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Piatetski-Shapiro’s Work on Converse Theorems

J.W. Cogdell

Abstract. Converse theorems were a central feature of Piatetski-Shapiro’s
work on automorphic L-functions, from his first paper on the subject in 1971

to the last applications to functoriality in 2011. Converse theorems give crite-
ria, in terms of L-functions, for a global representation of GLn to be automor-

phic; if one views the representation as parametrizing an Euler product, they

give analytic criteria for an Euler product to be modular. The converse theo-
rems for GLn all involve controlling the properties of these L-functions when

twisted by cusp forms on smaller GLm. The most basic ones require twisting

by (essentially) all cuspidal representations of smaller rank groups, either rank
up to n−1 or up to n−2. These are primarily spectral in nature and are those

that have had the most applications. There are also those that significantly

restrict the ramification of the twisting representations. These have a signifi-
cant algebraic or arithmetic component (generation of congruence subgroups)

but as yet have no applications that I am aware of. Then there are also the

so-called “local converse theorems”. We will survey what is known, what is
expected, and how these have been used.

The first “converse theorem” that I am aware of is due to Hamburger. In a
series of papers from 1921–1922 [27] Hamburger showed that the Riemann zeta
function was completely characterized by its analytic properties, particularly the
functional equation. Inspired by the work of Hamburger, Hecke wanted to charac-
terize the Dedekind zeta functions of number fields in the same way. His approach
was to prove his “converse theorem”, characterizing the Dirichlet series coming from
holomorphic modular forms of full level by their analytic properties [29], and to
then use the structure of the space of modular forms. He was eventually successful
for imaginary quadratic fields. His student Maaß introduced Maaß wave forms and
proved a converse theorem for them [49] and was able to characterize the Dedekind
zeta functions of real quadratic fields. Note that the theorems of Hecke and Maaß
required only a single functional equation.

The connection of converse theorems with the theme of modularity we owe to
Weil. Weil extended Hecke’s theorem to holomorphic forms with level [71]. As a
meta-application of his result, he was able to make precise a conjecture of Taniyama
on the modularity of the L-functions attached to elliptic curves. With his converse
theorem, Weil was able to specify the level of the associated modular form and make
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precise the ε–factor that should appear in the functional equation. In recognition of
this, for many years this modularity conjecture bore the name “the Taniyama–Weil
conjecture”, until it was proven by Wiles, after which it became the “modularity
conjecture” or “modularity theorem”. In contrast to the theorems of Hecke and
Maaß, Weil’s converse theorem required a family of functional equations for the
L-functions twisted by suitable Dirichlet characters.

In the middle of the twentieth century there was a paradigm shift in the theory
of L-functions and modular forms. In 1950 Tate gave an adelic approach to the
theory of the Dedekind zeta function and Dirichlet L-functions [66]. In the 1960’s
Gelfand and Piatetski-Shapiro connected the theory of modular forms of Hecke to
the theory of representations of algebraic groups and the theory of automorphic
representations was born. These were representations of the adelic points of alge-
braic groups. The work of Hecke on L-functions of modular forms, including the
converse theorem as formulated by Weil, was recast in the language of automorphic
representations of GL2 by Jacquet and Langlands in 1970 [32]. Godement and
Jacquet generalized Tate’s thesis to GLn in 1972 [25].

Piatetski-Shapiro’s first papers on automorphic L-functions appeared in the
proceedings of the 1971 Budapest conference on Lie Groups and their Representa-
tions. In this proceedings we find two papers that represent the two main themes of
P-S’s work for the rest of his career. The first was entitled “On the Weil-Jacquet-
Langlands Theorem” in which P-S gave a converse theorem for GL2 with a very
restricted number of twists. We discuss this in Section 4 below. The second was
entitled “Euler subgroups” and was his first attempt at formalizing a theory of
Eulerian integral representations of L-functions.

Integral representations and converse theorems for L-functions were a constant
theme in P-S’s work. Much of what we know about converse theorems for GLn was
already developed by P-S before he left the Soviet Union. These ideas can be found
in the two Maryland preprints the he wrote upon his arrival in the US in 1975/76
[56, 57]. These were developed in the context of global fields of characteristic
p > 0. The development of these theorems for number fields would have to wait on
the work of and with Jacquet and Shalika during their fruitful collaboration from
1975–1983. It is primarily the number field formulations that we deal with below.

P-S viewed the converse theorems as a vehicle for establishing Langlands’ func-
toriality conjecture, which Langlands had formulated in 1969 [44]. As he was
involved in the understanding of L-functions through integral representations, he
often thought of how to formulate these theorems to be compatible with this theory.
On the other hand he was well aware of and kept abreast of the work of Shahidi on
the Langlands-Shahidi method of understanding L-functions through the Fourier
coefficients of Eisenstein series [65]. He would push practitioners of both methods
and others to think in terms of results that would be needed to apply the converse
theorem to the problem of functoriality, such as the stability of local γ-factors under
highly ramified twists. As it turned out, it was the Langlands-Shahidi method that
came to fruition first and enabled P-S to realize his goal of establishing cases of
functoriality via the converse theorem in a series of papers with Kim and Shahidi
and I and then Shahidi and I in the 2000’s [16, 17, 22]. In addition, his old con-
verse theorems for function fields played an important role in Lafforgue’s proof of
the global Langlands correspondence in characteristic p > 0 [43].
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While the applications to functoriality coming from the combination of the con-
verse theorems with the Langlands-Shahidi method is probably coming to an end,
at least with the current state of the converse theorems, the potential application of
the converse theorems to other cases of functoriality is very much alive. There are
only a few cases of functoriality that have been established by combining the con-
verse theorem with the theory of integral representations, such as [60]. However,
the converse theorem is very flexible and there is hope that we can even make it
more flexible in the future. As the theory of L-functions via integral representations
progresses, the converse theorems waits in the wings. As soon as we understand
enough about twisted L-functions, the converse theorem will give us functoriality
to GLn.

I would like to thank the referee for helping me to improve the exposition of
this article and for pointing out some mathematical inaccuracies in the original
manuscript.

The principal papers of Piatetski-Shapiro on Converse Theorems
The following papers deal with the converse theorems per se, not with the

myriad applications. They appear in chronological order.

1971. I.I. Piatetski-Shapiro, On the Weil-Jacquet-Langlands theorem. Lie groups
and their representations (Proc. Summer School, Bolyai János Math.
Soc., Budapest, 1971), pp. 583–595. Halsted, New York, 1975.

1975. I.I. Piatetski-Shapiro, ConverseTheorem for GL(3). University of Mary-
land Lecture Note # 15, 1975.

1976. I.I. Piatetski-Shapiro, Zeta-functions of GL(n). University of Maryland
Preprint MD76-80-PS, 1976.

1979. H. Jacquet, I.I. Piatetski-Shapiro, and J. Shalika, Automorphic forms on
GL(3). I & II. Ann. of Math. (2) 109 (1979), no. 1, 169–258.

1990. I.I. Piatetski-Shapiro, The converse theorem for GL(n). Festschrift in
honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday,
Part II (Ramat Aviv, 1989), 185–195. Israel Math. Conf. Proc., 3,
Weizmann, Jerusalem, 1990.

1994. J.W. Cogdell and I.I. Piatetski-Shapiro, Converse Theorems for GLn.
Publ. Math. IHES 79 (1994), 157–214.

1996. J.W. Cogdell and I.I. Piatetski-Shapiro, A converse theorem for GL4.
Mathematical Research Letters 3 (1996), 1–10.

1999. J.W. Cogdell and I.I. Piatetski-Shapiro, Converse Theorems for GLn, II.
J. reine angew. Math. 507 (1999), 165–188.

2001. I.I. Piatetski-Shapiro, Two Conjectures on L-functions. Wolf Prize in
Mathematics, Volume 2, 519–522. World Scientific Press, Singapore, 2001.

1. L-functions for GLn ×GLm with m < n

Before we can discuss converse theorems we need to understand the integral
representations they invert. For more details on what follows in this section and
the subsequent sections, one can either consult the original papers referred to in
the text or to one of the more detailed surveys [13, 14].
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We will need the following subgroups of GLn.

GLn ⊃ Pn =




∗
∗ ∗

∗
0 · · · 0 1


 ⊃ Nn =


1 ∗ ∗

. . . ∗
1




⊃ Ym =

{(
Im+1 ∗

0 z

)
| z ∈ Nn−m−1

}
where Pn is the mirabolic subgroup of GLn, which is the stabilizer of the vector
(0, . . . , 0, 1) in affine space, Nn is the standard maximal unipotent subgroup.

Let k be a global field, A its ring of adeles, and let ψ : k\A→ C1 a non-trivial
additive character. ψ then defines a character of Nn, and so its subgroup Ym, by

ψ(n) = ψ

(∑
i

ni,i+1

)
.

Let π ' ⊗′πv be a (irreducible) cuspidal automorphic representation of GLn(A)
and π′ ' ⊗′π′v a (irreducible) cuspidal representation of GLm(A). If ϕ ∈ Vπ, for
p ∈ Pm+1(A) we set

Pmϕ(p) = |det(p)|−
n−m−1

2

∫
Ym(k)\Ym(A)

ϕ

(
y

(
p

In−m−1

))
ψ−1(y) dy.

This integral is absolutely convergent and defines a rapidly decreasing cuspidal
automorphic function on Pm+1(A) ⊂ GLm+1(A).

Now, given ϕ ∈ Vπ and ϕ′ ∈ Vπ′ we set (for k a number field)

(1.1) I(s, ϕ, ϕ′) =

∫
GLm(k)\GLm(A)

Pmϕ
(
h

1

)
ϕ′(h)|det(h)|s−

1
2 dh.

These global integrals have nice analytic properties, that is,

(1) they are absolutely convergent
(2) they are bounded in vertical strips of finite width
(3) they satisfy a functional equation

I(s, ϕ, ϕ′) = Ĩ(1− s, ϕ∨, ϕ′,∨)

where ϕ∨(g) = ϕ(tg−1).

If we substitute the Fourier expansion for Pmϕ and unfold we obtain, for Re(s) >>
0,

(1.2) I(s, ϕ, ϕ′) =

∫
Nm(A)\GLm(A)

Wϕ

(
h

In−m

)
W ′ϕ′(h)|det(h)|s−

n−m−1
2 dh

with Wϕ ∈ W(π, ψ) and W ′ϕ′ ∈ W(π′, ψ−1) the associated Whittaker functions from
the Fourier expansions. By the uniqueness of local, and hence global, Whittaker
models, for factorizable ϕ and ϕ′ this last integral is Eulerian and can be written

I(s, ϕ, ϕ′) =
∏
v

Iv(s,Wv,W
′
v)

where the local integrals are the local version of the global integral in (1.1),
(1.3)

Iv(s,Wv,W
′
v) =

∫
Nm(kv)\GLm(kv)

Wv

(
h

In−m

)
W ′v(h)|det(h)|s−

n−m−1
2 dh.
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At the finite places where the representations are unramified and Wv and W ′v are
the normalized Kv–fixed vectors, the local integral computes the local L-function
exactly, i.e.,

Iv(W
◦
v ,W

′,◦
v ) = L(s, πv × π′v)

and for the remaining places S the ratio of the local integral to the local L-function
is entire. So we have

I(s, ϕ, ϕ′) =

(∏
v∈S

Iv(s,Wv,W
′
v)

L(s, πv × π′v)

)
· L(s, π × π′)

where the global L-function is given by the Euler product

L(s, π × π′) =
∏
v

L(s, πv × π′v).

If one now combines

• the nice analytic properties of the global integrals given above
• the unramified calculation for v /∈ S as quoted above
• the local theory of L-functions for v ∈ S

then one has the following theorem, essentially due to Jacquet, Piatetski-Shapiro,
and Shalika [20].

Theorem 1.1. Let k be a number field. Then L(s, π × π′) is nice, that is

(1) it has an entire continuation to all of the complex plane
(2) this continuation is bounded in vertical strips of finite width
(3) it satisfies the functional equation

L(s, π × π′) = ε(s, π × π′)L(1− s, π̃ × π̃′).

In the case of a global function field of a curve over a finite field, the continuation
and boundedness statements are replaced by rationality statements as functions of
q−s where q is the cardinality of the field of constants [57].

2. Converse Theorems

The converse theorem now inverts this process. We can pose the question as
follows.

If π = ⊗′πv is an irreducible admissible representation of GLn(A), then, by the
local theory alluded to above, π encodes an Euler product of degree n by

L(s, π) =
∏
v

L(s, πv).

We must assume, as a hypothesis of any converse theorem, that this Euler product
converges in some right half-plane Re(s) >> 0. We also must require a modicum
of automorphy for π, namely that the central character ωπ is already automorphic,
that is, is an idele class character.

For a converse theorem we will need to consider twisted L-functions, following
the paradigm of Weil, and so we need a twisting set T . Let

T (m) =
∐

1≤d≤m

{π′ | π′ is a cuspidal automorphic representation of GLd(A)}
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and take T ⊂ T (m) for some m. Then we have a family of twisted L-functions as
well

L(s, π × π′) =
∏
v

L(s, πv × π′v) for π′ ∈ T

which still converges for Re(s) >> 0. Note that while π is only irreducible admis-
sible, all the twisting representations π′ are automorphic, and even cuspidal.

Question: Suppose L(s, π × π′) is nice for all π′ ∈ T , where as above nice means:
entire continuation, bounded in vertical strips of the continuation, and satisfies the
functional equation as in the above theorem. What can we conclude about π? Is
π automorphic? Is π cuspidal? Is it automorphic up to a finite number of Euler
factors, i.e., if we change π at a finite number of places?

Piatetski-Shapiro’s primary work on converse theorems fall into three broad
types.

1. Limiting the rank of the twists (spectral methods).
2. Limiting the ramification of the twists (generation of congruence sub-

groups).
3. Speculation on GL1 twists.

He did consider other variants of the converse theorem, including converse theorems
with poles and local converse theorems, which we will also discuss briefly.

3. Limiting the rank of the twists

The most basic converse theorem is the following. The notation and assump-
tions are as in the previous section.

Theorem 3.1. Suppose L(s, π × π′) are nice for all π′ ∈ T (n− 1). Then π is
a cuspidal automorphic representation of GLn(A).

This theorem is proven by a simple spectral inversion [18]. We can reduce to
the case of generic π. Then for every vector ξ ∈ Vπ we can associate a function on
the group, namely its Whittaker function Wξ(g) ∈ W(π, ψ) for ψ a fixed non-trivial
additive character of k\A . This is a function on GLn(A) which is left invariant
under the rational points of the maximal unipotent subgroup Nn(k). One first
averages this as much as possible towards making it GLn(k) invariant. To this end
one forms

(3.1) Uξ(g) =
∑

p∈Nn(k)\Pn(k)

Wξ(pg) =
∑

γ∈Nn−1(k)\GLn−1(k)

Wξ

((
γ

1

)
g

)
.

With a bit of work, one shows that this converges absolutely and uniformly for g in a
compact subset, is left invariant under Pn(k) and its restriction toGLn−1(k)\GLn−1(A)
is cuspidal and rapidly decreasing (modulo the center). Note that if ξ = ϕ was a
cusp form, this would be its Fourier expansion.

One can do the same with the opposite mirabolic, namely if

Qn = StabGLn


0
...
0
1


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and we let α denote the permutation matrix α =

(
1

In−1

)
, then we can form

Vξ(g) =
∑

q∈N ′n(k)\Qn(k)

Wξ(αqg)

where N ′n = α−1Nnα. This converges in the same way Uξ does and is left invariant
under Qn(k)

Now neither Uξ nor Vξ are obviously automorphic, but since together Pn(k) and
Qn(k) generate GLn(k), it would suffice to show Uξ = Vξ to obtain the automorphy
of both, and this is what is done via spectral inversion.

We take (π′, Vπ′) to be any irreducible subrepresentation of the space of auto-
morphic forms on GLn−1(A). We first insert Uξ into our global integral (1.1) to
form I(s, Uξ, ϕ

′) for each ϕ′ ∈ Vπ′ . This now converges for Re(s) >> 0, for all s if
π′ is cuspidal, and if we unfold it as above we still have

I(s, Uξ, ϕ
′) =

∏
v

Iv(s,Wv,W
′
v).

If we first assume that π′ is cuspidal, then we can write this as

I(s, Uξ, ϕ
′) =

(∏
v∈S

Iv(s,Wv,W
′
v)

L(s, πv × π′v)

)
L(s, π × π′) = e(s)L(s, π × π′)

with e(s) entire. Since L(s, π × π′) is assumed to be nice, this gives an entire
continuation of I(s, Uξ, ϕ

′) which is bounded in vertical strips. When π′ is not
cuspidal, it can be written as a subrepresentation of a representation which is
induced from cuspidal representations σi of GLmi(A) for various mi < n − 1 . In
this case we have

I(s, Uξ, ϕ
′) = e(s)

∏
i

L(s, π × σi)

and again using our assumption that all the L(s, π × σi) are nice we see that
I(s, Uξ, ϕ

′) extends to an entire function of s, bounded in vertical strips.
One next repeats these steps with Vξ in place of Uξ. The main differences are

that now the global integrals I(s, Vξ, ϕ
′) converge for Re(s) << 0, i.e., in a left

half-plane, and that in this half-plane they unfold to

I(s, Vξ, ϕ
′) =

∏
v

Iv(1− s, ρ(wn,n−1)W̃v, W̃
′
v)

which, in the case of π′ cuspidal is

I(s, Vξ, ϕ
′) = ẽ(1− s)L(1− s, π̃ × π̃′)

and otherwise is related to
∏
L(1 − s, π̃ × σ̃i). In either case, the assumption of

the converse theorem gives that these integrals also extend to entire functions of s,
bounded in vertical strips.

Finally, combining the global functional equations, as assumed in the converse
theorem, and the local functional equations at those v ∈ S, we obtain the equality

I(s, Uξ, ϕ
′) = I(s, Vξ, ϕ

′)
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for all ϕ′ lying in irreducible subrepresentations of the space of automorphic forms
on GLn−1(A). To conclude we first use Mellin inversion in the s variable, as for-
mulated in Lemma 11.3.1 of [32], to obtain∫
SLn−1(k)\SLn−1(A)

Uξ

(
h

1

)
ϕ′(h) dh =

∫
SLn−1(k)\SLn−1(A)

Vξ

(
h

1

)
ϕ′(h) dh

and then using the weak form of Langlands spectral theory for SLn−1 [45, 51] we
arrive at

Uξ

(
h

1

)
= Vξ

(
h

1

)
for h ∈ SLn−1(A). We can specialize this to h = In−1, which seems to loose
information, but the apply it to π(g)ξ for all g ∈ GLn(A) to obtain Uξ(g) = Vξ(g)
for all g ∈ GLn(A). As noted above this implies that Uξ is automorphic on GLn,
and then the cuspidality follows from the expansion (3.1).

This is the basic outline for all converse theorems. A useful variant of this
theorem is the following [33, 16].

Theorem 3.2. Let S be a finite set of finite places and consider the twisting
set

T S(n− 1) = {π′ ∈ T (n− 1) | π′v is unramified for all v ∈ S}
Suppose the L(s, π × π′) are nice for all π′ ∈ T S(n − 1). Then π is a quasi-
automorphic representation of GLn(A), that is, there is an automorphic represen-
tation Π of GLn(A) such that πv ' Πv for all v /∈ S.

The proof of this theorem follows the outline above, so spectral inversion, com-
bined with the weak approximation theorem. However, to compensate for the slight
ramification restriction on the twists at the places in S, we need to use the theory
of the conductor [35]. For v ∈ S, let ξ◦v ∈ Vπv

be the new vector (or the essential
vector). Let

K0(pnv
v ) =

gv ∈ GLn(ov) | gv ≡


∗

∗
...
∗

0 . . . 0 ∗

 (mod pnv
v )


and

K1(pnv
v ) = {g ∈ K0(pnv

v ) | gn,n = 1}.
When nv is the local conductor of πv as in [35], the space of vectors in Vπv fixed
by K1(Pnv

v ) is one dimensional and we can take ξ◦v to be a non-zero vector in this
span, usually normalized so that Wξ◦v

(e) = 1. Since

K1(pnv
v ) ⊃

(
GLn−1(ov)

1

)
,

the vector ξ◦v is unramified as far as GLn−1(kv) is concerned. Let K0,S(n) =∏
v∈S K0(pnv

v ).
We now for Uξ and Vξ as above, but for ξ such that ξv = ξ◦v for all v ∈ S. Since

the ξ◦v are unramified as far as GLn−1(kv) is concerned, the twisting set in Theorem
3.2 is sufficient for applying Mellin inversion and spectral inversion to conclude

Uξ(g) = Vξ(g) for g ∈ G′ = K0,S(n)GS
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where, as usual, GS =
∏′
v/∈SGLn(kv). This function will be left invariant under

the group generated by Pn(k) ∩G′ and Qn(k) ∩G′, which is GLn(k) ∩G′. So the
map ξ 7→ Uξ embeds πS = ⊗′v/∈Sπv into a space of automorphic forms on G′ with
respect to GLn(k) ∩G′. Since GLn(k)G′ = GLn(A) by weak approximation, then
this space of automorphic forms will determine an automorphic representation Π
of GLn(A) with the property that Πv ' πv for v /∈ S. This is the Π of the theorem.

Note that we lose control of the local factors of π for those places where we
do not twist by every representation and we lose cuspidality. In fact, this loss
of cuspidality is quite important for applications to functoriality, since it lets us
obtain lifts of generic cuspidal representations of classical groups even when the
image representation is not cuspidal on GLn.

We also have versions of the above theorems when n ≥ 3 and we allow twists
only up to rank n− 2 [33, 19].

Theorem 3.3. Let S be a finite set of finite places and consider the twisting
set

T S(n− 2) = {π′ ∈ T (n− 2) | π′v is unramified for all v ∈ S}
Suppose L(s, π × π′) are nice for all π′ ∈ T S(n − 2). If S = ∅ then π is cuspidal
automorphic. If S 6= ∅, then π is a quasi-automorphic representation of GLn(A),
that is, there is an automorphic representation Π of GLn(A) such that πv ' Πv for
all v /∈ S.

If we follow the proof of the basic converse theorem outlined above, the Mellin
and spectral inversion will give us

Pn−2Uξ
(
h

1

)
= Pn−2Vξ

(
h

1

)
for h ∈ SLn−2(A). The projection Pn−2 involves an integration against a character
over the abelian group

Yn−2 =

{(
In−1 u

1

)}
with u ∈ An−1. To obtain automorphy we must use the natural invariance proper-
ties of Pn−2Uξ and Pn−2Vξ as well as a further Fourier inversion along the group
Yn−2. From the invariance of Pn−2Uξ and Pn−2Vξ one shows that most of the
Fourier coefficients along Yn−2 are equal. P-S then utilized a very clever local con-
struction to make the remaining Fourier coefficients equal to 0, and then worked
around this local restriction via the weak approximation theorem. This then yields
Theorem 3.3 in the case S = ∅. When S is not empty, one again uses the theory of
the conductor and weak approximation as indicated above.

P-S brought these results with him from the Soviet Union, at least in the case of
k a global function field. These can be found in his 1975/76 University of Maryland
preprints [56, 57]. The proofs in the number fields case is similar, but we needed
to wait on the work of Jacquet and Shalika on the local archimedean theory of
integral representations of GLn ×GLm [37].

One can try to prove a converse theorem using twists of rank up to m with
m < n − 2. The method of Mellin and spectral inversion works exactly as before
and one arrives at

PmUξ
(
h

1

)
= PmVξ

(
h

1

)
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for h ∈ SLm−1(A). However, the projection operator Pm now involves integration
against a character over the non-abelian subgroup Ym. To proceed one would
have to work out an additional Fourier inversion for this non-abelian group. This is
something we never figured out how to do (although see the work of Nien mentioned
in Section 7 below).

The conjectured best result that one could hope to prove along these lines is
the following conjecture attributed to Jacquet.

Conjecture 3.4 (Jacquet). Let S be a finite set of finite places and consider
the twisting set

T S
([n

2

])
=
{
π′ ∈ T

([n
2

])
| π′v is unramified for all v ∈ S

}
Suppose L(s, π × π′) are nice for all π′ ∈ T S

([
n
2

])
. If S = ∅ then π is cuspidal

automorphic. If S 6= ∅, then π is a quasi-automorphic representation of GLn(A),
that is, there is an automorphic representation Π of GLn(A) such that πv ' Πv for
all v /∈ S.

The
[
n
2

]
bound on the twists is natural since these are the smallest rank twists

for which one can test for cuspidality using the entirity of the twisted L-functions.
Surprisingly, most of the applications of the converse theorem to functoriality

can be obtained from the most basic converse theorem with T = T S(n− 1). These
include:

(i) The recursion of Deligne and Piatetski-Shapiro used by Lafforgue in his
proof of the global Langlands conjecture for function fields [47, 43]

(ii) Functoriality for generic cuspidal representations of classical groups [16,
17, 42, 39] as well as the GSpin groups [2]

(iii) The work of Kim and Shahidi on the tensor lifting of GL2 × GL3 to
GL6 [40] and the exterior square lifting from GL4 to GL6 [38] yielding
automorphy of the Sym3 and Sym4 liftings for GL2 and the best bounds
towards the general Ramanujan conjecture for GL2 [41].

The version of the converse theorem with T = T S(n − 2) was needed in the
following applications:

(iv) Automorphy of monomial representations of GL3 [33] and non-normal
cubic base change for GL2 obtained by Jacquet, Piatetski-Shapiro and
Shalika [36], used by Langlands and Tunnel in their work on the auto-
morphy of tetrahedral and octahedral Galois representations [46, 69]

(v) The symmetric square lift from GL2 to GL3 by Gelbart and Jacquet [24]
(vi) The tensor lifting from GL2 ×GL2 to GL4 by Ramakrishnan [64]
(v) The non-generic lifting from GSp4 to GL4 by Pitale, Saha, and Schmidt

[60].

4. Limiting the ramification of the twists

In this family of converse theorems, we place severe restrictions on the ramifi-
cation of the twists used. We now fix S a finite set of places and require S ⊃ S∞,
i.e., that S contains all archimedean places. We then let

TS(m) = {π′ ∈ T (m) | π′v is unramified for all v /∈ S}
so now we consider twists that are unramified outside a finite set of places of k.

The most general theorem we have of this type is the following [18].
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Theorem 4.1. Let n ≥ 3. Suppose S is a finite set of places as above such
that the ring oS of S-integers of k has class number one. Suppose L(s, π × π′) is
nice for all π′ ∈ TS(n− 1). Then π is quasi-automorphic in the sense that there is
an automorphic representation Π of GLn(A) such that πv ' Πv for all v /∈ S for
which πv is unramified.

Note that for fields with class number 1, such as the field of rational numbers
Q, this gives a converse theorem for GLn with unramified twists. There are ideas
on how to remove the class number restriction in general, but these have not been
implemented as of yet.

The proof of this theorem begins as all converse theorems do with a use of
Mellin and spectral inversion. The restriction on the ramification of the twists is
compensated for by the use of

(i) The theory of the conductor of representations of GLn(kv) by Jacquet,
Piatetski-Shapiro and Shalika [35]

(ii) Facts about the generation of congruence subgroups in GS =
∏
v∈S

GLn(kv)

[3, 4]

The latter can be viewed as additional arithmetic input to our spectral approach.
We begin with the use of the theory of the conductor. For v /∈ S, let ξ◦v ∈ Vπv

be the new vector (or the essential vector) fixed by K1(pnv
v ) where nv is the local

conductor of πv as in [35]. We view n =
∏
n/∈S

pnv
v ⊂ oS as the S-conductor of π. Let

ξ◦ =
∏
v/∈S

ξ◦v ∈ VπS be fixed.

For each ξS ∈
∏
v∈S Vπv

= VπS
we can form UξS⊗ξ◦ and VξS⊗ξ◦ as in the

proof of the basic converse theorem. Since the vector ξ◦ is unramified as far as
GLn−1(AS) is concerned, using just the unramified twists in the hypothesis of the
converse theorem, we can apply Mellin and spectral inversion to obtain

UξS⊗ξ◦

(
h

1

)
= VξS⊗ξ◦

(
h

1

)
but now only for h ∈ SLn−1(AS)KS

n−1(o), and as above this can be extended to

UξS⊗ξ◦(g) = VξS⊗ξ◦(g) for g ∈ GSKS
0 (n), where

KS
0 (n) =

∏
v/∈S

K0(pnv
v ) ⊂ GS .

We now use the adelic–classical correspondence to view these functions as clas-
sical functions on GS , which we denote UξS and VξS . In terms of the mirabolic
subgroups with respect to which U and V were formed, we now have

• UξS is left invariant under Pn(oS)
• VξS is left invariant under Qn(n)

where we now view n ⊂ oS ⊂ kS =
∏
v∈S kv and then Pn(oS) and Qn(n) are the

projections of GLn(k) ∩GSKS
0 (n) and GLn(k) ∩GSKS

0 (n) to GS .
We now need our arithmetic input, which is a consequence of stable algebra

for GLn due to Bass [3], namely that for n ≥ 3 the subgroups Pn(oS) and Qn(n)
generate the Hecke congruence subgroup Γ1(n) of GS . This fact was used by Bass,
Milnor, and Serre in their solution of the congruence subgroup problem for SLn [4]
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and is the reason for our restriction to the case of n ≥ 3. Once we know this, then
from the equality UξS (gS) = VξS (gS) we have that UξS is a classical automorphic
form onGS with respect to the congruence subgroup Γ1(n). Thus the map ξS 7→ UξS
embeds πS into the space of classical automorphic forms A(Γ1(n)\GS).

Finally, one again uses the classical–adelic correspondence, the strong approx-
imation theorem and the class number 1 assumption to lift back to automorphic
forms on GLn(A) obtain the statement given in the converse theorem.

What happens in the seemingly simpler case when n = 2, which was omitted
from the above due to our use of stable algebra? For GL2 the generation of con-
gruence subgroups is a much more subtle issue. However, this was investigated by
Vasserstein early on [70] and was used by Piatetski-Shapiro in his first converse
theorem, that in his 1971 paper [55]. It is again a converse theorem with restricted
ramification. The statement is a bit complicated.

Let π = ⊗′πv be an irreducible admissible representation of GL2(A) as in the
general framework of converse theorems. For each place v we let nv be the local
conductor of πv in the sense of Casselman [10].

We begin with a finite set of places S such that the ring of S-integers oS has
class number one as above. We then take two other finite sets of finite places T
and P such that

(i) for each v ∈ T , the local representation πv has conductor nv > 0
(ii) for each v ∈ P , the local representation πv has conductor nv = 0, that is,

is unramified
(iii) for n =

∏
v/∈S∪T pnv

v and a suitable ν = 0, 1 the group Γν(n) contains a
set of generators of type (P, r) as in Vasserstein, that is, each generator
γ = (γi,j) has the property that the lower right entry γ2,2, if non-zero,
satisfies ordv(γ2,2) ≤ rev where ev = 1 for v ∈ P and ev = 0 for v /∈ P .

For the twisting set, we take T to be the set of idele class characters ω (auto-
morphic forms on GL1(A)) satisfying

(i) ωv is unramified for v 6∈ S ∪ T ∪ P ∪ {2}
(ii) the degree of ramification dv of ωv satisfies

dv ≤

{
2r v ∈ P
nv v ∈ T

where r is the integer in the definition of generators of type (P, r) above.
Finally, we assume that for there is no pair of idele class characters µ and ν

such that πv ' πv(µv, νv) for all v ∈ S or v 6∈ S with πv unramified. This condition
says that π is not nearly equivalent to a global principal series representation in a
strong sense.

Theorem 4.2. Let π and the sets of places S, P , and T be as above. Suppose
L(s, π ⊗ ω) is nice for all ω ∈ T . Then π is quasi-autormophic in the sense that
there is an automorphic representation Π of GL2(A) such that πv ' πv for all v ∈ S
and all v 6∈ S such that πv is unramified.

The proof of this is essentially the same as that outlined above, although one
must be quite careful with the generation of the congruence subgroup. The theory
of the conductor for GL2 was already known thanks to work of Casselman [10] (and
independently P-S’s student Novodvorsky [53]) and as noted the needed results on
generation of congruence subgroups were due to Vasserstein (another student of
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P-S). So, in some sense, one could say that P-S also brought this family of converse
theorems with him from the Soviet Union as well.

As far as I know, there have been few applications of these theorems limit-
ing the ramification of the twists. The converse theorem for GLn with n ≥ 3
discussed above was designed to attack Langlands functoriality conjecture for the
classical groups, but where the analytic properties of the L-functions were to be
controlled via integral representations. Once we combined forces with Kim and
Shahidi and realized that there was sufficient control of the L-functions coming out
of the Langlands-Shahidi method [65], then we were able to establish functoriality
for generic representations of the classical groups to GLn using the more basic con-
verse theorem discussed in the previous section. There is a recent paper of Pitale,
Saha, and Schmidt that uses Theorem 3.3 to lift from GSp4 to GL4 using integral
representations to control the L-function [60].

There have been recent developments in the converse theorem for GL2. In 1995
Conrey and Farmer proved some classical converse theorems for Γ0(N) with small
N which require no twists, but an Euler product [23]. They replace the twists by
a use of the Euler product and knowledge of specific generators for Γ0(N); this
is in keeping with the ideas of Piatetski-Shapiro in that they do use facts about
generation of congruence subgroups. More recently, Booker and then Booker and
Krishnamurthy have developed converse theorems with a relaxing of the analytic
properties of the twists depending on the ramification [6, 7]. They do this by
passing from multiplicative twists, as in the statements of the converse theorem, to
the consideration of additive twists, which they then control by analytic number
theoretic methods. In fact, what they show is that they can control the analytic
properties of many twists in terms of only a few. Their relaxed hypothesis is that the
twisted L-functions are meromorphic (ratios of entire functions), but the twists by
unramified characters must be entire. They show that under these seemingly weaker
hypotheses, in fact all twists are entire and hence satisfy the hypotheses of either
Weil’s converse theorem classically or that of Jacquet and Langlands adelically. I
refer the reader to their papers for more details.

5. Speculation on GL1 twists

.
We begin by stating the following conjecture of Piatetski-Shapiro, which one

can find in [18, 19, 58].

Conjecture 5.1. Let π be an irreducible admissible representation of GLn(A)
as in Section 2. Suppose that L(s, π ⊗ ω) is nice for all ω ∈ T (1), that is, for all
idele class characters ω. Then π is quasi-automorphic in the sense that there is an
automorphic representation Π of GLn(A) such that Πv ' πv for all finite places v
where both π and Π are unramified and such that L(s, π ⊗ ω) = L(s,Π ⊗ ω) and
ε(s, π ⊗ ω) = ε(s,Π⊗ ω) for all ω.

Note that if n = 2 or n = 3, then we can conclude that π itself is cuspidal and
automorphic by the results in Section 3. For n ≥ 4 this is no longer possible. In
fact P-S has given examples of continuous families of representations πλ of GLn(A)
for n ≥ 4 for which L(s, πλ ⊗ ω) and ε(s, πλ ⊗ ω) are independent of λ [56, 19].

The idea is that the representation π encodes an Euler product L(s, π) =∏
L(s, πv) and twisted Euler products L(s, π⊗ω) =

∏
L(s, πv⊗ωv). The hypothesis
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of this conjecture is that the Euler products are nice for all ω. The conclusion is
that the Euler product is automorphic, that is, there is an automorphic parameter
Π such that L(s, π⊗ω) = L(s,Π⊗ω) and ε(s, π⊗ω) = ε(s,Π⊗ω) for all ω. This is
very much in the spirit of the classical results of Hecke and Weil that had as their
input a Dirichlet series. Here the central object is the Euler product more than the
analytic parameter π.

Such a simple test of automorphy would have many applications to the problem
of functoriality and other number theoretic questions. On the functoriality side,
if we combine this with the Langlands-Shahidi method we would immediately get
all tensor functorialities from GLn × GLm to GLnm, leading to a proof of the
Ramanujan conjecture in general. Some of the arithmetic applications can be found
in Richard Taylor’s 2002 ICM talk and its “long version” [67, 68].

As we indicated, one can already find the examples on GL4 related to this
conjecture in P-S’s 1975 University of Maryland preprint [56]. So perhaps this too
he brought with him when he left the Soviet Union.

6. Converse theorems with poles

Piatetski-Shapiro took a small foray in the question of converse theorems when
one relaxes the condition (1) of being nice to allow a finite number of poles. The
first converse theorem of this type was due to Hamburger who showed that the
Riemann zeta function was characterized by its analytic properties. Hamburger
allowed a finite number of poles in his hypotheses. We take the following statement
of Hamburger’s Theorem from [59].

Theorem 6.1 (Hamburger). Let D(s) =

∞∑
n=1

an
ns

be absolutely convergent for

Re(s) = σ > 1 and suppose D(s) = G(s)/P (s) where G(s) is an entire function of
finite growth and P (s) is a polynomial. Suppose that

Γ
(s

2

)
π−s/2D(s) = Γ

(
1− s

2

)
π−(1−s)/2D′(1− s)

where D′(1 − s) =

∞∑
n=1

bn
n1−s

, the series being absolutely convergent for Re(s) <

−α < 0. Then D(s) = cζ(s) for some constant c,

The polynomial P (s) accounts for the possible poles of D(s). A similar char-
acterization of Dirichlet L-series was given by Gurevič [26], although it was weaker
than the conclusion of Hamburger, in the sense that there was a finite dimensional
space of solutions to the functional equation.

In a 1995 paper with his student Ravi Raghunathan, P-S revisited the theorems
of Hamburger and Gurevič and give a simplified proof that was “in keeping with
the spirit of Tate’s thesis and the modern theory of automorphic forms” [59].

As a thesis problem, P-S gave Raghunathan the problem of extending this
result to the GL2 situation of Hecke. Raghunathan worked in the classical context
and combined the ideas of Hecke and those of Bochner [5] to establish the following
result [61, 62].
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Theorem 6.2 (Raghunathan). Let D(s) =

∞∑
n=1

an
ns

be absolutely convergent for

Re(s) > c > 0 and let a0 ∈ C. Set

L(s) = (2π)−sΓ(s)D(s)− a0
s
.

Assume L(s) is relatively nice in the sense

(1) D(s) can be continued to a meromorphic function of the form G(s)/P (s)
where G(s) is an entire function and P (s) is a polynomial

(2) L(s) has finite order on lacunary vertical strips
(3) L(s) satisfies the functional equation L(s) = L(k − s).

Let f(z) =

∞∑
n=0

ane
2πnz for z ∈ H. Then if k > 2, k even, f(z) is a modular

form of weight k for SL2(Z); if k = 2 then f(z) is the holomorphic part of the
non-holomorphic Eisenstein series of weight 2 for SL2(Z).

Later we realized that Weissauer had established a similar result for modular
forms with level following Weil [72]. Raghunathan has also established the ana-
logue of Theorem 6.2 for the Maaß functional equation [63]. Recently, interesting
work on converse theorems for GL2 allowing essentially arbitrary sets of poles has
been done by Booker and Krishnamurthy using the relation between additive and
multiplicative twists [8, 9].

The interest in this theorem, and theorems like it, was they would give a vehicle
for functoriality if one was only able to show that certain L-functions had a finite
number of poles. At the time, this was what was expected to be available from
the Langlands-Shahidi method, hence the desirability of such results. We thought
briefly about how to generalize this result to GLn for n ≥ 3 in an adelic context, but
were not successful. Eventually, we did not need such a theorem since we “twisted
away” any poles by twisting with a suitably ramified character, a small variant of
the converse theorem outlined in [20] and implemented in [16, 17, 22].

7. Local converse theorems

There is a version of the converse theorem that one can formulate over a non-
archimedean local field or a finite field. So now let F be a non-archimedean local
field. The local converse theorems are stated not in terms of the local L-function,
but rather the local γ-factor. This factor is related to the local L– and ε–factors. If π
is an irreducible admissible generic representation of GLn(F ) and π′ an irreducible
admissible generic representation of GLm(F ) then

γ(s, π × π′, ψ) =
ε(s, π × π′, ψ)L(1− s, π̃ × π̃′)

L(s, π × π′)
where ψ is a non-trivial additive character of F . By analogy with the global converse
theorem, we will have a twisting set T`. For m < n let us let

T`(m) =
∐

1≤d≤m

{π′ | π′ is a (super)cuspidal representation of GLd(F )}

and let T` ⊂ T`(m) for some m. Then the local converse theorem addresses the
following type of question.
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Question: Let π1 and π2 be irreducible admissible representations of GLn(F )
having the same central character. Suppose that γ(s, π1 × π′, ψ) = γ(s, π2 × π′, ψ)
for all π′ ∈ T`. What is the relation between π1 and π2? Is π1 ' π2?

In an early Comptes Rendus note of Jacquet, Piatetski-Shapiro, and Shalika
[34] we (essentially) find the following statement: “Le quasi-charactère central de
π et les facteurs γ(s, π × σ;ψ) pour 1 ≤ r ≤ n − 2 (r = 1 si n = 2) et σ cuspidale
déterminent la class de π”. This then implies the following version of the local
converse theorem.

Theorem 7.1. Let π1 and π2 be irreducible admissible representations of GLn(F )
with the same central character. Suppose that γ(s, π1 × π′, ψ) = γ(s, π2 × π′, ψ) for
all π′ ∈ T`(n− 1). Then π1 ' π2.

This is the local analogue of Theorem 3.1. While Jacquet, Piatetski-Shapiro
and Shalika never published the proof of this statement, Piatetski-Shapiro explained
the result and its purely local proof to me during the course of our collaboration,
quite possibly when I was still a student. This result was rediscovered by Henniart
in 1993 [30], with a very similar proof to the one explained to me by P-S, and
appears in an appendix to the paper by Laumon, Rapoport, and Stuhler on the
local Langlands conjecture for GLn(F ) for F a function field over a finite field
[48]. It is used to show that the local Langlands conjecture, phrased in terms of
L-function, is unique. It was subsequently used by Harris and Taylor for the same
purpose [28].

Even though covered by the remark in the Comptes Rendus note, Piatetski-
Shapiro gave the local version of Theorem 3.3 to his student Jeff Chen as his thesis
problem. Chen then gave a purely local proof of the following result in his 1996
thesis [11, 12].

Theorem 7.2 (Chen). Let π1 and π2 be irreducible admissible representations
of GLn(F ) having the same central character. Suppose that γ(s, π1 × π′, ψ) =
γ(s, π2 × π′, ψ) for all π′ ∈ T`(n− 2). Then π1 ' π2.

One can also derive this from Theorem 3.3 by local-global arguments, as noted
in [19], and perhaps it was this proof that P-S had in mind in [34].

Recently Chufeng Nien has given a proof of the local analogue of Jacquet’s
conjecture for F a finite field [52]. The result is the following.

Theorem 7.3 (Nien). Let F be a finite field. Let π1 and π2 be irreducible
admissible representations of GLn(F ) with the same central character. Suppose
that γ(s, π1 × π′, ψ) = γ(s, π2 × π′, ψ) for all π′ ∈ T`

([
n
2

])
. Then π1 ' π2.

Her proof uses the theory of Bessel functions of representations, a technique
that works well over the finite field and one that P-S was quite fond of. Jiang and
Nien are working on extending this result to p-adic local fields. It is not at all clear
how to generalize this to the global situation.

8. Final remarks

Beginning with his paper in the proceedings of the 1971 Budapest conference
[55] the converse theorems and their applications to functoriality were a dominant
theme in Piatetski-Shapiro’s mathematical life. This is brought out not just by
his work on these questions and their applications but also through his students.
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Converse theorems remain a general approach to the question of functoriality when
the target group is GLn. While the approach to functoriality via the trace formula
by Arthur has seen astounding success recently [1], the approach through converse
theorems remains quite nimble. As Piatetski-Shapiro said “Arthur’s approach is
more general, but this approach is easier” (see Shahidi’s contribution to [15]).
Indeed, to establish functoriality from G to GLn associated to an L-homomorphism
R, one needs only control the analytic properties of an appropriate family of twisted
L-functions associated to R. This was the strategy for the applications mentioned in
Section 3. While we have probably exhausted the cases of functoriality we can prove
by appealing to the Langlands-Shahidi method of controlling twisted L-functions,
the control via integral representations is still a wide open, although difficult and
not well understood. But whenever we have analytic control of a sufficient family
of twisted L-functions, we can use the converse theorem to obtain functoriality.

The more one can limit the family T of twists needed, the more powerful a
converse theorem becomes. In light of the above survey, the following questions
come to mind.

(1) Can we further reduce the ranks of the twists in Theorems 3.2 and 3.3,
beginning with rank n− 3?

As mentioned in Section 3, the difficulty in the standard approach is that one has to
resolve a question in non-abelian harmonic analysis combined with P-S’s local trick.
It seems to me that if one can resolve this, and reduce the rank of the twists to rank
up to n−3, then whatever the new technique is, it should let you inductively arrive
at the proof of Jacquet’s Conjecture. The first case to try would be a converse
theorem for GL5 with twists by GL1 and GL2. I would not expect these techniques
to go beyond Jacquet’s Conjecture.

(2) Can we combine the techniques of Sections 3 and 4 to obtain hybrid
theorems in which one combines say Theorems 3.3 and 4.1 to have a
converse theorem where one twists by (essentially) unramified cusp forms
of rank up to n− 2?

We have made some attempts at this, but at the moment we have been unable
to implement the generation of congruence groups from Theorem 4.1 in the con-
text of restricting the rank and P-S’s local trick. The techniques seem somewhat
incompatible.

(3) What are the new conceptual ideas required for Conjecture 5.1?

As I mentioned above, I believe that variants of our standard techniques, without
new fundamental insight, will at most get us as far as Jacquet’s Conjecture. But, as
observed by Taylor [67, 68], the pay off from Conjecture 5.1 would be tremendous.

(4) Do there exist converse theorems for other groups and what would their
applications be?

I only know of a few of converse theorems for groups other than GLn. The clas-
sical examples have been proven in a Dirichlet series context and not in terms of
automorphic L-functions. These include a converse theorem for SOn,1 by Maaß
[50] and one for Sp4 by Imai [31]. P-S wrote one paper related to this topic. A
converse theorem for the three fold cover of GL3 is embedded in the paper [54]
with Patterson, which could be considered as a variant of Theorem 3.3 for GL3.
He also believed that there was a converse theorem for U2,1 based on constructions
he gave in a course at Yale in 1977; I currently have a student working on this. As
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for applications, they would include approaches for functoriality where the target
group need not be GLn, but this is far off at the moment.

The new approach to limiting the analytic properties of the twists that one
finds in the work of Booker and Krishnamurthy are quite intriguing [6, 7, 8, 9].
These involve passing back and forth between multiplicative and additive twists. At
present, this technique exists only for GL2 where the twists are by characters. My
understanding is that Booker and Krishnamurthy have ideas on how to implement
this in higher rank settings. It would then be quite interesting to see how these
techniques could be combined with the theorems of Piatetski-Shapiro presented
here.

In his later years, as his Parkinson’s progressed, P-S lost the ability to write and
could only speak with difficulty and only during certain periods. But throughout
this he continued to do mathematics. The one topic that dominated his thoughts
in these days were new potential converse theorems for GLn. Every few months he
would come up with a new idea or new approach. Most of these did not play out
in the end, but there remain a few that have not been ruled out.
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linéaire. Math. Ann. 256 (1981), no. 2, 199–214.
36. H. Jacquet, I.I. Piatetski-Shapiro, and J. Shalika, Relèvement cubique non normal. C. R.
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