor desired, producing an estimate383

similar in appearance to an NUFFT image. On the other hand in [60], a, b, c, d := 0, resulting384

in an improper prior p(fi) ∼ 1/|fi|, which is peaked at zero and hence encourages sparsity.9385

8Without a reference ground truth image, speckle statistics are typically only estimated from small regions
of images post-reconstruction, [3].

9To ensure numerical robustness in our implementation, we choose these parameters to be machine precision
rather than 0.
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12 V. CHURCHILL AND A. GELB

Importantly, choosing a, b, c and d in this way removes any need for user-defined parameters386

in this model. Our previous work used this prior to perform edge detection from data similar387

to that seen in SAR, [24]. Nevertheless, the derivation below is done for general a, b, c, and388

d. We stress that a, b, c, and d, are the only parameters required to be defined in this model,389

and were not tuned beyond what is mentioned above.390

2.1.4. Posterior Computation. The form of the joint posterior density is achieved through391

the hierarchical Bayesian model described above, [8, 15, 12, 60], where the likelihood param-392

eters f and β are given priors (with prior parameters α, c, and d), referred to as hyperparam-393

eters. The hyperparameter α is also given a prior (called a hyperprior) with hyperhyperpa-394

rameters a and b. By Bayes’ theorem, the joint posterior for f , α, and β is395

p(f ,α, β |̂f , a, b, c, d) ∝ p(f̂ |f , β)p(β|c, d)p(f |α)p(α|a, b)396

∝ βM+c−1
N∏
i=1

αa
i exp

(
−β

2
||̂f − Ff ||2 − 1

2
||
√
α� f ||2 − dβ − b

N∑
i=1

αi

)
,(2.13)397

398

where we recall that M and N are defined in (2.2). The algorithm in Section 2.2 for sampling399

(2.13) will require the individual posteriors for each latent variable. Because of the conjugate400

priors used, these can be found analytically. The posterior for f is Gaussian, for α is a product401

of independent Gammas, and for β is Gamma. We have402

p(f |̂f ,α, β) ∝ exp

(
−β

2
||̂f − Ff ||2 − 1

2
||
√
α� f ||2

)
(2.14a)403

404
405

p(α|̂f , f , β, a, b) ∝
N∏
i=1

αa
i exp

(
−1

2
||
√
α� f ||2 − b

N∑
i=1

αi

)
(2.14b)406

407
408

p(β |̂f , f ,α, c, d) ∝ βM+c−1 exp

(
−β

2
||̂f − Ff ||2 + dβ

)
.(2.14c)409

410

Therefore each latent variable can be sampled from the following distributions411

f |̂f ,α, β ∼ CN
(

(βFHF + diag(α))−1βFH f̂ , (βFHF + diag(α))−1
)

(2.15a)412
413
414

α|̂f , f , β, a, b ∼ Γ

(
1 + a,

1

2
f � f̄ + b

)
(2.15b)415

416
417

β |̂f , f ,α, c, d ∼ Γ

(
M + c,

1

2
||̂f − Ff ||2 + d

)
.(2.15c)418

419

420

In [60], the same posterior density is reached. However, rather than sampling the posterior,421

[60] takes the approach of computing a deterministic estimate in a method known as sparse422
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SAMPLING-BASED SPOTLIGHT SAR IMAGE RECONSTRUCTION 13

Bayesian learning (SBL) which we describe now for comparison purposes later. From (2.14a),423

the conditional posterior of f given values for α and β is Gaussian with mean and variance424

µ = βΣFH f̂(2.16a)425

Σ =
(
βFHF + diag(α)

)−1
.(2.16b)426427

If α and β are estimated then (2.16) can be evaluated. Closed form estimates are not available,428

so the following update rules are used10429

α
(new)
i =

1−αiΣii

|µ|2i
, i = 1, . . . , N,(2.17a)430

β(new) =
M −N +

∑N
i=1αiΣii

||̂f − Fµ||2
.(2.17b)431

432

Iterating between updates of µ and Σ in (2.16) and α and β in (2.17) until a convergence433

criterion has been reached, the mean µ is used as the final image estimate. Although this434

algorithm provides a full density for f , only point estimates are achieved for α and β. We435

note that this algorithm has been used for reconstructing spotlight SAR images from phase436

history data before, [64], as well as other types of SAR image reconstruction, [30, 61, 63].437

Figure 5(g) shows the parking lot scene reconstructed using SBL. It is evident that for this438

GOTCHA dataset, the image looks very similar to the `1 regularization reconstruction using439

a heavy penalty shown in Figure 5(f).440

2.2. Sampling-based SAR Image Reconstruction. Now that the joint posterior has been441

specified (2.13), it remains to be defined how to learn information about and to interrogate442

it by efficiently gathering samples and later developing statistics. In this section, a sampling-443

based image reconstruction procedure based on that of the real-valued method in [8] is used444

to obtain approximate samples from each latent variable in (2.13). From these samples,445

various estimates and confidence statistics can be retrieved. Clearly (2.13) is not described446

by a known family of probability distributions. In fact, it is essentially the product of two447

Gaussian and two Gamma distributions. Therefore, it cannot be efficiently sampled directly.448

While a standard MCMC implementation like the Metropolis-Hastings algorithm could be449

used to obtain approximate samples, because of the conjugate prior structure, we can apply450

a Gibbs sampler, [37], which obtains approximate samples from the joint posterior (2.13)451

by sequentially sampling the individual posteriors for each latent variable given in (2.15a),452

(2.15b), and (2.15c). As with other Markov chain Monte Carlo (MCMC) methods, Gibbs453

sampling creates a Markov chain of samples, each of which is correlated with the other samples.454

In terms of computational efficiency, an issue occurs in sampling the individual posterior455

for f given by (2.15a), where in general a large linear system determined by (2.14a) would456

need to be solved for f . As previously mentioned, even storing the dense matrices F and FH457

in real-world problems is not practical. However, because F is a non-uniform discrete Fourier458

transform matrix, we can utilize existing libraries to quickly apply a non-uniform fast Fourier459

10For details, we refer the reader to Appendix A of [60].
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14 V. CHURCHILL AND A. GELB

transform (NUFFT), [33]. Broadly speaking, the NUFFT is performed by interpolating non-460

uniform Fourier mode quantities to a uniform grid so that a uniform FFT can be used, [33].461

This is not without error of course, which mainly comes from the error accumulated when462

“gridding” non-uniform to uniform Fourier modes. We note that improving the accuracy of463

the NUFFT is also a widely studied topic, [59, 54, 32, 35], and further work will be needed to464

meaningfully quantify this error for this application. For the current investigation, in order to465

apply F efficiently, we employ a unitary operation (the uniform FFT). This means that the466

covariance matrix in (2.15a) can be approximately diagonalized as467

(βFHF + diag(α))−1 ≈ (βI + diag(α))−1,(2.18)468469

which can be very efficiently inverted using elementwise division on the diagonal,11 yielding470

f ∼ CN
(

(βI + diag(α))−1βFH f̂ , (βI + diag(α))−1
)
,(2.19)471

472

where FH f̂ can be precomputed and repeatedly reused for efficiency. Clearly using the right473

hand side in (2.18) introduces additional error, along with that from modifying the non-474

uniform modes in order to make them conform with a uniform grid, oscillations due to the475

Gibbs phenomenon, and model and measurement error. A potentially more accurate method476

would be to use elementwise division by β + α as a preconditioner in a conjugate gradient477

descent scheme, however this would be far less efficient.478

By combining (2.14), (2.15), and (2.18) we arrive at Algorithm 2.1, which produces K479

samples for f , α, and β, each of which are approximately drawn from the joint posterior.480

Notice that each sample requires one NUFFT application.481

Algorithm 2.1 An efficient MCMC method for sampling from p(f ,α, β |̂f , a, b, c, d)

Initiate f0, α0, β0. Choose a, b, c, d. Let k = 0;

Compute f̃ = FH f̂ ;

for k = 1 to K do

Compute fk+1 ∼ CN
(

(βkI + diag(αk))−1βk f̃ , (βkI + diag(αk))−1
)

;

Compute αk+1 ∼ Γ
(
1 + a, 12 |f

k+1|2 + b
)
;

Compute βk+1 ∼ Γ
(
M + c, 12 ||̂f − Ffk+1||2 + d

)
;

end for

11In creating comparison images, this technique is also used to efficiently evaluate (2.16).
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2.2.1. Chain convergence. The convergence rate for the Markov chain formed in Algo-482

rithm 2.1 is generally unknown, but how to determine chain convergence can be described as483

follows. First, a trace plot is often generated to display the history of a parameter’s samples,484

showing where the chain has been exploring. These time series of the individually sampled485

parameters can then be used to gauge chain convergence, [13]. In particular, the average value486

of a converged chain should have no long term trend, and samples should look like random487

noise. Colloquially this is referred to as “mixing well.” Since in our case there are ∼ 5× 105488

latent variables, displaying trace plots is not practical. Hence instead we adopt the following489

statistic from [8, 36] to determine chain convergence. In this case multiple chains are computed490

using randomly chosen starting points based on the observation that the variance within a491

single chain will converge faster than the variance between chains. A statistic is computed for492

each element of each latent variable, the value of which is a measure of convergence for that493

individual parameter. The derivation of this statistic described below closely follows [8].494

Compute nr chains (in our implementation this is done in parallel) each of length 2ns,495

keeping only the latter ns samples. Let ψij denote the ith sample from the jth chain for a496

single parameter, and define497

B =
ns

nr − 1

nr∑
j=1

(
ψ̄·j − ψ̄··

)2
,498

499

where ψ̄·j is the mean of the samples in the chain j, ψ̄·· is the mean of the samples in every500

chain, and501

W =
1

nr

nr∑
j=1

s2j , with s2j =
1

ns − 1

ns∑
i=1

(
ψij − ψ̄·j

)2
.502

503

Hence B is a measure of the variance between the chains while W is a measure of the variance504

within each individual chain. The marginal posterior variance var(ψ|̂f) is then estimated by505

v̂ar+(ψ|̂f) =
ns − 1

ns
W +

1

ns
B,(2.20)506

507

which is an unbiased estimate under stationarity, [36]. From this variance estimate, we com-508

pute the desired statistic509

R̂ =

√
v̂ar+(ψ|̂f)

W
,(2.21)510

511

which tends to 1 from above as ns →∞. Once R̂ dips below 1.1 for all sampled parameters,512

the nsnr samples can together be considered samples from the posterior (2.13), [36]. Note that513

other values can also be chosen as a tolerance for R̂, [8], but using 1.1 seems reasonable when514

accounting for additional numerical errors. We also note that this is not the only statistic used515

to determine chain convergence. From the resulting nsnr samples of f , α, and β, a variety of516

sample statistics can be computed which describe the joint posterior density as well as help517

to quantify the uncertainty in the data, which we describe in the next section.518
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16 V. CHURCHILL AND A. GELB

3. Results. We now provide a real-world example that demonstrates the accuracy, ef-519

ficiency, and robustness of the proposed method for SAR image reconstruction from phase520

history data. Note that the ground truth reflectivity image is unknown, preventing the com-521

putation of standard error statistics such as the relative error. This is the case even in522

synthetically-created SAR examples, where the true reflectivity is still unknown. Therefore,523

the uncertainty quantification information the proposed method provides is all the more valu-524

able, as it is able to quantify how much we should trust pixel values and structures in the525

image even in the absence of ground truth. Throughout, all reflectivity images f are displayed526

in decibels (dB):527

20 log10

(
|f |

max |f |

)
,(3.1)528

529

with a minimum of −60 dB and maximum of 0 dB. Lesser or greater values are assigned530

the minimum or maximum. We begin with a specification of the data used in the image531

reconstruction example that follows.532

3.1. Data. The GOTCHA Volumetric SAR Data Set 1.0 consists of SAR phase his-533

tory data of a parking lot scene collected at X-band with a 640 MHz bandwidth with full534

azimuth coverage at 8 different elevation angles with full polarization, [18]. This is a real-535

world SAR dataset captured by the Air Force Research Laboratory. A plane carrying a536

sensor flew a roughly circular measurement flight around a parking lot near the Sensors Di-537

rectorate Building at Wright-Patterson Air Force Base in Dayton, Ohio, and collected SAR538

phase history data. The parking lot contains various targets including civilian vehicles, con-539

struction vehicles, calibration targets, primitive reflectors, and military vehicles. Figure 2540

shows optical images of the targets. Note that because this is real-world data, the ele-541

vation angle is not perfectly constant, and the path is not perfectly circular. The center542

frequency is 9.6GHz and bandwidth is 640MHz. This public release data has been used exten-543

sively for testing new SAR image reconstruction methods, [6, 5, 31, 56]. It is available from544

https://www.sdms.afrl.af.mil/index.php?collection=gotcha.545

3.2. Computing Statistics from Samples. After running Algorithm 2.1, we obtain a546

group of samples of f , α, and β, from the joint posterior density (2.13). Now we can use547

these samples to form statistics to summarize that complicated density. Perhaps the most548

obvious statistics to compute from the samples are the mean of f , β, and α. For f and α,549

these will be images that can give information about objects and features and their locations550

within the image. For β, the mean will be scalar. Indeed there are many other ways to form551

estimates for these quantities, e.g. sorting the samples by pixel value and looking at the image552

formed by the median pixel value can also provide an estimate. Computing the variance or553

standard deviation of the samples can be useful in determining the range of possible values554

for each pixels, which can in turn be used to quantify uncertainty. In addition to the mean555

and variance, computing confidence intervals for each of the sampled parameters can aid556

in uncertainty quantification as well. Specifically, we sort the samples by pixel values from557

lowest to highest and form a confidence interval for each pixel. The interval between the 0.025558

percentile pixel value and the 0.975 percentile pixel value represents a 95% confidence interval559

for the value of that parameter. In order to display this information, samples are drawn560
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uniformly from this interval for each pixel and displayed in a GIF, called a confidence image,561

[49]. As there is not yet a seamless way to integrate videos into PDFs, here we simply display562

the lower and upper bounds. While not thoroughly explored in this paper, we anticipate that563

these samples and their confidence images can offer more information and answer downstream564

questions, e.g. about the support of the scene, [8].565
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Figure 5: Full images formed with particulary sparsifying methods: (a) NUFFT; (b) TV
regularization with λ = 1/80; (c-f) `1 regularization with λ = 1/80, 1/60, 1/40, 1/20; (g) SBL;
(h) proposed method.

3.3. Example Estimates. Figure 5(h) shows the mean of the samples generated by Al-566

gorithm 2.1 for the GOTCHA parking lot scene, which is used as the image estimate for567

comparison purposes. Figure 5 compares full images of the GOTCHA parking lot scene using568

a NUFFT, TV regularization, `1 regularization, and the proposed method using the mean of569

the samples as an estimate. The full images shown are square with N = 5122. Code from570

[55] was used to perform image formation for the comparison methods, as well as to wrangle571

the GOTCHA data. Figure 6 zooms in on two smaller subregions of the illuminated scene in572

order to see how each image formation method compares when localizing particular targets.573

The inverse NUFFT image corresponds to a maximum likelihood estimate, minimizing a least574

squares cost function. This does little to reduce speckle and noise and serves as a benchmark575

image. The `1 regularization scheme encourages sparsity (more zero values) in the estimate,576

yet it is evident that much of the speckle remains unless the regularization parameter λ is577

made so large that only a grainy image remains. It is indeed apparent the `1 method is differ-578
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Figure 6: Two subregions of images from Fig. 5 formed with: (a) NUFFT; (b) TV regular-
ization with λ = 1/80; (c-f) `1 regularization with λ = 1/80, 1/60, 1/40, 1/20; (g) SBL; (h)
proposed method.

ent, regardless of the choice of λ, than the sampling method proposed here in its handling of579

speckle, which follows from its global penalty on magnitudes. The TV regularization removes580

much of the speckle, however it leaves block-like artifacts in its place. Recall that TV reg-581

ularization is essentially an image denoising model – it aims to recover a piecewise constant582

image and also does not distinguish speckle from noise – which may explain the results. These583

comparison methods have been extensively applied in SAR. See, e.g., [2, 19, 40, 56, 58, 57].584

The sampling-based method, which recall also uses sparsity-encouraging parameters, retrieves585
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an estimate with noise and speckle reduction, as well as improved contrast, while maintaining586

visibly clear targets. There also appear to be no new artifacts, such as the block-like artifacts587

in the TV reconstruction. Note that these images are shown on the same color scale (MAT-588

LAB ‘parula’), highlighting the contrast gains of the proposed method. One visible difference589

is the potential presence of roadside curbs in imagery from all methods aside from SBL and the590

proposed method. Importantly, while we have advantageously created an appropriate model591

for SAR imaging without any parameters to tune, this means that the learning algorithm592

decides which features are important. We hypothesize that the specific reason the curbs are593

left out is that the curbs produce anisotropic scattering, meaning that the reflection from all594

azimuth angles is not the same. Therefore, when the full azimuth (wide angle) aperture is595

used in this direct imaging, signal from these areas is not strong enough to withstand the more596

sparsifying prior used in both SBL and the proposed method. While for target identification,597

it may in fact be desirable not to clutter the scene images with returns from non-targets (e.g.598

grass and curbs), we recognize that in other applications this may be a critical drawback. In599

future work, we will focus on a composite approach which appropriately treats anisotropic600

scatterers by combining many small angle apertures, [56], rather than using a full azimuth as601

is done here.602

NUFFT `1 regularization TV regularization SBL Proposed

λ N/A 1/20 1/40 1/60 1/80 1/40 1/80 1/120 1/160 N/A N/A

Variance 51.28 0.59 7.42 31.00 51.28 0.91 1.39 2.32 3.65 0.63 0.59

Table 1: Variance for a small homogeneous subregion with each algorithm for various values
of regularization parameter λ.

To quantify the improvement and speckle reduction, Table 1 shows the variance of each603

image in a small (50 pixel by 50 pixel) homogeneous region containing no targets to the left604

of the top hat reflector. This type of measurement is commonly used to evaluate speckle605

reduction, [3]. The `1 regularization method with λ = 1/20, the SBL algorithm, and the606

proposed method show the lowest variance, implying the best speckle reduction. However,607

the reduction from `1 regularization is not a targeted reduction as it simply comes from608

applying a global magnitude penalty. In addition, we see that the TV reconstructions for609

various λ also exhibit strong speckle reduction.610

Table 2 gives the runtime for each algorithm. Each method was performed on Polaris, a611

shared memory computer operated by Dartmouth Research Computing with 40 cores, 64-bit612

Intel processors, and 1 TB of memory. Using such a large machine was necessary in order613

to store the samples (here nrns = 5 · 1322 for each of 2 × 5122 + 1 parameters). While only614

images with N = 5122 are shown throughout this paper, converged chains were computed615

for other values and the required chain lengths are shown in Table 3. In particular, Tables616

2 and 3 show that convergence takes significantly more samples for larger images, and hence617

significantly more time. It is interesting to note that the required chain length appears to be618

roughly linear, although more examination is clearly needed.619

Similar to f , recall that the sampling-based image reconstruction method also produces620
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NUFFT `1 regularization Algorithm 2.1

.03s 5.8s 203s

Table 2: Runtimes for each algorithm with N = 5122.

N Algorithm 2.1

1282 517

2562 896

5122 1322

Table 3: Required chain length ns for various N .

samples of α, the parameter governing speckle, as well as β, the inverse noise variance, from621

the joint posterior. The mean of the α samples is shown in Figure 7, while a histogram for the622

β samples is shown in Figure 8. Several observations can be made from these images. First,623

many features that were in the reflectivity image are also visible in this Figure 7. In particular,624

by comparing the results of our sampling method to the MAP estimate in (2.10), it is evident625

that, as desired, we predominantly regularize away from the large magnitude features, that is,626

presumably where there are no prominent targets. In addition to providing heuristics about627

the success of this algorithm through the lens of deterministic regularization, we also have628

that the reciprocal values of this image provide an estimate for the mean speckle parameter.629

Recall that the magnitude of each pixel |fi| is Rayleigh distributed with mean proportional to630

α−1i , hence changes in the magnitude of each pixel |fi| are proportional to α−1i . We see from631

Figure 7 that there is practically no speckle (most pixels are on the order of 10−14) except632

at the various large magnitude target reflectivities, matching the speckle reduction we saw in633

Figures 5 and 6. In addition, this matches our earlier hypothesis that the validity of fully-634

developed speckle only for cells with no dominant scatterers is inconsequential. Indeed, the635

dominant scatterers remain and the speckle is reduced specifically in regions where there are636

no targets, i.e. where the fully-developed speckle model holds. This confirms that effectively637

using sparsity-encouraging measures will successfully reduce speckle.12638

3.4. Visualizing Uncertainty Quantification. With the samples having been drawn, and639

estimates computed, we now seek to visualize uncertainty quantification information in order640

to inform the trustworthiness of these estimates. This additional information is intended to641

help human as well as potentially machine actors further interrogate a scene. Because this is642

an imaging application, any such useful information must be displayed in a visibly tractable643

way. We present several options below.644

12Moreover, we anticipate that modifications to the model with a different specific intent would also be
confirmed by evidence from the samples themselves.
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Figure 7: (left) Sample mean of α; (right) Sample mean of α−1.

Figure 8: Histogram of samples of β. The sample mean is ∼ 8.11× 106.

One way to quantify uncertainty in the above estimates, therefore fully benefiting from645

computing the entire joint posterior density, is to look at the sample variance (or sample646

standard deviation) at each pixel. This can be helpful in forming a confidence estimate by647

acknowledging that roughly 2 standard deviations from the mean contains 95% of samples648

in a Gaussian distribution. Figure 9 shows the sample variance of f for the example from649

Section 3.3. Notice that the variance is significantly lower for pixels of small magnitude. This650

is exactly what would be expected with multiple scales in a scene – large magnitude pixels651

tend to vary more than small magnitude pixels do. We can perform the same analysis for the652

α, and hence Figure 9 also shows the sample variance of the prior precision (or regularization653

matrix) α.654

Another way to visualize uncertainty is to use confidence images, which can also provide655

visual information and insight into the uncertainties in the estimates, i.e. which features in656

the image can be trusted. Visualizing samples of a one-dimensional signal can be done using,657

e.g., confidence intervals with error bars on the mean estimate, trace plots represented as error658

bars at each point of the signal, or histograms. For example, the aforementioned histogram for659

samples of the one-dimensional β is shown in Figure 8. In many applications, a trace plot of660

the sample chain is used to show a cursory level of convergence. However, for two-dimensional661

images the visualization of the chain variance is less obvious. A tool to visualize 2D confidence662

images called Twinkle was developed in [49]. In Twinkle samples are sorted in increasing order663

and the 0.025 percentile value and the 0.975 percentile value are chosen as the lower and upper664

bounds for a 95% confidence interval at a particular pixel. Such an interval is computed for665

every pixel. Figure 10 shows the lower and upper bounds for the confidence images. We see666

that the particularly bright features occur in both the lower and upper confidence bounds,667

indicating relatively high confidence in these targets. Meanwhile away from the very bright668
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Figure 9: (left) Sample variance of f ; (right) Sample variance of α.
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Figure 10: Comparison of the 95% confidence images for samples of f . (left) 0.025 percentile
image; (right) 0.975 percentile image.

targets, there is much more variation, indicating uncertainty. In Twinkle, new image samples669

are formed by drawing pixel values uniformly at random from within the confidence interval.670

A GIF or short movie can then be created from the image samples, showing them in quick671

succession for a fraction of a second each. The heuristic is that we can be more confident672

in features that persist in the image throughout the video, and less confident in features or673

pixel values in the image that flicker or twinkle. The latter could be an object of interest or674

attributable to an artifact or noise. In addition to Twinkle, another reasonable way to view675

this type of information is to simply display the posterior samples themselves in a GIF or676

short movie. Once again, similar analysis can be performed for α (and α−1), with similar677

conclusions drawn from Figure 11 as with the associated variance images for these quantities.678

4. Conclusions. In this paper we developed a procedure for sampling-based spotlight679

mode airborne SAR image reconstruction from phase history data. This task is challenging680

due to the problem size and the speckle phenomenon. Our framework uses a hierarchical681

Bayesian model with conjugate priors [60] to directly incorporate fully-developed speckle. A682

parameter-free sparsity-encouraging sampling method is introduced to provide estimates of683

the image, the speckle, and the noise directly from phase history data rather than through684

the processing of formed images. The GOTCHA data set example realizes this modeling, and685

demonstrates that our method reduces speckle and noise and improves contrast compared with686

other commonly used methods in real world problems. Uncertainty quantification information687

unavailable to other methods is also provided in the form of variance and confidence images,688

indicating when the pixel values and features shown in an estimate can be trusted. We689
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Figure 11: Comparison of the 95% confidence images for α: (left) 0.025 percentile image;
(center left) 0.975 percentile image; and for α−1: (center right) 0.025 percentile image; (right)
0.975 percentile image.

also quantify the uncertainty for the speckle and noise. Such information is of particular690

importance in SAR, where ground truth images even for synthetically-created phase history691

data sets are typically unknown.692

Future work will focus on further accelerating the sampling method, as well as decreasing693

storage and memory requirements. This will enable image reconstruction with more pixels, as694

well as multi-pass and three-dimensional imaging. It will also allow composite image formation695

for wide angle SAR to complement the direct imaging results of this paper, for example696

addressing the issue of curbs addressed earlier. In addition, we hope to apply this sampling697

framework to other SAR modalities, as well as include coherent downstream processes such698

as interferometry and change detection.699
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