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Abstract

In Cogdell et al., LMS Lecture Notes Series 459, 393–427 (2020), the authors proved
a type of Kronecker’s limit formula associated to any divisor D on any smooth
Kähler manifold X, assuming that D is smooth in codimension one. In the present
article, it is shown how the aforementioned analogue of Kronecker’s limit formula
applies to reprove and generalize Weil reciprocity. More precisely, we extend Weil
reciprocity to (suitably normalized) meromorphic modular forms of even weight on
a smooth, compact Riemann surface, and present a variant of Weil reciprocity for
a class of harmonic functions with special types of singularities on a finite volume
quotient of a symmetric space or a compact, smooth projective Kähler variety. We
also prove an integral version of Weil reciprocity for a compact, smooth projective
Kähler variety.

1 Introduction

In its nascent form, Weil reciprocity is the following statement. Let Y be a smooth,
compact Riemann surface, meaning a non-singular algebraic curve over C. Let f and g
be two meromorphic functions on Y , so then f and g can be viewed as elements of the
function field C(Y ). Let Df :=

∑
m(P )P and Dg :=

∑
n(Q)Q be the divisors of f and

g, respectively. If Df and Dg are disjoint, then

f(Dg) = g(Df ) (1)

where
f(Dg) =

∏
Q∈Dg

f(Q)n(Q) and g(Df ) =
∏
P∈Df

g(P )m(P ).

Weil reciprocity (1) is attributed to [We40] over a finite field and is employed in the study
of the Weil pairing, which itself is vital in the Weil’s proof of the Riemann hypothesis
for zeta functions attached to function fields over finite fields; see [We41]. At this time,
(1) can be stated and proved in introductory textbooks; see page 242 [GH78] or Exercise
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2.11 of [Si86]. We note that the proof of (1) in [GH78] amounts to an application of the
residue theorem.

If Df and Dg are not distinct, one can state a generalization of (1) which we now
describe. For every point P ∈ Y , define the local symbol

(f, g)P = f ordP (g)(P )/gordP (f)(P ) · (−1)ordP (f)·ordP (g), (2)

where (2) is interpreted as the constant term in a Laurent expansion of the quotient f/g
at a common point P ∈ Df ∩Dg. Note that for all but a finite number of P , one has that
(f, g)P = 1. In this notation, Weil reciprocity is the statement that∏

P∈Y

(f, g)P = 1. (3)

In the case Y = P1(C) with f(x) = x − a and g(x) = x − b for constants a and b, then
Weil reciprocity states that a− b = −(b−a), which is an enjoyable computation from (3).

In one of her first articles [Pr91], Emma Previato gave a proof of (3), though not
stated in this notation, using a correspondence between certain differential operators on
C(Y ) and meromorphic functions on Y . One can find the formulation of (3) in Deligne’s
article [De91], who attributes the point of view to Tate and cites [Se79]. In fact, Tate’s
article [Ta68] develops an abstract theory of residues which permits the generalization of
Weil reciprocity to function fields K(Y ) when K is not necessary equal to C.

In a latter paper which Emma Previato wrote with J.-L. Brylinski [BP00], the authors
refer to (3) as the “Weil-Tate reciprocity law”. Futhermore, it is stated in [BP00] that the
identity (3) is “is an essential tool in the abelian class field theory of its function field”;
see page 89 of [BP00]. Indeed, in [HM16] the authors specifically state on page 88 that
Weil reciprocity is one of the main tools at their dispose, and in fact use Weil reciprocity
to prove the version of Artin reciprocity needed in their work; see section 4, in particular
page 89, of [HM16]. Finally, let us call attention to the very interesting articles [AP02],
[MP08], and [MNPP20], and references therein, which place Weil reciprocity as part of
an algebraic theory which emanates from [Ta68] and is further developed in [ACK89] and
complements the ideas from [Pr91].

In this note we will use the main results from [CJS20] and give a new proof of (1),
from which (3) follows by a limiting argument as asserted in [Pr91]. In essence, our
approach to Weil reciprocity begins with the spectral theory of certain integral kernels
on X, as developed in [CJS20], from which we prove a general Kronecker’s limit formula.
From the Kronecker limit formula, we show that Weil reciprocity and its generalizations
follow by studying properties of the Kronecker limit function. All of the properties of the
Kronecker limit function needed to prove Weil reciprocity follow from properties of the
integral kernels in question. We note that the setting of [CJS20] is to consider a general
Kähler variety Y and divisor D which is smooth in codimension one. As such, we are able
to obtain generalizations of Weil reciprocity using properties of the Green’s function (the
resolvent kernel) on Y .

More specifically, in Theorem 1 below we extend Weil reciprocity to (suitably normal-
ized) meromorphic modular forms of even weight on a smooth, compact Riemann surface
Y . Theorem 2 is a variant of Weil reciprocity for harmonic functions with Green’s func-
tion type singularities on a finite volume quotient of a symmetric space or a compact,
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smooth projective Kähler variety, while in Theorem 3 we state an integral version of Weil
reciprocity for a compact, smooth projective Kähler variety.

The paper is organized as follows. In section 2 below we introduce the notation,
and discuss properties of the resolvent kernel and meromorphic forms in the setting of
algebraic curves. If Y is an algebraic curve and the divisors under consideration have
degree zero, then, in section 3 we obtain (1), hence (3). If the divisors do not have degree
zero, in section 3.2 we show that our method yields a generalization of Weil reciprocity
for holomorphic forms of non-zero weight, meaning sections of powers of the canonical
bundle possibly twisted by a flat line bundle. In section 4 we show that many of our
arguments in the case of algebraic curves will extend mutatis mutandis to the general
setting of [CJS20]. In absence of an underlying complex structure, our generalization
of Weil reciprocity involves the space of harmonic functions which have a finite number
of specific singularities, one example of which is the logarithmic absolute value of mero-
morphic functions on a smooth algebraic curve. We will present various examples which
illustrate the point of view presented here.

2 Preliminaries

We begin by recalling briefly the necessary notation and assertions. For further details,
we refer to [CJS20] and references therein.

2.1 Notational set-up

Let Y be a smooth, compact Riemann surface of genus g. For simplicity, let us assume
that g > 1. Let µ be any positive (1, 1) form on Y , which provides a metric on Y as well
as any power of the associated canonical bundle K. For any local holomorphic coordinate
z on Y , we can write

µ(z) =
i

2
∂z∂z̄ρ,

where ρ is the Kähler potential. The form µ is scaled so that∫
Y

µ = deg(K) = 2g − 2

As an example, one can take ρ(z) = log(Im(z)) where z is a local holomorphic coordinate,
so then µ is the hyperbolic metric on Y . Let f be a weight 2k modular form, meaning a
holomorphic section of K⊗k, with divisor D. Then the (pointwise) norm ‖f‖µ of f with
respect to µ is

‖f‖2
µ(z) := e−2πkρ(z)|f(z)|2, (4)

so then
dzd

c
z log ‖f‖µ(z) = δD(z)− kµ(z); (5)

we refer to [La88] for the notation and scaling associated to the operators dz and dcz.
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2.2 Resolvent kernel and the prime form

For distinct points z, w ∈ Y , let GY ;1/4(z, w; s) denote the resolvent kernel of the Laplacian
∆Y associated to the metric induced by µ on the space of continuous functions. As is
common, in the notation of [CJS20], one takes ρ0 = 1/2. For notational convenience, we
will write G(z, w; s) = GY ;1/4(z, w; s). From the discussion and results within [CJS20],
we have the following statements. The function G(z, w; s) is defined for Re(s) sufficiently
large, and it is symmetric in z and w, meaning that G(z, w; s) = G(w, z; s). It is admits
a meromorphic continuation to all s ∈ C. In particular, its Laurent expansion near s = 0
is of the form

G(z, w; s) =
1

volµ(Y )

1

s(s− 1)
+G(z, w) + o(1) as s→ 0; (6)

see Corollary 6.1 and Remark 6.3 of [CJS20]. The function G(z, w) is the Green’s func-
tion which inverts the actions of the Laplacian on the space of smooth functions and is
orthogonal to the constant functions. Specifically, this means that∫

Y

G(z, w)µ(z) = 0 (7)

and
dzd

c
zG(z, w) = δw(z)− µ(z); (8)

see page 431 of [CJS20] as well as section 2.5 and references therein. In words, (8) implies
that G(z, w) is locally a harmonic function away from z = w, and it has a logarithmic
singularity as z approaches w. More specifically, we can write

G(z, w) = log ‖H(z, w)‖2
µ (9)

where
‖H(z, w)‖2

µ = e−(2πρ(z))/ce−(2πρ(w))/c|H(z, w)|2 (10)

and c = 1/(2g − 2). The function H(z, w) is equal to a constant multiple of Fay’s prime
form times a degenerate theta function as in [La82]; see [Fa73] and the discussion in
section 7.5 of [JvPS18]. As such, we have that H(z, w) is locally holomorphic in z and w,
non-vanishing if z 6= w, has a first order zero as z approaches w, and is anti-symmetric
meaning that H(z, w) = −H(w, z).

In effect, the differential equation (8) and symmetry in z and w determines the function
H(z, w) in (10) up to a multiplicative constant. That constant is determined further, up
to a multiplicative constant of modulus one, by (7). Without further considerations, the
remaining constant of modulus one cannot be determined.

2.3 Product formula and normalization of modular forms

Any meromorphic modular form on a smooth, compact Riemann surface Y can be repre-
sented in terms of prime forms H(z, w). Namely, we have the following lemma.
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Lemma 1 Let f be a meromorphic modular form on a smooth, compact Riemann surface
Y and let ordw(f) denote the order f at w. Define

Hf (z) :=
∏
w∈Df

H(z, w)ordw(f).

Then, there exists a complex constant cf such that

f(z) = cfHf (z). (11)

Proof: The argument is similar to that given in section 4.4 of [CJS22]. However,
the proof is somewhat evident. Indeed, the ratio f(z)/Hf (z) is holomorphic away from
z ∈ Df , and near Df the numerator and denominator have singularities of the same
order. Thus, one can apply the Riemann removable singularity theorem to conclude
that f(z)/Hf (z) extends to a bounded, non-zero, holomorphic function on Y , which is
necessarily constant. �

Let f be an even weight 2k meromorphic modular form on Y , with multiplier system
which may involve a one-dimensional unitary representation of the fundamental group of
Y . In other terms, f is a meromorphic section of K⊗k⊗Lχ where Lχ is a flat line bundle.
Let Df denote the divisor of f , and let ‖f‖µ(z) be the pointwise norm of f as defined in
(4). Then, from (5) we conclude that there is a constant c such that

log ‖f‖µ(z) =
∑
P∈Df

m(P )G(z, P ) + c. (12)

If we assume that ∫
Y

log ‖f‖µ(z)µ(z) = 0,

then, in view of (7) we normalize the constant c to be zero. In words, we can describe
such a normalizaton as saying that f has L1-log norm equal to zero.

3 A proof of Weil Reciprocity on algebraic curves

In this section we prove (1) and (3) and extend the Weil Reciprocity to the setting of
meromorphic modular forms on Y of non-zero weight.

3.1 Weil Reciprocity for meromorphic modular forms

Let f, g be two meromorphic modular forms on Y . Then, f can be represented as (11),
while, according to Lemma 1 we can write

g(z) = cgHg(z) where Hg(z) :=
∏
w∈Dg

H(z, w)ordw(g).
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Recall that Df :=
∑
m(P )P and Dg :=

∑
n(Q)Q. For notational convenience, let us

write
f(z) = cf

∏
P∈Df

H(z, P )m(P ) and g(z) = cg
∏
Q∈Dg

H(z,Q)n(Q)

Then

f(Dg) =
∏
Q∈Dg

f(Q)n(Q) =
∏
Q∈Dg

cn(Q)
f

∏
P∈Df

H(Q,P )m(P )n(Q)


= c

deg(Dg)
f

∏
P∈Df

 ∏
Q∈Dg

H(Q,P )m(P )n(Q)


= c

deg(Dg)
f c

−deg(Df )
g

∏
P∈Df

cm(P )
g

∏
Q∈Dg

H(Q,P )m(P )n(Q)


= c

deg(Dg)
f c

−deg(Df )
g (−1)deg(Df )deg(Dg)

∏
P∈Df

cm(P )
g

∏
Q∈Dg

H(P,Q)m(P )n(Q)


= C · g(Df )

where
C = c

deg(Dg)
f c

−deg(Df )
g (−1)deg(Df )deg(Dg).

However, Y is a smooth, compact Riemann surface, hence deg(Df ) = deg(Dg) = 0, so
then C = 1, which completes the proof of (1).

Let us now consider the case when Df and Dg are not disjoint. As suggested in [Pr91],
we will view (3) as a limiting case of (1) by arguing as follows. For simplicity, let us assume
that Df and Dg have a single point, R, in common with multiplicity m(R) in Df and
n(R) in Dg. Let D′f = Df \ {R} and D′g = Dg \ {R}. Let D be a holomorphic disc on Y
containing R with holomorphic coordinate t. Let Pt and Qt be two holomorphic functions
of t with image in D such that P0 = Q0 = R and Pt 6= Qt for t 6= 0. Define the functions

ft(z) = cf
∏
P∈D′

f

H(z, P )m(P ) ·H(z, Pt)
m(R)

for any non-zero constant cf , and similarly

gt(z) = cg
∏
Q∈D′

g

H(z,Q)n(Q) ·H(z,Qt)
n(R)

By arguing as above, and setting m(Pt) = m(R) and n(Qt) = n(R) we get that∏
Q∈D′

g∪{Qt}

ft(Q)n(Q) =
∏

P∈D′
f∪{Pt}

gt(P )m(P ). (13)

One now factors out the single term H(Pt, Qt) from both sides of (13). Using that H(z, w)
is anti-symmetric, (13) immediately implies (3) upon letting t→ 0.
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3.2 Weil reciprocity for modular forms of non-zero weight

The following statement can be viewed as a Weil reciprocity for modular forms of even,
nonzero weight 2k.

Theorem 1 Let Y be a smooth, compact Riemann surface and let f and g be two mero-
morphic modular forms of even, nonzero weight 2k1 and 2k2, respectively, and with divisors
Df and Dg, respectively. Assume that Df and Dg are disjoint, and assume that both f
and g are normalized to have L1-log norm equal to zero. Then∏

Q∈Dg

‖f‖µ(Q) =
∏
P∈Df

‖g‖µ(P ). (14)

Proof: The proof is an immediate consequence of (12) with c = 0 and the symmetry of
the Green’s function G(z, w) in the variables z and w. �

One could seek to extract from (14) a more detailed identity by observing that the
ratio  ∏

Q∈Dg

‖f‖µ(Q)

 /

 ∏
P∈Df

‖g‖µ(P )


is not only equal to 1 but, as one can see from (4) its dependence on µ is explicit. We will
not pursue that line of inquiry here. Rather, we will use the above approach to Theorem
1 and obtain analogues of Weil reciprocity in other geometric settings.

4 Extensions of the main result

Our proof of Weil reciprocity (3) is based on the following points, which we list in in-
creasing order of specificity. First, there exists a Green’s function which satisfies (7) and
(8), and the Green’s function is symmetric in its two variables. With that information,
we then have the trivial identity∑

P∈A

∑
Q∈B

G(P,Q) =
∑
Q∈B

∑
P∈A

G(Q,P ) (15)

where A and B are finite sets of points on the underlying Riemann surface Y . Second,
one can express the Green’s function using the holomorphic function theory on Y as in
(9). In doing so, one is able to “drop the absolute values” and study Weil reciprocity for
holomorphic functions since the aforementioned singularities are logarithmic. With these
two points, our proof of (1) and (3) can be derived. Furthermore, the generalization (14)
follow as above.

Let us now describe two other settings where our approach to Weil reciprocity applies.

For now, let X be either a finite volume quotient of a symmetric space or a compact,
smooth projective Kähler variety. In either case, there is a well-define Laplacian which
acts on the space of smooth functions, as well as a Green’s function G(z, w) which inverts

7



the action of the Laplacian on the space orthogonal to the constant functions. The Green’s
function G(z, w) has a singularity near z = w whose order depends on the dimension of
X. If X is a Riemann surface, then the singularity is, in local coordinates, equal to
log |z − w|2. In general, the singularity is comparable to |z − w|−(n−2); see pages 94 and
109 of [Fo76]. For any function f on X, we will say that f has a Green’s function type
singularity at P if for some constant cP , one has that

f(z)− cPG(z, P ) is bounded for z near P .

In the case when X is a hyperbolic 3-manifold, functions with Green’s function type
singularities are discussed beginning on page 6424 of [HIvPT19].

Theorem 2 Let f and g be bounded functions on X which are harmonic except at a finite
set of points which we denote by Df = {Pj} for f and Dg = {Qi} for g. Assume that
Df and Dg are disjoint sets and that at each point in Df , respectively Dg, the function
f , resp. g, has a Green’s function type singularity. Further, assume that f and g are in
L1 ∩ L2(X). If ∑

Pj∈Df

cPj
(f) =

∑
Qi∈Dg

cQi
(g) = 0, (16)

then ∑
Qi∈Dg

cQi
(g)f(Qi) =

∑
Pj∈Df

cPj
(f)g(Pj).

Proof: With the assumptions as above, any bounded harmonic function is constant.
Hence, there are constants Af and Ag such that

f(z) =
∑
Pj∈Df

cPj
(f)G(z, Pj) + Af and g(z) =

∑
Qi∈Dg

cQi
(g)G(z,Qi) + Ag.

Actually, since the L1−norm of G equals zero, it is straightforward to conclude that

Af =
1

volµ(X)

∫
X

f(z)µ(z)

and similarly for Ag. Therefore, in view of (16), and the symmetry of the Green’s functions
in the two variables we get∑

Qi∈Dg

cQi
(g)f(Qi) =

∑
Qi∈Dg

cQi
(g)

∑
Pj∈Df

cPj
(f)G(Qi, Pj) =

∑
Pj∈Df

cPj
(f)g(Pj).

�

Theorem 2 applies to the class A of functions considered in [HIvPT19] in the case
when X is a certain finite volume quotient of hyperbolic three space.

Let us now state a generalization of Weil reciprocity which, in effect, is an integrated
form of (15).
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Theorem 3 Let X be a compact, smooth projective Kähler variety. In a slight abuse of
notation, let µ denote the volume form on whatever subvariety of X is under consideration.
Let F and G be modular forms on X whose divisors are DF and DG, respectively. Assume
that the forms are scaled to have L1-log norm equal to zero, meaning∫

X

log ‖F‖µ(z)µ(z) =

∫
X

log ‖G‖µ(z)µ(z) = 0.

Then ∫
DG

log ‖F‖µ(z)µ(z) =

∫
DF

log ‖G‖µ(w)µ(w). (17)

Proof: In the notation of [CJS20], Theorem 4 there is an absolute nonzero constant c0

and a constant cF such that∫
DF

G(z, w)µ(w) = c0 log ‖F‖µ(z) + cF .

The scaling of F is such that

cFvolµ(X) =

∫
DF

∫
X

G(z, w)µ(z)µ(w)−c0

∫
X

log ‖F‖µ(z)µ(z) = −c0

∫
X

log ‖F‖µ(z)µ(z) = 0.

Similarly, ∫
DG

G(z, w)µ(w) = c0 log ‖G‖µ(z),

from which the assertion follows. �

The following theorem is a generalization of Theorem 3

Theorem 4 Let X be a compact, smooth projective Kähler variety. In a slight abuse of
notation, let µ denote the volume form on whatever subvariety of X is under consideration.
Let F and G be modular forms on X whose divisors are DF and DG, respectively. Let
‖ log ‖F‖µ‖1 and ‖ log ‖G‖µ‖1 denote the L1-log norms of F and G respectively. Then
(17) is equivalent to the statement that

volµ(DG)‖ log ‖F‖µ‖1 = volµ(DF )‖ log ‖G‖µ‖1.

Proof: From the proof of Theorem 3 we have the following identity

c0 log ‖F‖µ(z) =

∫
DF

G(z, w)µ(w)− cF =

∫
DF

G(z, w)µ(w) +
c0

volµ(X)
‖ log ‖F‖µ‖1, (18)

and, similarly for G, the identity

c0 log ‖G‖µ(z) =

∫
DG

G(z, w)µ(w)− cG =

∫
DG

G(z, w)µ(w) +
c0

volµ(X)
‖ log ‖G‖µ‖1. (19)

The statement follows after integrating (18) over DG and (19) over DF (with the volume
form µ). �
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5 Concluding remarks

As an example, let X be an abelian variety with principal polarization Θ. Let f be the
meromorphic function on X associated to the divisor

∑
nj(Θ + Pj) for a finite set of

distinct points {Pj} on X and integers {nj} such that
∑
njPj is zero in the group law on

X. Similarly, let g be the meromorphic function associated to the divisor
∑
mi(Θ +Qi).

Then Theorem 3 is the beginning of the reciprocity law due to Lang; see [La58] and, more
specifically, page 80 of [LR15] (see also [Mi04] for further applicatons). As in the proofs
of (1) and (3) on needs to “drop the absolute values” and use that, in the appropriate
manner, the degrees of f and g are zero.

As another example, let X be a compact quotient of the complex 2-ball. In [KM81],
the authors consider subspaces which are smooth algebraic curves and are totally geodesic.
Let’s assume such a subspace is also the divisor of an automorphic form on X (which is
quite possibly true). Then the results from [CJS20] provide another means to undertake
the analysis from [KM81]. Furthermore, the reciprocity law in Theorem 3 amounts to
comparing the integrals of log-norm of modular forms on distinct Riemann surfaces which
are the divisors in question. As a result, the evaluation can be viewed as a type of
Rohrlich-Jensen formula; see [CJS22]. In doing so, one can further reduce the integration
in Theorem 3 to comparing point evaluations of modular forms, as in (1). The details of
this investigation will be developed elsewhere.

Finally, let us note that the role of the analysis in [CJS20] is to prove that the Green’s
function G(z, w), and its integral transformations, can be viewed as a type of Kronecker
limit formula. This interpretation is not needed in the generalizations of Weil reciprocity
per se, but it may be useful in applications.
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