
L-FUNCTIONS AND FUNCTORIALITY
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The principle of functoriality is one of the central tenets of the Langlands
program. It is a purely automorphic avatar of Langlands’ vision of a non-
abelian class field theory. One can find an outline of this in Section 5 below.
There are two main approaches to functoriality. The one envisioned by
Langlands is through the Arthur-Selberg trace formula. With the recent
proof of the Fundamental Lemma by Ngô, Waldspurger, and others this
method is now available and will be the subject of a forthcoming book of
Jim Arthur [1]. The second method is that of L-functions.

The method of L-functions was pioneered by Piatetski-Shapiro. It pri-
marily deals with functoriality in the case where the target group is GLn.
The fundamental tool here is the converse theorem for GLn, as explained in
Section 6 below. As Piatetski-Shapiro said “Arthur’s approach is more gen-
eral, but this approach is much easier.” (see Shahidi’s contribution to [6]).
The converse theorem is a way to tell when a representation of GLn(A) is
automorphic based on the analytic properties of its L-functions (see Section
2 below). As a vehicle for functoriality, the input to the converse theorem
must be checked, and this is done by controlling the L-functions of the auto-
morphic representations to be functorially transferred. There are two ways
to control these L-functions: via integral representations and via Eisenstein
series, or the Langlands-Shahidi method. For the examples discussed here,
these are controlled by the Langlands-Shahidi method, which we discuss in
Sections 3-5. The functorial liftings themselves are obtained in Sections 7
and 8.

While Piatetski-Shapiro viewed this method as being simpler, it is in
many ways more flexible and still mysterious. For example, as presented in
Section 8, by this method you can obtain the third and fourth symmetric
power lifting fromGL2 and these are still not attainable by the trace formula.
In general, whenever you can control enough twisted L-functions, you can
apply the converse theorem and obtain functoriality to GLn. Of course
controlling these L-functions is hard and for most of them we do not have
a way to analyze them: they either fall outside the range of the Langlands-
Shahidi method or we do not yet know if we can find integral representations
for them. So there is still much work to be done.

These notes represent the lectures I gave at the CIMPA-UNESCO-CHINA
Research School on Automorphic forms and L-functions in August of 2010.
Their purpose was to present an introduction to the L-function approach
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to functoriality. My original lectures were to be on GLn and functoriality.
These comprise Sections 1 and 2 here, which present the theory of auto-
morphic representations and L-functions for GLn, including the converse
theorem, and then Sections 6 and 7 which were devoted to an exposition of
functoriality via L-functions and then the example of functoriality for the
classical groups. However, Shahidi was not able to attend the conference at
the last moment, so I also gave an informal introduction to the Langlands-
Shahidi method, based on Shahidi’s notes [10]. These appear as Sections
3-5 and 8 here. These sections can be viewed as a “gentle introduction”
to [10] and I have tried to indicate where the results here can be found in
Shahidi’s contribution. However, having the opportunity to give a single
self-contained introduction to our approach to functoriality by the method
of L-functions, I took the opportunity to integrate both series of lecture into
a single contribution. I hope the reader finds this useful.

A word on references. I have surveyed the material in Sections 1,2,6, and
7 many times. Rather than burden this set of informal notes with pages of
references, I refer instead to the sources I used for these talks, which are
mainly my previous surveys. One can find more extensive references there.
Similarly, for Sections 3,4,5 and 8 I have included in the bibliography the
sources that I have used, which were surveys by Kim and Shahidi, Shahidi’s
new book, and Shahidi’s contribution to this volume. I hope the reader does
not mind this informality.

Finally I would like to thank Jianya Liu, the faculty at Shandong Univer-
sity, and all the students that attended for giving me the opportunity for
presenting these lectures.

I. L-functions for GL(n) and Converse Theorems

1. Modular forms and automorphic representations

1.1. Classical modular forms and their L-functions. We begin our
tale by recalling the classical results of Hecke and Weil.

Let H = {z = x + iy | y > 0} denote the complex upper half-plane.
Then a (classical) modular form of weight k for Γ = SL2(Z) is a function
f : H → C which is holomorphic on H and at the cusps of Γ and for each

γ =
(
a b
c d

)
∈ Γ we have

f(γz) = f

(
az + b

cz + d

)
= (cz + d)kf(z).

We denote the space of these by Mk(Γ). These arise in the theory of theta
series, elliptic modular forms, etc.. Since f(z + 1) = f(z), by modularity
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under T =
(

1 1
0 1

)
, this will have a Fourier expansion

f(z) =
∞∑
n=0

ane
2πinz

and is called a cusp form if

a0 =
∫ 1

0
f(x+ iy) dx = 0.

Recall that Γ\H is the Riemann sphere with the “cusp at ∞” removed, so
cusp forms are those modular forms that vanish at the cusps. The subspace
of cusp forms of weight k is denoted by Sk(Γ).

To each cusp form Hecke associated an L-function given by the Dirichlet
series

L(s, f) =
∞∑
n=1

an
ns

which is absolutely convergent for Re(s) > k
2 + 1. The L-function is related

to f through a Mellin transform:

Λ(s, f) = (2π)−sΓ(s)L(s, f) =
∫ ∞

0
f(iy)ys d×y.

By transferring the analytic properties of f to L(s, f), Hecke showed:

Theorem 1.1. If f ∈ Sk(Γ) then Λ(s, f) is nice, i.e.,
(1) Λ(s, f) extends to an entire function of s,
(2) Λ(s, f) is bounded in vertical strips (BVS),
(3) Λ(s, f) satisfied the functional equation (FE)

Λ(s, f) = (i)kΛ(k − s, f).

Note that the functional equation results from the modular transforma-

tion law of f(z) under S =
(

0 −1
1 0

)
, namely f(Sz) = f

(−1
z

)
= zkf(z).

Remark 1.1. In general L(s, f) need not have an Euler product. Hecke
introduced an algebra of operators H = 〈Tp | p prime〉, the original Hecke
algebra, such that if f is a simultaneous eigen-function for all Tn, i.e., Tnf =
λnf , and if we normalize f such that a1 = 1 then λn = an and we have

L(s, f) =
∏
p

(1− app−s + p2k−1p−2s)−1.

Hecke was able to invert this process, via the inverse Mellin transform,
and prove the “Hecke Converse Theorem”.

Theorem 1.2. Let

D(s) =
∞∑
n=1

an
ns
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be a Dirichlet series that converges in some right half-plane. Set Λ(s) =
(2π)−sΓ(s)D(s). If Λ(s) is nice as above, i.e., (1) entire continuation, (2)
BVS, and (3) satisfies the functional equation Λ(s) = (i)kΛ(k − s), then

f(z) =
∞∑
n=1

ane
2πinz

is a cusp form of weight k for Γ = SL2(Z).

Note that by the Fourier expansion f(z + 1) = f(z), so f(z) is modular
under the translation matrix T . Since SL2(Z) is generated by T and the
inversion S, we only need the transformation law under S. This follows from
the functional equation for Λ(s) via Mellin inversion

f(iy) =
∞∑
n=1

ane
−2πny =

1
2πi

∫
Re(s)=2

Λ(s)y−s ds.

If f is a cusp form not for all of SL2(Z) but say for the Hecke congruence
group of level N

Γ = Γ0(N) =
{(

a b
c d

)
∈ SL2(Z)

∣∣c ≡ 0 (mod N)
}

then the inversion S is no longer in Γ. Weil still defined L(s, f) for f ∈ Sk(Γ)

and proved they were nice, using now SN =
(

0 −1
N 0

)
, which normalizes

Γ0(N), in place of S. (Now the functional equation relates f and a form g
related to f through SN .) To invert this process, i.e., to establish the “Weil
Converse Theorem”, Weil showed that besides knowing that D(s) was nice,
one had to also control twisted Dirichlet series; one needed that the

Dχ(s) =
∞∑
n=1

χ(n)an
ns

were nice (essentially) for all Dirichlet characters χ of conductor relatively
prime to N . The important thing to note here is that one Dirichlet series no
longer suffices for inversion, one must control a family of twisted Dirichlet
series as well.

1.2. Automorphic representations of GL(n). The modern theory of au-
tomorphic representations is a theory of functions on adele groups. To make
the connection note that

H = PGL+
2 (R)/PSO2(R).

So functions of H can be lifted to functions on GL2(R). So we now have
functions on a group.
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To make an adelic theory, take k a number field ... but for now we can
take k = Q. The the adele ring of Q is

A = AQ = lim−→
S

(R×
∏
p∈S

Qp ×
∏
p/∈S

Zp) =
∏
v

′
Qv

where the limit is over all finite subsets S of primes of Z. Then Q ↪→ A
as a discrete, co-compact subgroup with Q ∩ (R ×

∏
p Zp) = Z, so that

Z\R ' Q\A/
∏
p Zp.

Similarly, for A = AQ,

GLn(A) = lim−→
S

(GLn(R)×
∏
p∈S

GLn(Qp)×
∏
p/∈S

GLn(Zp)) =
∏
v

′
GLn(Qv)

and GLn(Q) ↪→ GLn(A) as a canonical discrete subgroup. While the quo-
tient GLn(Q)\GLn(A) is no longer compact, it is finite volume modulo the
center Zn(A) ' A×.

The analogue of the space of classical modular forms is the space of au-
tomorphic forms

A(GLn(Q)\GLn(A);ω)

consisting of functions ϕ : GLn(A) → C such that ϕ(γg) = ϕ(g) for all
γ ∈ GLn(Q) plus regularity and growth conditions to match the classical
conditions of holomorphy and holomorphy at the cusps. Here ω is a fixed
unitary central character, i.e., ϕ satisfies ϕ(zg) = ω(z)ϕ(g) for z ∈ Zn(A).
GLn(A) acts on the space A by right translations. The irreducible sub-
quotients of this representation are the automorphic representations (π, Vπ).
In this passage we have traded the tool of one complex variable (i.e., holo-
morphy) for the tool of non-abelian harmonic analysis.

The notion of a cusp form models the classical idea that translation inte-
grals are zero.

Definition 1.1. ϕ ∈ A is a cusp form if for each pair of nonzero integers
n1, n2 with n1 + n2 = n we have∫

Mn1,n2 (Q)\Mn1,n2 (A)
ϕ

((
In1 X

In2

)
g

)
dX = 0.

Note that the subgroups

Nn1,n2 =
{(

In1 X
In2

) ∣∣∣X ∈Mn1,n2

}
are the unipotent radicals of the two-block maximal parabolic subgroups
Pn1,n2 of GLn.

Let A0 ⊂ A denote the space of cusp forms. Then a theorem of Gelfand
and Piatetski-Shapiro says that in general the space of cusp forms is com-
pletely reducible with finite multiplicities:

A0(GLn(Q)\GLn(A);ω) =
⊕

m(π)Vπ.
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(In fact, for GLn, m(π) = 0 or 1.) The (π, Vπ) that occur with non-zero
multiplicities are the cuspidal automorphic representations. Moreover, just
as GLn(A) =

∏
v
′GLn(Qv) we have

(π, Vπ) ' ⊗v ′(πv, Vπv)

where each (πv, Vπv) is an irreducible, smooth, admissible representation of
GLn(Qv) and for almost all v, the representation πv has a unique Kv =
GLn(Zv)-fixed vector, i.e., is unramified. (N.B. This abstract restricted
tensor decomposition of an irreducible representation will be responsible for
the Euler product of the L-function. It is the adelic avatar of the Hecke
operators.)

Key to Hecke’s theory was the notion of a Fourier expansion. Here there
is a Fourier expansion for cusp forms for GLn due to Piatetski-Shapiro and
Shalika. It is as follows. Let

N =

n =


1 x1,2 · · · ∗

. . . . . .
...

0
. . . xn−1,n

0 0 1




be the maximal unipotent subgroup of GLn If ψ : Q\A→ C is a non-trivial
additive character of A, invariant by translations by Q, then ψ defines a
character of N(A), left invariant by N(Q), via

ψ(n) = ψ(x1,2 + · · ·+ xn−1,n).

If ϕ ∈ A0 set

Wϕ(g) =
∫
N(Q)\N(A)

ϕ(ng)ψ−1(n) dn.

Then Wϕ(ng) = ψ(n)Wϕ(g) for all n ∈ N(A). Wϕ is called the Whittaker
function of ϕ and it is what occurs in the following Fourier expansion of ϕ.

Theorem 1.3. If ϕ ∈ A0 then

ϕ(g) =
∑

γ∈Nn−1(Q)\GLn−1(Q)

Wϕ

((
γ

1

)
g

)
.

This turns out to be the proper notion of a Fourier expansion in this
context. (The proof isn’t hard once you realize this is the correct notion –
it is simply an inductive abelian Fourier expansion beginning along the last
column of N .)

1.3. Uniqueness of Whittaker models. The space of functions

W(π, ψ) =
{
Wϕ(g)

∣∣∣ϕ ∈ Vπ}
gives a model of π in the space of functionsW onGLn(A) satisfyingW (ng) =
ψ(n)W (g), on which the group GLn(A) acts by right translation. This re-
alization is called a Whittaker model for π.
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Similarly, if π ' ⊗′πv then a Whittaker model for a local representation
πv is a realization of πv in a space of functions

W(πv, ψv) =
{
Wξv(g)

∣∣∣ξv ∈ Vπv

}
where again we require that Wξv(nvgv) = ψv(nv)Wξv(gv) for nv ∈ N(Qv),
gv ∈ GLn(Qv) and where ψv is a local component of ψ. It is a theorem of
Gelfand-Kazhdan and Shalika that locally an irreducible smooth admissible
representation (πv, Vπv) can have at most one such model (with a continuity
assumption at the archimedean place). This result is the local uniqueness of
the Whittaker model.

From the local statements one can deduce the uniqueness of the global
Whittaker model. From this it follows that if ϕ ∈ Vπ ⊂ A0 and under the
isomorphism π ' ⊗′πv we have ϕ ' ⊗ξv then we have a factorization

Wϕ(g) =
∏
v

Wξv(gv).

This is a highly non-trivial factorization!

2. L-functions for GLn and Converse Theorems

Let’s recall Hecke: for f ∈ Sk(Γ), a Hecke eigen-form, we have∫ ∞

0
f(iy)ys d×y = Λ(s, f) = (2π)−sΓ(s)

∏
p

(1− app−s + p2k−1p−2s)−1.

The analogous integral would be for ϕ ∈ A0(GL2(Q)\GL2(A);ω) and would
be ∫

Q×\A×
ϕ

(
a

1

)
|a|s d×a =

∫
GL1(Q)\GL1(A)

ϕ

(
a

1

)
|a|s d×a.

However, we will want to include twists as necessary for a Converse Theo-
rem. Here that would be twists by an adelic Dirichlet character χ, i.e., an
automorphic form for GL1:∫

GL1(Q)\GL1(A)
ϕ

(
a

1

)
χ(a)|a|s d×a.

2.1. Global Rankin-Selberg integrals (d’apres Jacquet, Piatetski-
Shapiro, and Shalika). In the higher rank case, the analogous integrals
are the Rankin-Selberg integrals for GLn × GLm with n > m. The theory
which is closest to the classical theory of Hecke is for GLn ×GLn−1. So let
(π, Vπ) be a cuspidal automorphic representation of GLn(A) and let (π′, Vπ′)
be a cuspidal automorphic representation of GLn−1(A). For cusp forms
ϕ ∈ Vπ and ϕ′ ∈ Vπ′ we set

I(s, ϕ, ϕ′) =
∫
GLn−1(Q)\GLn−1(A)

ϕ

(
h

1

)
ϕ′(h)|det(h)|s−

1
2 dh.
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Note that in fact we have a family of such integrals, one for each pair of ϕ
and ϕ′.

The basic facts about these integrals are the following.

(i) The individual integrals are nice. As in the classical case, here we
have that the integrals are absolutely convergent for all s and hence entire;
they are bounded in vertical strips (BVS); they satisfy a functional equation
(FE) of the form I(s, ϕ, ϕ′) = I(1− s, ϕ̃, ϕ̃′) where ϕ̃(g) = ϕ(tg−1).

(ii) The individual integrals are Eulerian. If we insert the Fourier expan-
sion for ϕ, then the integral unfolds to

I(s, ϕ, ϕ′) =
∫
Nn−1(A)\GLn−1(A)

Wϕ

(
h

1

)
W ′
ϕ′(h)|det(h)|s−

1
2 dh.

where Wϕ ∈ W(π, ψ) and W ′
ϕ′ ∈ W(π′, ψ−1). If we now assume we have de-

composable ϕ ' ⊗ξv and ϕ′ ' ⊗ξ′v, then the two global Whitaker functions
in the integral now factor into a product of local Whittaker functions and
then our integral itself factors as

I(s, ϕ, ϕ′) =
∏
v

∫
Nn−1(Qv)\GLn−1(Qv)

Wξv

(
hv

1

)
W ′
ξ′v

(hv)|det(hv)|s−
1
2 dhv

=
∏
v

Ψv(s,Wv,W
′
v),

which is convergent now only for Re(s) >> 1, with Wv = Wξv ∈ W(πvψv)
and W ′

v = W ′
ξ′v
∈ W(π′v, ψ

−1
v ). As we see, it is the decomposition π ' ⊗′πv

that is responsible for the factorization of the Whittaker functions and hence
ultimately for the Eulerian factorization of the global integral into a product
of local integrals.

2.2. Local L-functions (Euler factors). Now let’s look at a local non-
archimedean place v of a number field k. We have the completion kv, its ring
of integers ov and maximal ideal pv = ($v). We set qv = |ov/pv| = |$v|−1

v .
Let Wv ∈ W(πv, ψv) and W ′

v ∈ W(π′v, ψ
−1
v ). Then the basic properties of

the local Rankin-Selberg integrals are the following.

(i) Each integral Ψv(s,W,W
′
v) is a rational function of q−sv and in fact their

span 〈Ψv(s,Wv,W
′
v)〉 forms a C[qsv, q

−s
v ]-fractional ideal of C(q−sv ). This

fractional ideal has a (normalized) generator of the form Pv(q−sv )−1 with
Pv(X) ∈ C[X] with Pv(0) = 1 and deg(Pv) ≤ nm.

Definition 2.1. L(s, πv × π′v) = Pv(q−sv )−1.

(ii) For each individual integral we have

e(s,Wv,W
′
v) =

Ψv(s,Wv,W
′
v)

L(s, πv × π′v)
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is entire and for each s0 ∈ C there exist a choice of Wv and W ′
v such that

e(s0,Wv,W
′
v) 6= 0. In other words, the local L-function L(s, πv×π′v) exactly

captures the poles of the family of local integrals.

(iii) The local functional equation. There exists γ(s, πv×π′v, ψv) ∈ C(q−sv )
such that for all choices of Wv and W ′

v we have

Ψv(1− s, W̃v, W̃
′
v) = ωπ′v(−1)n−1γ(s, πv × π′v, ψv)Ψv(s,Wv,W

′
v)

or

Ψv(1− s, W̃v, W̃
′
v)

L(1− s, π̃v × π̃′v)
= ωπ′v(−1)n−1ε(s, πv × π′v, ψv)

Ψv(s,Wv,W
′
v)

L(s, πv × π′v)

with the local ε-factor ε(s, πv × π′v, ψv) then being entire without zeroes.
More precisely

ε(s, πv × π′v, ψv) = ε(1
2 , πv × π

′
v, ψv)q

−c(πv×π′v)(s−1
2 )

v

where ε(1
2 , πv × π

′
v, ψv) is the local root number and c(πv × π′v) the local

conductor (exponent). Here W̃ (g) = W

 1
. . .

1

 tg−1

. For future

reference, let us note that the L-, ε-, and γ-factors are related by

γ(s, πv × π′v, ψv) =
ε(s, πv × π′v, ψv)L(1− s, π̃v × π̃′v)

L(s, πv × π′v)
.

(iv) If πv and π′v are unramified, as well as ψv and kv/Qp, which is the case
at almost all finite places of k, then for the normalized unramified Whittaker
functions W ◦

v and W ′◦
v we have that the local integral computes the local

L-function on the nose and the local ε-factor is 1, i.e.,

L(s, πv × π′v) = Ψv(s,W ◦
v ,W

′◦
v )

ε(s, πv × π′v, ψv) = 1.

At an archimedean place v|∞ the local theory is similar yet different. Due
to the existence of a local Langlands parametrization for real and complex
groups, the form of L(s, πv × π′v) is given as the local archimedean factor of
the associated Artin representation. So it will be a product of factors of the
form Γ(av,is+bv,i), where now Γ(s) is Euler’s gamma function, and accounts
for the gamma factors in the classical functional equation. Now one must
work to show that this “Langlands given” factor behaves well with respect
to the local integrals, i.e., that analogues of (ii) and (iii) above hold. This
can be quite complex and what we know is mainly due to Jacquet-Shalika
and subsequent work of Jacquet.
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2.3. When n −m > 1. If we consider (π, Vπ) a cuspidal representation of
GLn(A) and (π′, Vπ′) a cuspidal representation of GLm(A) with m < n− 1
the theory is quite similar. One begins with a global projection operator
P′ : Vπ → Uπ where Uπ is a representation of the mirabolic subgroup Pm+1 ⊂
GLm+1, which has the form

Pm+1 =
{(

g u
0 1

) ∣∣g ∈ GLm} ,
with the property that

Pϕ
(
h

1

)
=

∑
γ∈Nm(k)\GLm(k)

Wϕ

((
γ

In−m

)(
h

In−m

))
.

P is essentially given by a partial Whittaker transform, as if one was only
working out part of the Fourier expansion, twisted by an appropriate power
of the determinant. With this operator in hand, the family of global integrals
now has the form

I(s, ϕ, ϕ′) =
∫
GLm(Q)\GLm(A)

Pϕ
(
h

1

)
ϕ′(h)|det(h)|s−

1
2 dh.

which now unfold to

I(s, ϕ, ϕ′) =
∫
Nm(A)\GLm(A)

Wϕ

(
h

In−m

)
W ′
ϕ′(h)|det(h)|s−

n−m
2 dh.

These are again Eulerian

I(s, ϕ, ϕ′) =
∏
v

∫
Nm(kv)\GLm(kv)

Wξv

(
hv

In−m

)
W ′
ξ′v

(hv)|det(hv)|s−
n−m

2 dhv

=
∏
v

Ψv(s,Wv,W
′
v)

and from here one establishes the analogues of the results in Section 2.2.
The only significant change is in the local functional equation, where the
projection operator P reappears as an unipotent integration in the integral
on the left hand side of the functional equation.

2.4. When m = n. When m = n the construction is slightly different. It is
the automorphic analogue of the classical construction of Rankin and Sel-
berg. Now (π, Vπ) and (π′, Vπ′) are both cuspidal representations of GLn(A).
There is an extra player now, a (mirabolic) Eisenstein series. This Eisenstein
series is of a special type and is associated to a Schwartz function Φ ∈ S(An);
let us denote it by E(g; s,Φ). Then the family of global integrals has the
form

I(s, ϕ, ϕ′,Φ) =
∫
GLn(k)\GLn(A)

ϕ(g)ϕ′(g)E(g; s,Φ) dg

for ϕ ∈ Vπ and ϕ′ ∈ Vπ′ . These integrals converge absolutely for all s
and have a functional equation. (The analytic properties, including the
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functional equation, come from those of the Eisenstein series.) The family
is again Eulerian and unfold to a family of local integrals of the form

Ψv(s,Wv,W
′
v,Φv) =

∫
Nn(kv)\GLn(kv)

Wv(g)W ′
v(g)Φv(eng)|det(g)|s dg

where en = (0, · · · , 0, 1) ∈ kn. Once again, from here one establishes the
analogous results as in Section 2.2.

2.5. Global L-functions. If we combine the nice properties of the global
integrals from Section 2.1, 2.3, and 2.4 with the local analysis of Section 2.2
then we arrive at the global analogue of Hecke’s theorem. Again take (π, Vπ)
a cuspidal automorphic representation of GLn(A) and (π′, Vπ′) a cuspidal
representation of GLm(A).

We define the global L-factor and ε-factors as Euler products:

L(s, π × π′) =
∏
v

L(s, πv × π′v)

ε(s, π × π′) =
∏
v

ε(s, πv × π′v, ψv)

where the product for the L-factor converges for Re(s) >> 0 and the prod-
uct for the ε-factor is a finite product. Note that we are now using the
automorphic L-function convention where the L-factor is the product over
all places – this we denoted Λ classically.

Theorem 2.1. L(s, π × π′) is nice in the sense that
(1) L(s, π×π′) extends to a meromorphic function of s, entire if m < n;
(2) L(s, π × π′) is bounded in vertical strips;
(3) we have the global functional equation

L(s, π × π′) = ε(s, π × π′)L(1− s, π̃ × π̃′).

We note that in fact our analysis only gives the BVS in (ii) for the cases
of m = n, n − 1. The more general boundedness in vertical strips comes
from the work of Shahidi.

2.6. Converse Theorems for GLn. Converse Theorems for GLn invert
these integral representations much the same way that Hecke and Weil did.
However, here we begin with an Euler product rather than a Dirichlet series,
since that is what the direct theory, Theorem 2.1, gives us. Conceptually the
theorem takes the following form. Given π = ⊗′πv, an irreducible admissible
representation of GLn(A) on a space Vπ, when can we embed

Vπ ↪→ A(GLn(k)\GLn(A);ω)?

To relate to Hecke and Weil, by our local theory, to each local component
πv of π we can associate a local L- and ε-factor

πv 7→ L(s, πv), ε(s, πv, ψv)
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and so to π itself the Euler products

L(s, π) =
∏
v

L(s, πv), ε(s, π, ψ) =
∏
v

ε(s, πv, ψv).

We think of π as encoding an L-function, as an Euler product of degree n.
We must always assume two things:

(1) L(s, π) converges in in some right half plane Re(s) >> 0
(2) the central character ω = ωπ is automorphic, i.e., is an idele class

character (which guarantees that the global ε-factor is independent
of ψ).

Like Weil, our criterion will involve twisting. So if (π′, Vπ′) is a cuspidal
automorphic representation of GLm(A) for m < n we can similarly define

L(s, π × π′) =
∏
v

L(s, πv × π′v)

ε(s, π × π′) =
∏
v

ε(s, πv × π′v, ψv)

We will say that the L(s, π × π′) are nice if they behave as they would if π
were cuspidal automorphic, i.e.,

(1) L(s, π × π′) extends to an entire function of s;
(2) L(s, π × π′) is bounded in vertical strips;
(3) we have the global functional equation

L(s, π × π′) = ε(s, π × π′)L(1− s, π̃ × π̃′).

To state the Theorems, let us set

A0(m) =
∐
ω

A0(GLm(k)\GLm(A);ω)

T0(m) =
∐

1≤d≤m
A0(d).

Theorem 2.2. Fix π = ⊗′πv an irreducible admissible representation of
GLn(A) as above. If L(s, π × π′) is nice for all π′ ∈ T0(n − 1), then π is a
cuspidal automorphic representation of GLn(A), i.e., we can embed π into
A0(GLn(k)\GLn(A);ωπ).

Conceptually, the proof of this is very similar to that of Hecke and Weil.
We can also reduce the twists with more work. This requires a delicate local
construction and has no classical analogue.

Theorem 2.3. Fix π = ⊗′πv an irreducible admissible representation of
GLn(A) as above, with n ≥ 3. If L(s, π × π′) is nice for all π′ ∈ T0(n− 2),
then π is a cuspidal automorphic representation of GLn(A), i.e., we can
embed π into A0(GLn(k)\GLn(A);ωπ).
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There is a very useful variant of these results. Let S be a finite set of
finite places of k and let η be a fixed idele class character of A×. Let

T S0 (m) = {π′ ∈ T0(m) | π′v is unramified for all v ∈ S}.

Theorem 2.4. Fix π = ⊗′πv an irreducible admissible representation of
GLn(A) as above and fix an idele class character η. If L(s, π × π′) is nice
for all π′ ∈ T S0 (n− 2)⊗ η, then π is quasi-automorphic, i.e., there exists an
automorphic representation π1 of GLn(A) such that π1,v ' πv for all v /∈ S.

Note that we can no longer claim that π is cuspidal, and indeed it may
not be.

We can summarize the ideas of this section as follows.

Moral Theorem. Any suitably nice L-function of degree n must be auto-
morphic (or modular), i.e., associated to an automorphic representation of
GLn.

In this Moral Theorem, suitably nice means that the L-function must
be given by a convergent Euler product and that it and suitable twists
must be entire, BVS, and satisfy an appropriate functional equation, all the
standard properties that L-functions arising from arithmetic or geometry
are conjectured to satisfy.

2.7. On integral representations. The theory of integral representation
for the Rankin-Selberg L-functions, particularly the n = m case, is the par-
adigm for the study of automorphic L-functions by integral representations.
The general outline of the method as practiced are the following steps

(i) Write down a family of global integrals which have nice analytic
properties, including continuation, BVS and functional equation.

In general the integrals are variants on the n = m integrals here, where
the analytic properties follow from those of an Eisenstein series. In this
sense, the Hecke type integrals for m < n, and through them the Converse
Theorem, are special.

(ii) Show that the global integrals are Eulerian, i.e., factor into a product
of local integrals.

As is the case here, this unfolding and then factorization often relies on a
local and global uniqueness principle, here the uniqueness of the Whittaker
models. It is only in rare instances, such as the “new way” of Rallis and
Piatetski-Shapiro, that this is not the case.

(iii) Perform the local unramified calculation.
At almost all places, the data that goes into the local integral is unramified
and the integral can be computed explicitly. This is a non-trivial calculation,
usually involving an explicit formula for the unramified functions in the
integral, here the formula of Shintani for the unramified Whittaker function
for GLn. This is then followed by a calculation in invariant theory which
expresses the result in terms of a Langlands L-function coming from an
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appropriate representation of the L-group. This “identifies” the L-function
represented by the integrals in terms of Langlands’ paradigm.

Often the process stops here. But for many purposes, such as functoriality,
this is not enough. There remain three steps.

(iv) Analyze and compute the local L-function at the finite ramified
places, including continuation and functional equations.

(v) Analyze the local L-function at the archimedean places, again in-
cluding the local functional equation.

(vi) Combine steps (i)–(v) to complete the analysis of the global L-
function, including continuation, BVS, and global functional equa-
tion.

It is only for the Rankin-Selberg L-functions for GLn that we have com-
pleted these last three steps. (iv) was carried out by Jacquet, Piatetski-
Shapiro, and Shalika for Rankin-Selberg convolutions. (v) was initiated
by Jacquet and Shalika, but the final papers are by Jacquet alone. These
involve passing to the Casselman-Wallach completions and introduces an-
other layer of technical difficulty. (vi) is almost completed for GLn. There
remains the question of BVS, which currently can be done for m = n and
m = n−1 within the method. (The difficulty comes from the passage to the
Casselman-Wallach completion in the archimedean theory.) For BVS in the
other cases, we must rely on the Langlands-Shahidi method, which follows.

II. L-functions via Eisenstein series

In many ways, this part serves as a reader’s guide to the lectures of Shahidi
[10]. I will try to indicate where the results I mention are to be found in his
contribution.

3. The Origins: Langlands

3.1. A classical example. The Eisenstein series for Γ = SL2(Z) is defined
as follows.

Let B =
{(

a b
0 d

)}
⊂ SL2(R) be the Borel subgroup of SL2(R). For

z ∈ H set

E(z, s) =
∑

(B∩Γ)\Γ

Im(γz)
s
2+

1
2 for Re(s) > 1

=
∑

(c,d)∈Z2

(c,d)=1

y
s+1
2

|cz + d|s+1

=
1

ζ(s+ 1)

∑
(m,n) 6=(0,0)

y
s+1
2

|mz + d|s+1
.
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The Fourier expansion of E(z, s) has been computed classically. We find, if
we set Z(s) = π−

s
2 Γ
(
s
2

)
ζ(s), then

E(z, s) = 2
(
y
s+1
2 +

Z(s)
Z(s+ 1)

y
1−s
2

)
+4

∞∑
n=1

|n|sσ−s(n)
Z(s+ 1)

√
yK s

2
(2π|n|y)e2πinx

where σ−s(n) =
∑
d|n

d−s.

Classically, one can use the known meromorphic continuation and func-
tional equation of the Riemann zeta function ζ(s), and its completion Z(s),
to obtain the meromorphic continuation and functional equation of the
Eisenstein series:

E(z, s) =
Z(s)

Z(s+ 1)
E(z,−s).

The idea of Langlands was to reverse this process: from the analytic prop-
erties of an Eisenstein series, deduce analytic properties of the L-functions
appearing in its Fourier expansion.

3.2. Induced representations. In terms of automorphic representations,
Eisenstein series correspond to induced representations.

Let k be a number field. (You can take k = Q if you want.) Let G be a
connected reductive linear algebraic group over k, which we can assume to
be split for simplicity, so we can view G as a subgroup of a suitably large
GL.

Example. As an example to carry along consider the symplectic group
G = Sp2n:

Sp2n = Isom

((
Jn

−Jn

))
⊂ GL2n where Jn =

 1
. . .

1

 .

G will contain a Borel subgroup B, which we can take to be

B = G ∩


∗ · · · ∗. . .

...
∗


 .

Then B = TU where T is a maximal torus, which will be the diagonal
elements in B, and U is the unipotent radical of B,

U = G ∩


1 · · · ∗

. . .
...
1


 .
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We will need the following structural objects:
X(T ) = Homk(T,Gm) : the k-rational characters of T ;

Φ(T ) = the characters of T acting on Lie(G): the roots of T in G;

Φ+(T ) = the characters of T acting on Lie(U): the positive roots;

∆ = a basis of Φ+(T ): the simple roots;

W = N(T )/Z(T ) : the Weyl group.

Note that ∆ ⊂ Φ+(T ) ⊂ Φ(T ) ⊂ X(T ). Also N(T ) denotes the normalizer
of T in G and Z(T ) the centralizer.

The Weyl group acts as a reflection group on Φ(T ). It will contain a
“longest element” w` ∈ W with the property that if we let Φ−(T ) denote
the characters of T acting on the Lie(U−), U− being the opposite or lower
triangular unipotent subgroup, then w`(Φ+) = Φ−. In GLn, the longest

element of W is represented by w` =

 1
. . .

1

.

Let P be a parabolic subgroup of G containing B. We will only need to
consider maximal parabolic subgroups and will also restrict to those that
are “self-associate”. Just as B = TU , P will have a decomposition P = MN
with M ⊃ T the reductive Levi component of P and N ⊂ U the unipotent
radical of P .

Example. In the example of Sp2n, P will be a block upper triangular
subgroup of the form

P =


∗ ∗ ∗∗ ∗

∗


with

M =


A 0 0

0 B 0
0 0 A∗

 ∈ Sp2n

∣∣∣A ∈ GLr; B ∈ Sp2t

 ' GLr × Sp2t

where 2r + 2t = 2n, and

N =


Ir ∗ ∗

I2t ∗
Ir

 ∈ Sp2n

 .

Let
δP (mn) = |det(Ad(m)|Lie(N))|

be the modulus character of P . Then δP : M → R× and δP ∈ X(M) ⊗ R.
If (σ, Vσ) is a (reasonable) representation of M(kv) in the local situation
(resp. an automorphic representation of M(A) in the global situation) we
can construct a representation of G = G(kv) (resp. G = G(A)) by

I(s, σ) = IndGP (σδs/cPP )



L-FUNCTIONS AND FUNCTORIALITY 17

where s ∈ C and cP ∈ Z is a normalizing denominator depending on P .
This is the representation of G by right translation on

V (s, σ) = {f : G→ C |f(mng) = δP (m)
s
cP

+
1
2σ(m)f(g),

plus regularity conditions}.

If σ ' ⊗′σv is an automorphic representation of M(A) then we have

I(s, σ) ' ⊗′I(s, σv)

as a representation of G(A), but I(s, σ) is not yet automorphic; it is only
left invariant under P (k), not all of G(k).

3.3. Eisenstein series. We will use the theory of Eisenstein series to embed
I(s, σ) into the space of automorphic forms. We assume that σ is a unitary
cuspidal automorphic form for M(A).

Definition 3.1. If fs ∈ I(s, σ) we define the Eisenstein series associated to
fs by

E(g, s, fs) =
∑

γ∈P (k)\G(k)

fs(γg).

The series which defines the Eisenstein series converges for Re(s) >> 0.
It intertwines I(s, σ) with the space of automorphic forms on G(A), to give
the automorphic model of the induced representation. The basic properties
of the Eisenstein series, due to Selberg, Harish-Chandra, and Langlands, are
as follows.

(i) E(g, s, fs) converges for Re(s) >> 0 and has a meromorphic continu-
ation to all of C;

(ii) E(g, s, fs) satisfies a functional equation of the form

E(g, s, fs) = E(g,−s,M(s, σ)fs)

where
M(s, σ) : V (s, σ)→ V (−s, w0(σ))

is an intertwining operator defined as follows. First set

w0 = w`w
M
` ∈W and w0(σ)(g) = σ(w−1

0 gw0).

Part of P being “self-associate” is that w0(M) = M . Then

M(s, σ)fs(g) =
∫
N(A)

fs(w−1
0 ng) dn

for Re(s) >> 0.

(iii) The constant term of the Eisenstein series along P is∫
N(k)\N(A)

E(ng, s, fs) = fs +M(s, σ)fs
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(iv) The analytic properties, and particularly the poles, of E(g, s, fs) and
M(s, σ) are the same. There are only a finite number of simple poles for
Re(s) ≥ 0; there are no poles on Re(s) = 0.

3.4. The L-functions in the constant term. Langlands computed the
Euler products that appear in the constant term of the Eisenstein series.
“Recall”, from what we said about GLn, that if σ ' ⊗′σv is a cuspidal
representation of M(A), then for almost all places v, σv will be unramified.
This will persist for I(s, σ) acting on V (s, σ), i.e, if σv is unramified, so
will be I(s, σv) and in V (s, σv) there will be a unique (normalized) Kv-fixed
vector f◦s,v, where Kv is a (reasonable) maximal compact subgroup of G(kv).
So if fs ∈ V (s, σ) is decomposable, then we can write

fs ' ⊗fs,v =

(⊗
v∈S

fs,v

)
⊗

(⊗
v/∈S

′
f◦s,v

)
.

When we apply the global intertwining operator it will factor into a product
of local intertwining operators, given by similar integral expressions, which
is written as

M(s, σ)fs = ⊗A(s, σv, w0)fs,v.
Now for v /∈ S, A(s, σv, w0)f◦s,v will again be unramified and hence be a
multiple of the unramified vector f̃◦−s,v ∈ V (−s, w0(σv)),i.e.,

A(s, σv, w0)f◦s,v = cv(s)f̃◦−s,v
with cv(s) a scalar function of s (which turns out to be a rational function
of qsv). Using the method of Gindikin-Karpelevich, which reduces to a suc-
cession of SL2 calculations, Langlands computed cv(s). Without explaining
the notation involved, the result of Langlands’ calculation was

cv(s) =
∏

β∈Φ+

w0(β)∈Φ−

1− χv ◦ β∨($v)q
s〈eα,β〉+1
v

1− χv ◦ β∨($v)q
s〈eα,β〉
v

which looks like a ratio of products of Euler factors! Here α̃ ∈ Φ is a root
associated to P , β∨ is the co-root associated to β (see below), and χv is a
character associated to the unramified representation σv.

How are we to interpret this? Langlands had at his disposal the formalism
of Artin L-functions and the Satake parametrization of unramified represen-
tations. To make sense of these Euler products, Langlands introduced the
the L-group and what we now call Langlands L-functions. (For more details
on these, see Part III.)

(i) The L-group. Over an algebraically closed field, the algebraic group
G determines and is determined by its root datum which is the quadruple
(X(T ),Φ(T ), X∨(T ),Φ∨(T )) where X∨(T ) = Homk(Gm, T ) is the group of
rational co-characters of T and Φ∨ the set of co-roots. If we simply dualize
this root datum we obtain (X∨(T ),Φ∨(T ), X(T ),Φ(T )) which in turn is the
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root datum for the Langlands dual group Ĝ, which we can take over C, i.e.,
set Ĝ = Ĝ(C). The root datum for G inherits an action of the local Galois
group Gal(kv/kv) and we can transfer this to the dual root system and hence
Ĝ. The L-group of G is then LG = Ĝo Gal(kv/kv).

(ii) Satake parameters. Langlands interpreted Satake’s parametrization of
the unramified representation σv as an assignment σv 7→ tv ∈ T̂ ⊂ M̂ ⊂ LM .

(iii) Local Langlands L-functions. If r : LM → GLn(C) is a finite dimen-
sional complex representation of LM we define a local Euler factor attached
to the unramified representation σv and the representation r by

L(s, σv, r) = det(1− r(tv)q−sv )−1.

Coming back to the constant term of the Eisenstein series, we consider the
representation r of LM acting by the adjoint representation (conjugation)
on Lie(LN). This decomposes as

r =
m⊕
j=1

rj with rj irreducible.

The irreducible piece rj is actually the sum of the the co-root spaces in
Lie(LN) spanned by the co-roots β∨ for β ∈ Φ+ with 〈α̃, β〉 = j, where α̃,
β and β∨ are as in Langlands’ formula for cv(s). Then Langlands’ formula
for cv(s) takes the form

cv(s) =
m∏
j=1

L(js, σv, r̃j)
L(js+ 1, σv, r̃j)

.

Thus we arrive at the following result.

Theorem 3.1 ([10] Lemma 4.1).

M(s, σ)fs =

(⊗
v∈S

A(s, σv, w0)fs,v

)
⊗

∏
v/∈S

m∏
j=1

L(js, σv, r̃j)
L(js+ 1, σv, r̃j)

⊗
v/∈S

f̃◦−s,v


for Re(s) >> 0.

We set
LS(s, σ, r) =

∏
v/∈S

L(s, σv, r).

This is the partial L-function attached to the automorphic representation
σ, the representation r, and the set of places S. Langlands proved that this
converges absolutely in some right half-plane. So the product

m∏
j=1

LS(js, σ, r̃j)
LS(js+ 1, σ, r̃j)
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is the (partial) Euler product in the constant term of the Eisenstein series.
From here Langlands went on to formulate the local and global Langlands
Conjectures and Functoriality, which we will come back to in Part III.

Example. In our example of G = Sp2n with maximal parabolic P =
MN with M ' GLr × Sp2t, the LG = SO2n+1(C) and LM = GLr(C) ×
SO2t+1(C). In Lie(LN) ⊂ Lie(SO2t+1(C)) the representation r decomposes
as follows: 0 r1 r2

0 tr1
0


and we have m = 2 and

r1 = StGLr ⊗ StSO2t+1

r2 = Λ2(StGLr)

where StG denotes the standard or defining representation of G. If we
decompose σv = σ1,v ⊗ τv according to the decomposition of M , then
L(s, σv, r1) = L(s, σ1,v×τv) gives the Rankin-Selberg convolution L-function
of GLr × Sp2t and L(s, σv, r2) = L(s, σ1,v,Λ2) gives the exterior square L-
function of GLr.

Our goal is now to use the meromorphic continuation and functional equa-
tion of E(g, s, fs) to obtain the meromorphic continuation and functional
equation of the L(s, σ, r̃j). However there are three immediate problems.

(1) The problem of the ratios. Every L-function occurs as part of a ratio

L(js, σ, r̃j)
L(js+ 1, σ, r̃j)

.

(2) The problem of the products. Each ratio occurs as part of a product
m∏
j=1

L(js, σ, r̃j)
L(js+ 1, σ, r̃j)

.

(3) The problem of the missing local factors. How can we define and
analyze the local factors L(s, σv, r̃j) for places v /∈ S where σv is ramified?

4. The Method: Langlands-Shahidi

4.1. Resolution of the problem of the ratios. The resolution of the
problem of the ratios is central to the Langlands-Shahidi method and in-
volves Whittaker models.

Fix a non-trivial additive character ψ = ⊗ψv of k\A. We can use it to
define a non-degenerate character χ of the unipotent radical U of the Borel
subgroup B of G through the composition of the following sequence of maps

U −−−−→ Uab = U/[U,U ] ∼−−−−→
⊕

α∈∆ kα
tr−−−−→ k

ψ−−−−→ C.
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The choice of an isomorphism between Uab and ⊕kα is called a splitting.
The trace map is simply (xα) 7→

∑
xα. Since globally we assume ψ is trivial

on k, we will have χ is trivial on U(k) as well.

Definition 4.1. A representation (π, Vπ) of G (which we can take to be
the local G(kv) or global G(A)) is called χ-generic if there exists a non-zero
functional λχ : Vπ → C such that for all u ∈ U we have

λχ(π(u)v) = χ(u)λχ(v).

Such a functional is called a χ-Whittaker functional. For v ∈ Vπ the function
Wv(g) = λχ(π(g)v) is the associated χ-Whittaker function.

Globally, this abstract notation of a generic representation is too weak.
What is needed is something seemingly stronger, the notion of globally χ-
generic.

Definition 4.2. A cuspidal automorphic representation (π, Vπ) of G(A) is
called globally χ-generic if the explicit χ-Whittaker functional

ϕ 7→
∫
U(k)\U(A)

ϕ(u)χ−1(u) du

is non-vanishing on Vπ.

Let us now return to our Eisenstein series. Suppose now that (σ, Vσ) is a
globally χ-generic representation of M(A) with respect to the restriction of
χ to UM = M ∩ U . Denote the globally χ-generic Whittaker functional on
σ by λMχ . Then I(s, σ) is also χ-generic with explicit Whittaker functional
λχ on V (s, σ) given by

λχ(fs) =
∫
N(k)\N(A)

λMχ (fs(w−1
0 n))χ−1(n) dn.

If we then form the Eisenstein series E(g, s, fs) we can compute its χ-Fourier
coefficient using the same methods that Langlands used for the constant
term.

By definition, the Fourier coefficient is

Eχ(g, s, fs) =
∫
U(k)\U(A)

E(ug, s, fs)χ−1(u) du.

If fs is decomposable, fs = ⊗fs,v we get

Eχ(g, s, fs) = ⊗λχv(fs,v)(g) =
∏
v

Wfs,v(g)

and at the unramified places v /∈ S, if f◦s,v is the unramified vector then
Wf◦s,v

= W ◦
v the associated unramified Whittaker function. The Whittaker

functions are not “multiplicative” in the same sense that the constant terms
were and the method of Gindikin-Karpelevich no longer applies. However
one can evaluate the unramified Whitaker functions by using the Casselman-
Shalika formula to obtain the following result.
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Theorem 4.1 ([10] Theorem 6.2).

Eχ(e, s, fs) =

(∏
v∈S

Wfs,v(e)

)
·
m∏
j=1

1
LS(js+ 1, σ, r̃j)

.

Compare this with the classical situation where Z(s+ 1) occurred in the
denominator of the Fourier coefficient. This resolves the problem of the
ratios.

As an application, we have the following corollary. Since E(g, s, fs) has
no poles on Re(s) = 0, neither does Eχ(g, s, fs). This then leads to non-
vanishing on the 1–line!

Corollary 4.1.1 ([10] Corollary 6.3). For Re(s) = 0
m∏
j=1

LS(js+ 1, σ, r̃j) 6= 0.

Remark 4.1. If G 6= GLn, not all cuspidal representations are globally
generic. This is a restriction on the representations under consideration.
However, it is conjectured that every tempered L-packet should contain a
globally generic member and that every globally generic representation, or
even a representation that is consistently locally generic, should be tem-
pered. So this should be no restriction on the level of the L-functions them-
selves.

4.2. Resolution of the problem of the products. This is resolved by a
nice inductive procedure which is embodied in the following proposition.

Proposition 4.1 ([10] Proposition 7.1). Given 1 < j ≤ m, there exists a
(split) group Gj over k and a maximal k-parabolic subgroup Pj = MjNj ⊂ Gj
and a globally generic cuspidal automorphic representation σj of Mj(A) such
that if the adjoint action r′of LMj on Lie(LNj) decomposes as

r′ =
m′⊕
k=1

r′k

then we have (i) m′ < m and (ii) LS(s, σ, r̃j) = LS(s, σj , r̃′1).

Example. If we go back to our example in the symplectic group, in G =
Sp2n ⊃ P = MN with M ' GLr × Sp2t then we saw that LM ' GLr(C)×
SO2t+1(C) and that m = 2 with r1 = StGLr ⊗StSO2t+1 and r2 = Λ2(StGLr).
If we take G′ = SO2r ⊃ P ′ = M ′N ′ with P ′ the Siegel parabolic with
M ′ ' GLr, then LM ′ ' GLr(C) and in fact

LM ′ =
{(

A
A∗

) ∣∣∣A ∈ GLr} and Lie(LN ′) =
{(

0 S
0

) ∣∣∣tS = −S
}

so that m′ = 1 and r′1 = Λ2(StGLr).

If we apply this proposition inductively we can understand all
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• m = 1 cases;
• m = 2 cases, since LS(s, σ, r̃2) = LS(s, σ′, r̃′1), which we would now

understand;
• m = 3 cases, etc ...

Note: The G ⊃ P = MN fall into a finite number of infinite families plus
a finite number of exceptional cases. So we could prove this proposition by
“checking the list”.

As an application, we have the following result.

Proposition 4.2. Each LS(s, σ, r̃j) has a meromorphic continuation to C.

To see this, since the Eisenstein series E(g, s, fs) has a meromorphic con-
tinuation iff its constant term does, we see that M(s, σ)fs must have a
meromorphic continuation. But by the explicit computation, this implies
that

m∏
j=1

LS(js, σ, r̃j)
LS(js+ 1, σ, r̃j)

has a meromorphic continuation. By the above proposition, we can induc-
tively strip off factors and can conclude that

LS(js, σ, r̃j)
LS(js+ 1, σ, r̃j)

has a meromorphic continuation for each j. But now we utilize the shift in
the numerator and denominator to set up the shift equation

LS(s, σ, r̃j) =
LS(js, σ, r̃j)

LS(js+ 1, σ, r̃j)
LS(s+ 1, σ, r̃j)

and inductively shift from the original half-plane of convergence to all of C.

4.3. Resolution of the problem of the missing local factors. There
are two main tools here.

(i) A local/global principle. Since we hope to use the Eisenstein, which
are global in nature, we will need some type of a local/global principal. Here
it is.

Proposition 4.3 ([10] Prpopsition 7.3). Let F be a local field, σ′ a χF -
generic supercuspidal representation of M ′(F ). Then there exists a number
field k and a group M/k and a globally χ-generic cuspidal representation σ
of M(A) such that

(a) for some place v0 of k we have F = kv0, M(kv0) = M ′(F ), χv0 = χF ,
and σv0 = σ′.

(b) for all v 6= v0, σv is unramified (or v is archimedean).

So, not only can we embed any local generic supercuspidal representation
into a globally generic cuspidal representation, but at all the other places
we completely understand the local theory!
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(ii) Shahidi’s local coefficient. One of the tools we will exploit is the
functional equation of the Eisenstein series

E(g, s, fs) = E(g,−s,M(s, σ)fs)

which involves the global intertwining operator. We will also use the global
Fourier coefficient Eχ(g, s, fs). Shahidi’s local coefficient combines these.

Begin with I(s, σv) acting on V (s, σv). We have local intertwining op-
erators and local Whittaker functionals. If we combine them, we get the
following diagram.

V (s, σv)
A(s,σv ,w0)−−−−−−−→ V (−s, w0(σv))

λχv

y yλχv

C ←−−−−−−
Cχv (s,σv)

C

By uniqueness of the Whittaker functionals or models, the functionals λχv

and λχv ◦ A(s, σv, w0) differ by a complex scalar. This scalar is Shahidi’s
local coefficient and denoted by Cχv(s, σv), i.e., for each fs,v ∈ V (s, σv) we
have

λχv(fs,v) = Cχv(s, σv) · λχv(A(s, σv, w0)(fs,v)).

Remark 4.2. The analytic properties of Cχv(s, σv) will be related to those
of the local intertwining operator A(s, σv, w0) just as those of E(g, s, fs) are
related to M(s, σ).

How should we think of these local coefficients? Look at the places where
we understand the local L-function, i.e., v /∈ S.

Proposition 4.4 ([10] Proposition 7.4). Let v|∞ or v <∞ and σv unram-
ified. Then

Cχv(s, σv) =
m∏
j=1

γ(js, σv, r̃j , ψ−1
v )

where

γ(s, σv, r̃j , ψ−1
v ) =

ε(s, σv, r̃j , ψ−1
v )L(1− s, σv, rj)

L(s, σv, r̃j)
.

Note. This expression for the localγ-factor as the same as for GLn given
in Part I.

Remark 4.3. Since in these cases, we have the either the local Langlands
conjecture at the archimedean places or Langlands’ interpretation of the
Satake parameters in terms of the L-group, the L-functions that appear can
all be interpreted as Artin L-functions.

As an application of Shahidi’s local coefficients, we obtain the crude func-
tional equation for the partial global L-functions. We begin with the func-
tional equation of the Eisenstein series

E(g, s, fs) = E(g,−s,M(s, σ)fs),
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take the χ-Fourier coefficient

Eχ(g, s, fs) = Eχ(g,−s,M(s, σ)fs),

then use the calculation of the local Fourier coefficient at the unramified
places v /∈ S and the definition of the local coefficient at v ∈ S we obtain a
crude functional equation.

Theorem 4.2 ([10] Theorem 6.4).
m∏
j=1

LS(js, σ, rj) =
∏
v∈S

Cχ−1
v

(s, σ̃v)
m∏
j=1

LS(1− js, σ, r̃j).

5. The Results: Shahidi

5.1. The local γ-factor. We have seen that at the unramified places and
the archimedean places, there is a relation between Shahidi’s local coeffi-
cient and the local γ-factor. Shahidi now uses all our tools plus the crude
functional equation to establish a consistent theory of local γ-factors for all
places.

Theorem 5.1 ([10] Theorem 7.5). Let G be a split reductive algebraic group
over a local field F of characteristic 0. Let P = MN be a (self associate)
maximal parabolic subgroup of G σ an irreducible admissible χ-generic rep-
resentation of M = M(F ). Then there exist m complex functions

γ(s, σ, rj , ψ) 1 ≤ j ≤ m
such that

(1) if F is archimedean or F is non-archimedean and σ is unramified,
then

γ(s, σ, rj , ψ) =
ε(s, σ, rj , ψ)L(1− s, σ, r̃j)

L(s, σ, rj)
;

(2)

Cχ(s, σ) =
m∏
j=1

γ(js, σ, r̃j , ψ−1);

(3) γ(s, σ, rj , ψ) is “multiplicative” with respect to induction;
(4) if σv is the local component of a globally generic representation σ of

M(A) then

LS(s, σ, rj) =
∏
v∈S

γ(s, σv, rj , ψv)LS(1− s, σ, r̃j).

Moreover, (1), (3), and (4) characterize the γ-factors uniquely.

Example. We will illustrate what is meant by “multiplicativity” in part
(3) in our example. So we return, once again, to G = Sp2n with n = r + t.
We have our maximal parabolic subgroup P = MN with M ' GLr ×
Sp2t. Our representation σ of M(F ) will then decompose as σ ' σ1 ⊗ τ
with σ1 an irreducible admissible representation of GLr(F ) and τ a similar
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representation of Sp2t(F ). Now the Levi subgroup M is itself reductive and
within M we take a parabolic subgroup P ′ = M ′N ′ with

M ′ ' (GLr1 ×GLr2)× (GLa × Sp2b) ⊂ GLr × Sp2t 'M

with r1 + r2 = r and 2a+ 2b = 2t. Let

σ′ = (σ′1 ⊗ σ′2)⊗ (σ′′ ⊗ τ ′)

be a representation of M ′(F ) with the tensor decomposition of the repre-
sentation corresponding to the decomposition of M ′. Suppose that in the
decomposition σ = σ1 ⊗ τ we have

σ1 ⊂ Ind(σ′1 ⊗ σ′2) and τ ⊂ Ind(σ′′ ⊗ τ ′)

so that σ ⊂ Ind(σ′).
We also have

LM ′ ' (GLr1(C)×GLr2(C)× (GLa(C)× SO2b+1(C))

⊂ GLr(C)× SO2t+1(C) ' LM.

Recall that the action r of LM on Lie(LN) decomposes as r = r1 ⊕ r2 with
r1 = StGL4 ⊗ StSO2t+1 and r2 = Λ2(StGLr). Both of these will further de-
compose when we restrict to LM ′ ⊂ LM . This decomposition then gives the
following decomposition of the resulting γ-factors, which is what is referred
to as “multiplicativity”.

γ(s, σ1 ⊗ τ, r1, ψ) = γ(s, σ1 × τ, ψ)

=
2∏

k=1

[
γ(s, σ′k × σ′′, ψ)γ(s, σ′k × σ̃′′, ψ)

] 2∏
k=1

γ(s, σ′k × τ ′, ψ)

and
γ(s, σ1 × τ, r2, ψ) = γ(s, σ1,Λ2, ψ)

= γ(s, σ′1 × σ′2, ψ)
2∏

k=1

γ(s, σ′k,Λ
2, ψ).

5.2. The definition of local L- and ε-factors at the ramified places.
F is again a local field. Recall that if v|∞ or v <∞ and σ is unramified,then

γ(s, σ, rj , ψ) =
ε(s, σ, rj , ψ)L(1− s, σ, r̃j)

L(s, σ, rj)
.

For the other places, we take this relation as the paradigm for defining the
L- and ε-factors.

(a) Tempered representations For tempered representations we can
make the following definition.

Definition 5.1. If σ is χ-generic and tempered, set

L(s, σ, rj) = Pσ,j(q−s)−1,
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where Pσ,j(X) ∈ C[X] with P (0) = 1, where Pσ,j(q−s) is the normalized poly-
nomial in q−s in the numerator of γ(s, σ, rj , ψ). Then we define ε(s, σ, rj , ψ)
by

γ(s, σ, rj , ψ) =
ε(s, σ, rj , ψ)L(1− s, σ, r̃j)

L(s, σ, rj)
.

This determines L- and ε-uniquely for σ tempered.
From the behavior of the local intertwining operator A(s, σ, w0) for σ

tempered, we can draw the following conclusion.

Theorem 5.2 ([10] Theorem 7.6). Suppose σ is χ-generic and tempered.
Then L(s, σ, rj) is holomorphic for Re(s) > 0.

Corollary 5.2.1. L(s, σ, rj) is multiplicative for σ tempered.

(b) General representations If σ is χ-generic but not necessarily tem-
pered we appeal to the (representation theoretic) Langlands classification.
This allows us to write σ uniquely as a sub-representation

σ ⊂ IndMM ′N ′(σ′ν)

with σ′ a tempered representation of M ′ = M ′(F ) and σ′ν a quasi-tempered
(or deformed) representation with ν in the negative Weyl chamber. Then
L(s, σ, rj) is defined in terms of σ′ν by formal multiplicativity, as for γ and
for L- in the tempered case, and the ε(s, σ, rj , ψ) is derived from L(s, σ, rj)
and γ(s, σ, rj , ψ) so the standard relation holds.

This now defines L(s, σ, rj) and ε(s, σ, rj) for all irreducible admissible
χ-generic representations of M = M(F ).

5.3. Global L-functions. We now return to k to be a number field and
σ ' ⊗′σv a globally χ-generic cuspidal representation of M(A). Let rj be
one of the representations of LM occurring in the action of LM on Lie(LN).

Definition 5.2.

L(s, σ, rj) =
∏
v

L(s, σv, rj)

ε(s, σ, rj) =
∏
v

ε(s, σv, rj , ψv)

Then from property (4) of the γ-factor (the local/global principal for γ)
and the definition of L- and ε for v ∈ S we obtain the true global functional
equation.

Theorem 5.3 ([10] Theorem 7.7). For each j = 1, . . . ,m

L(s, σ, rj) = ε(s, σ, rj)L(1− s, σ, r̃j).
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5.4. Holomorphy and BVS. In general, the L(s, σ, rj) can have poles
coming from the analytic properties of the Eisenstein series. If an Eisenstein
series has a pole in Re(s) ≥ 0, its residual representation lies in the residual
L2-spectrum. If you “twist” the Eisenstein series, the residue can’t be in
L2, i.e., there can be no pole. Transferring this to the L-functions gives the
following result.

Theorem 5.4 ([10] Theorem 8.2). Let ξ be the k-rational character of M
given by

ξ(m) = det(Ad(m)|Lie(N)).
Let S be a non-empty set of finite places of k. For every globally χ-generic
cuspidal representation σ of M(A) there exists non-negative integers fv for
v ∈ S such that for every idele class character η = ⊗ηv with cond(ηv) ≥ fv
for all v ∈ S, if we set

ση = σ ⊗ (η ◦ ξ)
then L(s, ση, rj) is entire for all 1 ≤ j ≤ m.

The above remarks on the Eisenstein series will rule out the poles in
Re(s) ≥ 1

2 . Then use the global functional equation.
Also, although this requires other analytic techniques, we have the fol-

lowing result.

Theorem 5.5 ([10] Theorem 8.3). With the assumptions of the previous
theorem, so ηv sufficiently highly ramified at v ∈ S, we have L(s, ση, rj) is
bounded in vertical strips (BVS) for all 1 ≤ j ≤ m.

5.5. Summary. LetG be a (quasi)split connected reductive algebraic group
over a number field k. Let P = MN be a maximal parabolic subgroup de-
fined over k. Let σ be a globally χ-generic cuspidal representation of M(A).
Let r be the representation of LM on Lie(LN), decomposed as

r =
m⊕
j=1

rj .

Then each global L-function L(s, σ, rj) is nice in the sense that
(i) L(s, σ, rj) converges for Re(s) >> 0 and has a meromorphic contin-

uation to all C;
(ii) for every sufficiently ramified idele class character η, L(s, ση, rj) is

entire;
(iii) for every sufficiently ramified idele class character η, L(s, ση, rj) is

BVS;
(iv) L(s, σ, rj) = ε(s, σ, rj)L(1− s, σ, r̃j).

Concluding remark. While this method covers a large family of Langlands
L-functions L(s, σ, ρ), it has two limitations.

(a) It requires σ to be globally generic.
(b) The representations σ are restricted to representations of a group M

which must occur as the Levi subgroup of a maximal parabolic P = MN ⊂
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G for some larger group G. Moreover, the representations ρ of LM must be
one of the rj occurring in the action of LM on Lie(LN).

However, other than these restrictions that are forced by the method, the
analytic results on the L(s, σ, rj) are quite complete. As we will see, they
suffice, when combined with the Converse Theorem of Part I, to establish
many cases of Langlands’ conjecture by the method of L-functions.

III. Functoriality

6. Langlands Conjectures and Functoriality

As we indicated in Section 3, the Langlands Conjectures and Functoriality
have their origin in the theory of Eisenstein series. Here I want to present
another way to think about these ideas and what they entail. Recall that
we ended Part I with a Moral Theorem, which we repeat.

Moral Theorem. Any suitably nice L-function of degree n must be auto-
morphic (or modular), i.e., associated to an automorphic representation of
GLn.

What is an interesting source of degree n L-functions?

6.1. Global Class Field Theory. The problem of a global class field the-
ory is to

• understand the global Galois group Gal(Q/Q) or more generally
Gal(k/k).

Of course one way to understand the structure of a complicated group is
through its linear representations. So our question becomes

• understand the representations

ρ : Gal(Q/Q)→ GLn(C) ( or GLn(Q̂`)).

Artin attached to every such complex representation ρ a degree n L-function.
If ρ : Gal(Q/Q) → GL(V ) with V an n-dimensional complex vector space,
then

L(s, ρ) =
∏
v

Lv(s, ρ) =
∏
v

L(s, ρv)

where

L(s, ρv) =

{
det(1− p−sρ(Frobp)|V Ip)−1 if v = p

Γ(s, ρ) if v =∞
with Γ(s, ρ) the appropriate product of Γ-functions as defined by Artin.
He also defined an ε-factor ε(s, ρ) So then our problem can possibly be
reformulated as

• for each ρ as above, understand its L-function L(s, ρ).
We know the following facts about the Artin L-functions.

(i) L(s, ρ) converges for Re(s) >> 0;
(ii) L(s, ρ) has a meromorphic continuation to C;
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(iii) L(s, ρ) is bounded in vertical strips;
(iv) we have the functional equation L(s, ρ) = ε(s, ρ)L(1− s, ρ̃).

We also have the

Artin Conjecture: L(s, ρ) is entire if ρ is irreducible and not the trivial
representation.

So, morally, this should imply that L(s, ρ) is automorphic. (The twists
in our Moral Theorem are here given by the tensor product of Galois rep-
resentations.) It is this automorphy that is the substance of the Langlands
Conjectures.

6.2. The Langlands Conjectures for GLn. Based on our Moral Theo-
rem, we are led to a first naive formulation of the Langlands conjecture.

Naive Global Langlands Conjecture. There exist bijections{
ρ : Gal(Q/Q)→ GLn(C)

irreducible

}
↔
{

cuspidal automorphic
representations π of GLn(A)

}
such that

L(s, ρ) = L(s, π)

L(s, ρ1 ⊗ ρ2) = L(s, π1 × π2)
with similar equalities for ε-factors.

One advantage of the adelic theory of automorphic representations is a
natural formulation of a local version of the conjecture.

Naive Local Langlands Conjecture. There exist bijections{
ρv : Gal(Qv/Qv)→ GLn(C)

}
↔
{

irreducible admissible
representations πv of GLn(Qv)

}
such that

L(s, ρv) = L(s, πv)

L(s, ρ1,v ⊗ ρ2,v) = L(s, π1,v × π2,v)
with similar equalities for ε-factors.

Note that these local and global Langlands Conjectures are compatible.
This local/global compatibility principal will be important in our later for-
mulations.

Why did we call this naive? It is not even true for n = 1. On the left
hand side, we would have only finite order Galois characters, while on the
right hand side we have all Hecke characters (or all characters of Q×

v in the
local case). Weil realized this and remedied it by introducing what we now
refer to as the Weil group WQ or WQv . Locally at a finite place we have

Ip ↪→WQp → Gal(Qp/Qp)

where the Weil group has dense image in the Galois group; at the infinite
place we have a short exact sequence

1→ Q× →WR → Gal(C/R)→ 1.
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The global Weil group WQ has only a cohomological definition, but there
is a compatibility between the local and global Weil groups. If we replace
Gal(Q/Q) by WQ and Gal(Qv/Qv) by WQv , then the Langlands conjectures
for n = 1 become the theorems of global and local Class Field Theory.

Unfortunately, the replacement of the Galois group by the Weil group
did not completely solve our problem. Deligne pointed out that even this
modification of the local Langlands conjecture was not true for GL2(Qp)
for finite primes p. There were still too many representations on the right
hand side. Deligne observed that if one used `-adic coefficients rather than
complex coefficients in the representations, one had an extra structure, as
shown by Grothendieck. `-adic Galois representations come with a mon-
odromy operator, an extra nilpotent endomorphism that is normalized by
the Galois representation. So Deligne imposed this structure in the complex
case by introducing what we now call the (local) Weil-Deligne group W ′

Qp
.

It has the structure of a semi-direct product W ′
Qp

= WQp n Ga, where in
any representation, the generator of the additive group acts by a nilpotent
endomorphism N . So a representation of the Weil-Deligne group is a pair
(ρ,N) with ρ a representation of the Weil group on a complex vector space
V and N a nilpotent endomorphism of V , with certain compatibilities. (The
archimedean Weil-Deligne group is just the Weil group; there is no need to
change the theory at these places.) Deligne also extended the definition of
the L- and ε-factors to these representations. This resolved the problem of
the missing representations for GL2(Qp) and gives us a good formulation of
a local Langlands conjecture.

Local Langlands Conjecture. There exist bijections{
ρv : W ′

Qv
→ GLn(C)

Frobenius semi-simple

}
↔
{

irreducible admissible
representations πv of GLn(Qv)

}
such that

L(s, ρv) = L(s, πv)

L(s, ρ1,v ⊗ ρ2,v) = L(s, π1,v × π2,v)

with similar equalities for ε-factors.

This is indeed the correct formulation, for this is now a Theorem, due
to Langlands for Qv = R and by Harris-Taylor, followed by Henniart, for
Qv = Qp. In fact, their proofs work for any local field of characteristic 0. It is
also known for local fields of characteristic p by Laumon-Rapoport-Stuhler.

Unfortunately, there is no known construction of a global Weil-Deligne
group. (This is often formulated as the conjectural Langlands group.) In-
stead we rely on a formulation of a local/global compatibility at least for
representations of the Weil group. If we begin with a global representation
ρ : WQ → GLn(C) then, from the local/global compatibility of the Weil
groups, ρ induces local representations ρv of WQv for each v. Then we have
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the following diagram
ρ //____

��

π = ⊗′πv

{ρv}
LLC

// {πv}

OO

where the top arrow is defined by the composition of the other three.

Global Langlands Conjecture. With the above formalism, π = ⊗′πv is
automorphic.

There are two ways of thinking about the information flow in these con-
jectures and theorems. For non-abelian Class Field Theory, we think of the
information flow as going from the automorphic side (where we can con-
trol the analytic properties of L-functions) to the Galois side. However, for
the formulation of Functoriality, we view the flow of information as going
from the Galois side to the automorphic side, thus giving us an arithmetic
parametrization of admissible or automorphic representations.

6.3. Langlands Conjectures for other groups. Another powerful as-
pect of the adelic theory of automorphic representations is that it can be
formulated for any reductive algebraic group H over Q or k, as we have seen
in Part II. Thinking of the Langlands Conjectures as arithmetic parametriza-
tions of automorphic representations of H(A) or admissible representations
of H(Qv), what do we replace the GLn(C) by in our Galois representations?
This is where the formulation of the dual group Ĥ or the L-group LH that
we saw in Part II comes into play.

Local Langlands Conjecture for H. There is a finite-to-one surjective
map{

irreducible admissible
representations πv of H(Qv)

}
→

{
admissible homomorphisms

φv : W ′
Qv
→ LH

}
which satisfies .... a list of representation theoretic desiderata.

Part of the desiderata should be an equality of L-functions. But Lang-
lands used this formulation to define the L-functions, namely if r : LH →
GLn(C) is an L-homomorphism of the type we saw in Part II (although now
not restricted to come from the theory of induced representations as there)
then Langlands defined

L(s, πv, r) = L(s, r ◦ φv)

where now the L-function on the right is a generalized Artin L-function. So
we should think of the right hand side of this local Langlands conjecture
as giving special families of Galois representations that parametrize repre-
sentations of H and lead to a formulations of L-functions for H as Artin
L-functions. The fibres of the parametrization are called L-packets, because
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under this formalism, the representations in the fibres will have the same
L-functions for any representation r of the dual group LH.

What to we know in the direction of this conjecture? We know the con-
jecture in the following instances. (Lets talk over a number field k and its
completions.)

(i) kv = R, C and any H, by Langlands,
(ii) kv non-archimedean and πv unramified, by Satake.
(iii) kv non-archimedean and H = GLn, the characteristic 0 case by

Harris-Taylor, Henniart.
(iv) kv non-archimedean and H = GSp4 or Sp4, by Gan and Takeda.
(v) kv non-archimedean, H = SO2n+1, and πv generic, by Jiang and

Soudry.
(vi) Possible other miscellaneous cases that I am unaware of.

As for GLn, we formulate a version of the Global Langlands Conjec-
ture for H through a local/global compatibility.

6.4. Functoriality. Thinking of the local or global Langlands conjectures
in terms of arithmetic parametrizations of admissible or automorphic repre-
sentations, these Langlands conjectures lead to a formulation of transferring
admissible/automorphic representations from H to G. We will concentrate
on the case where G = GLN , as this is most compatible with out methods,
but any quasi-split target group will do.

There is a new ingredient necessary for this transfer. This is an L-
homomorphism, which is a complex analytic map

u : LH → LG = LGLN = GLN (C)×Gal(k/k)

which is compatible with the projections to the Galois factors. (In the
local formulation, we use Gal(kv/kv).) In our example from Part II, where
H = Sp2n, then Ĥ = SO2n+1 and we can take for u the map coming from
the natural embedding

u : SO2n+1(C) ↪→ GL2n+1(C).

There are similar embeddings for the other split and even quasi-split classical
groups.

A formulation of local functoriality from H to GLN relies on assuming
the local Langlands conjecture for H and recalling that we know the local
Langlands conjecture for GLN by Harris-Taylor/Henniart.

Local Functoriality. Assume we know the local Langlands conjecture for
H(kv). Let πv be an irreducible admissible representation of H(kv) with



34 JAMES W. COGDELL

associated Langlands parameter φv. Then we simply follow the diagram

LH
u // LGlN

πv
� // � HT/H // Πv.

W ′
kv

φv

XX222222222222222

Φv

EE

















to obtain an irreducible admissible representation Πv of GLn(kv).

This formalism comes complete with an equality of L-and ε-factors, for
example

L(s, πv, u) = L(s, u ◦ φv) = L(s,Φv) = L(s,Πv).

Note that we know how to carry this out whenever we know the local Lang-
lands parametrization for πv, i.e., when kv is archimedean or when kv is
non-archimedean and πv is unramified. So in fact, if we are given a global
automorphic representation π = ⊗′πv of H(A), we can transfer the local
representation πv for all v outside a finite set S of finite places.

We can formulate a global version of this using the local/global principal
and the local functoriality diagram. It relies on knowing the local Langlands
conjecture for H at all places.

Global Functoriality Conjecture. Assume the local Langlands conjecture
for H at all places of k. If π = ⊗′πv is a cuspidal automorphic representation
of H(A) then the representation Π = ⊗′Πv of GLN (A) obtained by following
the local functoriality diagrams

LH
u // LGLN

π = ⊗′πv πv
� // � // Πv Π = ⊗′Πv

W ′
kv

φv

XX2222222222222222

Φv

DD

















is automorphic.

This global formalism also comes complete with an equality of L- and
ε-factors

L(s, π, u) =
∏
v

L(s, πv, u) =
∏
v

L(s,Πv) = L(s,Π)

along with similar equalities for twisted versions.
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7. The Converse Theorem and Functoriality

In the global functoriality diagram, one begins with a cuspidal automor-
phic representation π = ⊗′πv of H(A) and produce an irreducible admissible
representation Π = ⊗′Πv of GLN (A). Such a representation of GLN could
be the input to the Converse Theorem for GLN . Since the diagram comes
with an identity of twisted L-functions, one could verify the conditions of
the Converse Theorem for Π by controlling the analytic properties of the
twisted L-functions for H. But this is exactly what came out of the pro-
cess in Part II. So we are now in the position of combining the L-function
techniques of Part I, which come from the theory of integral representations
for GLN , and the L-functions techniques of Part II, which come from the
relation with Eisenstein series, to attack the question of functoriality via
L-function techniques.

7.1. Functoriality for the classical groups. The first instances where
we could do this were the families of (quasi)split classical groups. For now,
we will content ourselves with the split cases. As we have seen in our ex-
ample that we carried through in Part II, for Sp2n, we can control the
twisted L-functions L(s, π × τ) for π a globally generic cuspidal represen-
tation of Sp2n(A) and τ a cuspidal representation of GLm(A). The twisted
L-functions for the other split classical groups occur in a similar fashion.
So we will be able to consider functoriality for globally generic cuspidal
representations in the following split situations.

H LH u :L H →L GLN
LGLN GLN

SO2n+1 Sp2n(C) ↪→ GL2n(C) GL2n

SO2n SO2n(C) ↪→ GL2n(C) GL2n

Sp2n SO2n+1(C) ↪→ GL2n+1(C) GL2n+1

Take an H from this table and let π = ⊗′πv be a globally generic cuspidal
representation of H(A). For almost all places v of k we know the local
Langlands conjecture for H(kv), namely for the archimedean places and the
finite places for which πv is unramified. So for these places we have our local
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functoriality diagram

LH
u // LGlN

πv
� LLC // � LLC // Πv.

W ′
kv

φv

XX222222222222222

Φv

EE

















which preserves L-functions. However, there remains a finite set of S of
non-archimedean places for which we do not know the local Langlands pa-
rameters for πv. In spite of this we can still prove the following result.

Theorem 7.1. Let H be a (quasi)split classical group, π = ⊗′πv a globally
generic cuspidal representation of H(A), and u : LH → LGLN the natural
L-homomorphism. Then there exists an automorphic representation Π =
⊗′Πv of GLn(A) such that for all v /∈ S, Πv is the local Langlands lift of πv
as in the above diagram.

The proof has three main steps, but three lingering questions about their
implementation.

Step 1. Construct a candidate lift Π = ⊗′Πv as an irreducible admissible
representation of GLN (A) with the property that for all cuspidal automor-
phic representations τ of GLm(A) in an appropriate twisting set we have

L(s, π × τ) = L(s,Π× τ)
ε(s, π × τ) = ε(s,Π× τ)

For the places v /∈ S, we can obtain this locally from the local functoriality
diagram.
Question 1. What to do about Πv for v ∈ S?

Step 2. Control the analytic properties of L(s,Π × τ) through those of
L(s, π×τ). We do this using the Langlands-Shahidi method, as in the Sum-
mary in Section 5, where we are guaranteed that these twisted L-functions
are meromorphic, BVS and satisfy an appropriate functional equation. But
the Converse Theorem requires that all L-functions be entire, which is more
that is guaranteed.
Question 2. How to uniformly control the poles of the L-functions for all
the twists simultaneously?

Step 3. Apply the Converse Theorem to Π = ⊗′Πv.
Question 3. Which one, i.e., what is the appropriate twisting set?



L-FUNCTIONS AND FUNCTORIALITY 37

7.2. Resolution of the difficulties. We will take our difficulties in order,
since the resolution of Questions 1 & 2 will force the answer to Question 3.

Question 1. What to do about the v ∈ S where we do not know the
local Langlands parametrization for πv. We finesse the lack of the local
Langlands parametrization by a purely local result called the “stability of
L and ε under highly ramified twists”. The proof of this is quite involved
and is established in the context of the “stability of γ under highly ramified
twists”. The statement of stability is the following.

Theorem 7.2. Suppose that ηv is a suitably highly ramified character of
k×v . Then for irreducible admissible representations πv of H(kv) or Πv of
GLN (kv) we have

L(s, πv × ηv) ≡ 1 ≡ L(s,Πv × ηv)
and both ε(s, πv×ηv, ψv) and ε(s,Πv×ηv, ψv) stabilize, with the stable form
only depending on the central character of the local representations.

The degree of ramification depends on πv or Πv respectively. Once you
have stability, one can replace πv and Πv by a full induced representation
with the same central character and then compute these stable form of the
ε-factors (from the stable form of the γ-factors) by using multiplicativity of
the γ-factors. When one does this, one obtains the following corollary.

Corollary 7.2.1. Assume H is split. Then for any irreducible admissible
generic representation πv of H(kv) and any irreducible admissible represen-
tation Πv of GLN (kv) with trivial central character, for sufficiently highly
ramified character ηv, depending on both representations πv of H(kv) and
Πv of GLN (kv), we have

L(s, πv × ηv) = L(s,Πv × ηv)
ε(s, πv × ηv, ψv) = ε(s,Πv × ηv, ψv).

So if we have the freedom to twist, we can take as our “local lift” any
Πv with trivial central character. We can extend this to certain twists by
GLm(kv), again by multiplicativity of L- and ε- for certain representations.

Corollary 7.2.2. Assume H is split. Let πv be an irreducible admissible
generic representation of H(kv) and Πv irreducible admissible representation
of GLN (kv) with trivial central character. Let ηv be a sufficiently highly
ramified character of k×v as in the above corollary. Then for every unramified
representation τ◦v of GLm(kv) if we set τv = τ◦v ⊗ ηv then

L(s, πv × τv) = L(s,Πv × τv)
ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

If we combine this last corollary at the places v ∈ S with the local func-
toriality diagram for v /∈ S we arrive at the end of Step 1. Let π = ⊗′πv be
a generic cuspidal automorphic representation of H(A). For v /∈ S, let Πv

be the local lift of πv obtained through the local functoriality diagram. For
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v ∈ S take Πv any irreducible admissible representation of GLn(kv) with
trivial central character. Consider the candidate lift Π = ⊗Πv of GLN (A).

Theorem 7.3. Let η = ⊗ηv be a fixed idele class character such that at all
v ∈ S, ηv is sufficiently highly ramified so that the previous corollaries hold
for πv and Πv. Then for every τ ∈ T S0 (N − 2)⊗ η we have

L(s, π × τ) = L(s,Π× τ)
ε(s, π × τ) = ε(s,Π× τ).

For the definition of T S0 (N − 2) see the paragraph before Theorem 2.4.
This completes Step 1.

Question 2. The answer to our second question, controlling the poles of
L(s,Π × τ) and hence L(s,Π × τ) we can now find in the Summary in
Section 5 and the previous theorem. In Section 5 we saw that if we twisted
by a sufficiently ramified character η then the resulting L-function had no
poles. When one unravels the twisting there in terms of the Rankin-Selberg
L-functions we are considering here, then we have the following result.

Theorem 7.4. Let H be a split classical group and π = ⊗′π a globally
generic cuspidal representation of H(A). Let S be a non-empty finite set
of finite places. Let η = ⊗ηv be a idele class character which is sufficiently
highly ramified at the places v ∈ S so that Theorems 5.4 and 5.5 are satisfied.
Then for every τ ∈ T S0 (N − 2)⊗ η we have that L(s, π × τ) is nice, that is

(i) L(s, π × τ) is an entire function of s;
(ii) L(s, π × τ is bounded in vertical strips;
(iii) L(s, π × τ) = ε(s, π × τ)L(1− s, π̃ × τ̃).

So a similar twisting by a ramified character gives us the the twisted L-
functions on the classical group are nice as desired in the Converse Theorem.
This completes Step 2.

Question 3. We are now in a position to apply a Converse Theorem. We
just need to combine Theorems 7.3 and 7.4. So we take our globally generic
cuspidal representation π = ⊗πv of H(A). We construct a candidate lift
Π = ⊗′Πv as in Step 1. We take S to be a finite set of finite places such
that (i) S contains all finite places where we do not have the local Lang-
lands parametrization for πv and (ii) S is not empty. We fix an idele class
character η = ⊗ηv such that the local components at v ∈ S are sufficiently
ramified that both Theorems 7.3 and 7.4 hold. Then combining these with
the flexible Converse Theorem given in Theorem 2.4, we obtain Theorem
7.1, the functorial lifting from classical groups to GLN for globally generic
cuspidal representations. This completes Step 3.

7.3. The image of functoriality. We have two remaining issues.
(1) When is the functorial lift Π cuspidal?
(2) Can we characterize the image of functoriality?
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These questions are answered by yet another set of techniques. This is
the method of automorphic descent of Ginzburg, Rallis, and Soudry. It was

• motivated by integral representations of twisted L-functions for clas-
sical groups
• implemented in terms of residues of Eisenstein series.

So it represents a nice synthesis of ideas from the two methods for studying
L-functions. The descent allows you to begin with a self-dual representation
of GLN , local or global, and descend back to a representation of the classical
group H (or a metaplectic group).

If we combine our approach to functoriality via the Converse Theorem
with the Ginzburg-Rallis-Soudry theory of descent we obtain the following
more complete result.

Theorem 7.5. Let H be a split classical group, π a globally generic cuspidal
representation of H(A). Then there is a representation R = RH of LGLn
such that the functorial lift of π to an automorphic representation Π of
GLN (A) as above has trivial central character and is of the form

Π = Ind(Π1 ⊗ · · · ⊗Πd) = Π1 � · · ·� Πd

where each Πi is a unitary self-dual representation of GLNi(A) such that
the L-function L(s,Πi, R) has a pole at s = 1 and Πi 6' Πj for i 6= j.
Moreover any such Π is the functorial lift of some globally generic cuspidal
representation π of H(A).

To finish, we only need to identify R = RH . For H = Sp2n or SO2n, so
that LH is an orthogonal group, R = Sym2, while for H = SO2n+1, where
LH = Sp2n, we have R = Λ2.

For the case of the quasisplit classical groups, the result is similar, but
there is also a central character condition.

8. Symmetric powers and applications

There are a number of other functorialities that one can obtain by this
method that have striking arithmetic applications. As the method is the
same as before, here I will describe the L-homomorphisms and how one
controls the twisted L-functions needed for the Converse Theorem within
the Langlands-Shahidi method.

8.1. The tensor product lifting from GL2×GL3 to GL6. The L-group
of GLn is GLn(C). The tensor product isomorphism C2 ⊗C3 ' C6 induces
a map

GL2(C)×GL3(C)
⊗ // GL6(C)

and there should be an associated map of automorphic representations given
by the following functoriality diagram.

Let π1 = ⊗′π1,v be a cuspidal automorphic representation of GL2(A) and
π2 = ⊗′π2,v a cuspidal automorphic representation of GL3(A). Write π1×π2
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for the corresponding representation of GL2(A) × GL3(A). Then for each
place v of k, since we know local Langlands for GLn, we have

GL2(C)×GL3(C)
⊗ // GL6(C)

π1,v × π2,v
� // φ1,v × φ2,v

� // Πv

W ′
kv

__???????????????????

Φv

DD�����������������

which then gives us an irreducible admissible representation Π = ⊗Πv of
GL6(A). Let us denote Πv = π1,v � π2,v and Π = π1 � π2.

Theorem 8.1 ([10] Theorem 9.1). π1�π2 is an automorphic representation
of GL6(A)

To apply the Converse Theorem for GL6 we must now control the triple
product L-functions L(s, π1 × π2 × τ) for τ a cuspidal representation of
GLm(A) with m = 1, 2, 3, 4. Where do these occur in the Langlands-Shahidi
list?

GL1 twists. We take G = GL5. Its Dynkin diagram is

• • • •

and if we remove the second vertex

• × • •

we obtain a maximal parabolic subgroup P = MN whose Levi has derived
group M ' GL2 × GL3. If we take the representation of M to be σ '
π1 ⊗ (π2 ⊗ τ), then this is an m = 1 situation and we have, in the notation
of Part II,

L(s, σ, r1) = L(s, π1 × π2 × τ).

GL2 twists. We take G = Dsc
5 = Spin10. Its Dynkin diagram is

•

• • •

~~~~~~~

@@
@@

@@
@

•
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and if we remove the third vertex

•

• • ×

~~~~~~~

@@
@@

@@
@

•

we obtain a maximal parabolic subgroup P = MN whose Levi subgroup
has derived group Mder ' SL3×SL2×SL2. This is the same as the derived
group of GL3 ×GL2 ×GL2 and there is a k-rational morphism from M to
GL3×GL2×GL2 which is the identity on the derived groups. There is then
a way to transfer the representation π2 ⊗ π1 ⊗ τ of GL3 ×GL2 ×GL2 to a
representation σ of M such that

L(s, σ, r1) = L(s, π1 × π2 × τ).

We will denote this (and similar) process by writing σ ∼ π2 ⊗ π1 ⊗ τ . This
is an m = 2 situation.

GL3 twists. We take G to be the exceptional group Esc6 . Its Dynkin
diagram is

•

• • • • •

and if we remove the third vertex

•

• • × • •

we obtain a maximal parabolic subgroup P = MN whose Levi subgroup
has derived group Mder ' SL3 × SL2 × SL3. If we take the representation
of M so that σ ∼ π2 ⊗ π1 ⊗ τ , then this is an m = 3 situation with

L(s, σ, r1) = L(s, π1 × π2 × τ).

GL4 twists. We take G to be the exceptional group Esc7 . Its Dynkin
diagram is

•

• • • • • •
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and if we remove the fourth vertex

•

• • • × • •

we obtain a maximal parabolic subgroup P = MN whose Levi subgroup
has derived group Mder ' SL4 × SL2 × SL3. If we take the representation
of M so that σ ∼ τ ⊗ π1 ⊗ π2, then this is an m = 4 situation with

L(s, σ, r1) = L(s, π1 × π2 × τ).

Even in this relatively simple case of a tensor product functoriality, we
need Eisenstein series on exceptional groups! As usual, the Converse Theo-
rem gives an automorphic representation Π′ with Π′

v ' π1,v�π2,v for almost
all places v. To fill in the correct lift at the v ∈ S we need other techniques:
base change and the theory of types.

8.2. Symmetric power functorialities. GL2(C), the L-group of GL2,
has an irreducible n+1 dimensional representation on the space of symmetric
n-tensors Symn(C2). This gives a map

GL2(C)
Symn

// GLn+1(C)

and there should be an associated lifting of automorphic representations
from GL2(A) to GLn+1(A). The relevant functoriality diagram is

GL2(C)
Symn

// GLn+1(C)

π = ⊗′πv πv
� // � // Πv Π = ⊗′Πv.

W ′
kv

φv

ZZ6666666666666666

Φv

BB�����������������

Let us then write Πv = Symn(πv), a well defined irreducible admissible rep-
resentation of GLn+1(kv), and Π = Symn(π) =

∏
Symn(πv) an irreducible

admissible representation of GLn+1(A). The question of Symn functoriality
for GL2 is then whether Symn(π) is automorphic.

As a consequence of the GL2 ×GL3 → GL6 tensor product functoriality,
we have that Sym3(π) is indeed automorphic.

Theorem 8.2 ([10] Theorem 9.2). If π is a cuspidal automorphic represen-
tation of GL2(A) then Sym3(π) is an automorphic representation of GL4(A).
It is cuspidal unless π is of dihedral or tetrahedral type.
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This result is finessed from the tensor product functoriality as follows.
Begin with π, our cuspidal automorphic representation of GL2(A). Gelbart
and Jacquet had proved that Sym2(π) is an automorphic representation of
GL3(A) via the Converse Theorem for GL3 in 1978. Then by the tensor
product functoriality for GL2 ×GL3 above we have that π � Sym2(π) is an
automorphic representation of GL6(A). Moreover, we have a decomposition

π � (Sym2(π)⊗ ω−1
π ) = (Sym3(π)⊗ ω−1

π ) � π

from which we deduce that Sym3(π) is automorphic.

8.3. The exterior square lifting for GL4. From the six dimensional irre-
ducible representation of GL4(C) on the space of antisymmetric two tensors
Λ2(C4) we obtain an L-homomorphism

GL4(C) Λ2
// GL6(C)

and from it local and global lifts. If π = ⊗πv is a cuspidal automorphic repre-
sentation of GL4(C) then Λ2(πv) is an irreducible admissible representation
of GL6(kv) and Λ2(π) = ⊗′Λ2(πv) is an irreducible admissible representa-
tion of GL6(A). Henry Kim established the corresponding functoriality in
the following form.

Theorem 8.3 ([10] Theorem 9.3). Let π be a cuspidal automorphic repre-
sentation of GL4(A). Then there exists an automorphic representation Π′

of GL6(A) such that for almost all places v, Π′
v ' Λ2(πv)

Again, we use the Converse Theorem for GL6 and thereby must control
the twisted L-functions

L(s, π ⊗ τ,Λ2 ⊗ Stm)

for τ cuspidal automorphic representations of GLm(A) for 1 ≤ m ≤ 4,
where Stm is the standard representation of GLm(C). These are controlled
as in Part II, by the Langlands-Shahidi method. In that notation, we take
G = Dsc

k+4 = Spin2k+8 for k = 0, 1, 2, 3. The Dynkin diagram for G is

•

• • ___ • • • •

~~~~~~~

@@
@@

@@
@

•
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and if we remove the appropriate vertex

•

• • ___ • • × •

��������

>>
>>

>>
>>

•
we obtain a maximal parabolic subgroup P = MN whose Levi subgroup
has derived group Mder ' SLk+1×SL4. If we take the representation of M
so that σ ∼ τ ⊗ π, then this is an m = 2 situation with

L(s, σ, r1) = L(s, π ⊗ τ,Λ2 ⊗ Stk+1).

This then gives the theorem.
From this result we can deduce another symmetric power functoriality for

GL2.

Corollary 8.3.1 ([10] Corollary 9.4). If π is a cuspidal automorphic rep-
resentation of GL2(A) then Sym4(π) is an automorphic representation of
GL5(A).

To derive this, we begin with our cuspidal representation π of GL2(A).
We know that Sym3(π) is an automorphic representation of GL4(A), so
we can now form Λ2(Sym3(π)) which is an automorphic representation of
GL6(A). This is not irreducible, but decomposes as

Λ2(Sym3(π)) = (Sym4(π)⊗ ωπ) � ω3
π

from which we deduce the automorphy of Sym4(π).

8.4. Applications. The new symmetric power functorialities give us im-
proved bounds towards the Ramanujan and Selberg conjectures for GL2

over an arbitrary number field.
Let π = ⊗′πv be a unitary cuspidal representation of GL2(A). If v is a

finite place where πv is unramified and φv : W ′
kv
→ GL2(C) the arithmetic

Langlands parameter for πv, then φv is also unramified and

φv(Frobv) =
(
αv

βv

)
= tv ∈ GL2(C).

These are the Satake parameters for πv. The Ramanujan conjecture states
that

q−εv < |αv|, |βv| < qεv
for all ε > 0

Theorem 8.4 ([10] Theorem 9.6). For π a unitary cuspidal representation
of GL2(A), the Satake parameters for πv satisfy

q−1/9
v < |αv|, |βv| < q1/9v .
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The first idea is to use the automorphy of the symmetric powers. Suppose
that Sym4(π) is cuspidal. (The non-cuspidal case is in fact easier.) Then
the Satake parameters for Sym4(π) are given by

Sym4(tv) = Sym4

((
αv

βv

))
=


α4
v

α3
vβv

. . .
αvβ

3
v

β4
v

 .

Now there is a general first non-trivial bound towards Ramanujan valid
for any GLn due to Jacquet and Shalika. It says that the Satake parameters
for any unitary cuspidal representation for GLn(A) satisfy

q−1/2
v ≤ |αv,i| ≤ q1/2v .

Applying this to the Satake parameters for Sym4(π) gives

q−1/2
v ≤ |α4

v|, β4
v | ≤ q1/2v

or
q−1/8
v ≤ |αv|, βv| ≤ q1/8v .

To achieve the “1/9 bound” one has to invoke other techniques. What
Kim and Shahidi prove is that L(s, πv,Sym9) is holomorphic for Re(s) ≥ 1
and this gives the stated 1/9 bound

There is an archimedean analogue giving a 1/9 bound towards the general
Selberg conjecture for GL2.
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