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Abstract One of the main obstacles in applying converse theorems to prove new cases of functoriality
is that of stability of γ-factors for a certain class of L-functions obtained from the ‘Langlands–Shahidi’
method, where the γ-factors are defined inductively by means of ‘local coefficients’. The problem then
becomes that of stability of local coefficients upon twisting the representation by a highly ramified
character. In this paper we first establish that the inverses of certain local coefficients are, up to an
abelian γ-factor, genuine Mellin transforms of partial Bessel functions of the type we analysed in our
previous paper. The second main result is then the resulting stability of the local coefficients in this
situation, which include all the cases of interest for functoriality. Hopefully, the analysis given here will
open the door to a proof of the general stability and the equality of γ-factors obtained from different
methods through integration over certain quotient spaces whose generic fibres are closed. They do not
seem to have been studied before in any generality.
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1. Introduction

One of the main obstacles in applying converse theorems [6, 8] to prove new cases of
functoriality is that of stability of γ-factors for a certain class of L-functions obtained
from the method developed in [22–24], where the γ-factors are defined inductively by
means of ‘local coefficients’ (cf. [24]). Thus the problem becomes that of stability of local
coefficients upon twisting the representation by a highly ramified character. This paper
is the sequel to the authors’ first paper [11] which together prove a general theorem
on stability. More precisely, in this paper we establish that the inverses of certain local
coefficients are, up to an abelian γ-factor, genuine Mellin transforms of appropriate partial
Bessel functions whose asymptotic expansions were established in our first paper [11] in
the generality of every quasi-split group. This then proves stability in all the cases of
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interest in functoriality (Theorem 6.1 and Corollary 6.2). Moreover, the analysis given
here opens the door to a proof of the equality of γ-factors obtained from different methods
through integration over certain quotient spaces whose generic fibres are closed. They do
not seem to have been studied before in any generality.

To explain our result, let G be a quasi-split connected reductive algebraic group over
a p-adic field k and let K be the splitting field of G. Let B = TU be a Borel subgroup
of G over k and denote by P a self-associate maximal parabolic of G over k. Assume
P ⊃ B. Let P = MN be a Levi decomposition uniquely determined by letting T ⊂ M .
Let UM = U ∩M . There exists a dense open subset N ′ ⊂ N such that the space of orbits
UM\N ′ under the conjugation action is a variety, i.e. has a quotient structure (cf. § 4).
Let ξ be the K-rational character of M defined by ξ(m) = det(Adn(m)) for n the Lie
algebra of N . Let ∆ be the set of simple roots of the maximal split subtorus A0 of T

determined by B. Assume α is the unique simple root of A0 appearing in N and let
Ω = ∆ \ {α}. If α̃ is a root of T restricting to α, let Kα̃ be its splitting field. Finally,
let w0 = w�w

Ω
� , where w� and wΩ

� are the long elements of the Weyl groups of A0 in G

and M , respectively. Note that G being quasi-split, the Weyl group W (A0, G) of A0 in G

can be considered as the subgroup of elements w ∈ W (T, G) for which Int(w) sends A0

to itself. Given w ∈ W (A0, G), then �(w), the length of w, is the number of indivisible
(restricted) positive roots which are sent to negative ones under w. On the other hand,
if we denote the length of w as an element in W (T, G) by �̃(w), then �̃(w) is the number
of non-restricted positive roots which go to negative roots under w.

There are two main results in this paper. The first is Theorem 4.22, which expresses the
local coefficient as a genuine Mellin transform of a Bessel function of the type we analysed
in [11]. This is given under several simplifying hypotheses, including the dimension and
rank conditions dim(UM\N) = rank(ZG\Tw) = 2. As the statement is somewhat tech-
nical, we refer the reader to the end of § 4 for the precise formulation. The second main
result is the resulting stability of the local coefficients in this situation. The best way to
formulate our result is in terms of Bruhat double cosets in G(k) as we do in Theorem 6.1,
which we paraphrase here.

Theorem. Let π be an irreducible admissible generic representation of M(k) and let
Cψ(s, π) be the corresponding local coefficient (cf. equation (2.4) here). There exists
a unique Bruhat double coset B̄(k)w̄N̄(k)UM (k) of G(k) with respect to B̄ = B− and
B′ = TN̄UM which intersects N(k) in an open set; then w̄α < 0. Assume there exists
a simple root β such that w̄β < 0 but w̄(θ) > 0, where θ = ∆ \ {α, β}. Moreover,
assume dim(UM\N ′) = dim(N)− �̃(w0w̄) = 2 where �̃ denotes the length function on the
Weyl group of T in G as above. Then Cψ(s, π) is stable, i.e. if π1 and π2 are two such
representations sharing the same central character, then

Cψ(s, π1 ⊗ ν̃) = Cψ(s, π2 ⊗ ν̃),

for all sufficiently highly ramified characters ν of K×, identified as a character of M(k)
by ν̃(m) = ν(ξ(m)).

Let us explain the steps of the proofs of Theorem 4.22 and Theorem 6.1 and thereby
give a brief outline of the paper. In § 3 we reformulate the integral representation of the
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local coefficient, as in Theorem 6.2 of [26], so that it can be used to prove stability in a
number of cases of quasi-split groups. This section is written under the Assumption 3.6
necessary for the results of [26]. In § 4 we begin to restrict to the cases which are needed
for the proof of functoriality for all the groups whose connected L-groups have classical
groups as their derived groups. The main assumption which is necessary in order to
use the result of our first paper [11] is that the semisimple rank of a certain parabolic
subgroup of G defined by our data is equal to 2, i.e. rank(ZG\Tw) = 2 (notation as
in § 3). We must also assume that dim(UM\N) = 2, where UM\N is the set of orbits of
N under conjugation by UM = U ∩ M . Under these assumptions, Theorem 6.2 of [26]
(Proposition 3.10 here) reduces to a genuine Mellin transform of a Bessel function that
is attached to a maximal parabolic subgroup of M , leading to only two asymptotic
directions, infinity and zero, as analysed in [11]. This is our Theorem 4.22. We begin § 4
with a number of technical assumptions, notably equation (4.2), which have a great
simplifying effect on the calculations. Then § 5 is devoted to removing these assumptions
via a case-by-case analysis, showing that they follow from our main assumptions on the
rank of ZG\Tw and the dimension of UM\N . Finally, § 6 reformulates Theorem 4.22 in
terms of the geometry of Bruhat cells with respect to B̄ and B′ = TN̄UM . In fact, the
result can be formulated completely in terms of the unique double coset B̄w̄B′ of highest
dimensional intersection with N , yielding Theorem 6.1. Theorem 6.1 and Corollary 6.2
cover all the cases of interest in functoriality. In § 7 we illustrate our results in the
case of quasi-split unitary groups. (See also our comments on the quasi-split SO2n and
GSpin2n.)

On the other hand, there are many other cases where the Bessel function is not attached
to a maximal parabolic subgroup of M . This is in particular the case for the γ-factors
for Sym2 and Λ2 L-functions for GLn(k). In these cases the parabolic support for Bessel
functions in M is no longer maximal and here is where at present there is little inter-
pretation of the general expression obtained in Theorem 6.2 of [26], although the results
in § 3 are valid in this more general context. Understanding the geometry of UM\N ,
where the integration takes place, is the first step. One must note that it is only for a
(Zariski) dense open set N ′ ⊂ N that UM\N ′ has the structure of a quotient variety
(cf. [15]) and thus UM (k)\N ′(k) is a manifold.

Sundaravaradhan [29] has now proved Assumption 4.1 of [26] (Assumption 3.6 here)
at least for all the split groups and their self-associate maximal parabolic subgroups, as
well as some other results related to this paper (cf. Remark 6.4 below). Beside giving us
a better understanding of this problem and general stability, this clearly opens the road
to proving the equality of γ-factors and ε-factors obtained from the Langlands–Shahidi
method and those of the Rankin–Selberg method (cf. equation (6.38) of [26]).

It should finally be commented that the proofs given here are independent from any
particular model or specific Bruhat decomposition for the group and may be considered
as a coordinate free statement and proof of stability in the maximal parabolic Bessel
support cases. Moreover, the conditions of our main Theorem 4.22 depend only on the
isogeny class of the derived group of G and are thus easy to verify (cf. Corollary 6.2
and § 7).
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Since we began this project, particularly through its application in proofs of functori-
ality [9,10], there has been an increased interest in establishing the stability of γ-factors
through other methods. The most successful has been for the γ-factors for the local
‘standard’ L-functions of the classical groups that arise through the doubling method
by Rallis, Soudry and Brenner [5,19]. From the analysis of Lapid and Rallis [17] it is
known that these γ-factors agree with the ones we consider here where they overlap,
namely generic representations of quasi-split classical groups (our Corollary 6.2). For
the classical groups, the doubling method is broader, requiring neither for the groups
to be quasi-split nor the representations to be generic. In this aspect, their results are
more general than ours. On the other hand, our Theorem 4.22, which expresses the local
coefficients as the Mellin transform of certain Bessel functions, is within the broader
context of all γ-factors arising from the Langlands–Shahidi method associated to a max-
imal parabolic subgroup, and covers other groups whose derived groups have the same
isogeny classes as the classical ones. Moreover, the basis of our Theorem 4.22, namely
Theorem 6.2 of [26] and our results in § 3 here, are valid in the context of all γ-factors
arising from the Langlands–Shahidi method, such as the symmetric and exterior square
mentioned above. While we are not in a position to establish stability for these more
general γ-factors yet, we believe our analysis will be the beginning of this endeavour.

2. Preliminaries

Throughout this paper G will denote a quasi-split connected reductive algebraic group
over a non-archimedean local field k of characteristic zero. We use O to denote its ring
of integers and let P be its maximal ideal. As in [11], which this paper is a sequel to, we
let Γ = Gal(k̄/k) and if K is the splitting Galois extension of G we set ΓK = Gal(K/k).
Any unexplained notation will be referred to either [11] or [26].

It is by now standard (cf. [1,24,26]) that local coefficients, whose stability is the goal
of this paper to establish, depend only on the derived group GD of G and, as explained
in [26], one may replace G by a possibly larger group with the same derived group for
which H1(k, ZG) = 1, where ZG is the centre of G. Consequently, throughout this paper
we shall assume H1(k, ZG) = 1.

Let B = TU be a Borel subgroup of G defined over k with T a maximal torus and
U its unipotent radical. Let P be a maximal parabolic subgroup and let P = MN be a
Levi decomposition with N ⊂ U . We shall make the decomposition unique by demanding
T ⊂ M . Let UM = U ∩ M .

Next, let A0 be the maximal split subtorus of T . We then have Φ̃ = Φ(T, G) and
Φ = Φ(A0, G), the sets of non-restricted and restricted roots of T in G. Using U we then
have the sets of positive and simple roots Φ̃+ and ∆̃ of Φ̃, respectively as in [11]. The
Galois group Γ then acts on Φ̃ and ∆̃, decomposing them to a finite number of Γ -orbits.
They will be the same as ΓK-orbits. We finally have Φ+ and ∆ for similar objects in Φ.

Let (xα̃)α̃∈∆̃ be a k-splitting of G as defined in [11], i.e. a collection of Kα̃-isomorphisms
from Ga to corresponding root subgroups Uα̃ satisfying conditions (i) and (ii) in § 1.1
of [11]. Here Kα̃ is the splitting field of α̃. Given a non-trivial character ψ of k, we then
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define a generic character of U(k) by

ψ(u) = ψ

( ∑
α̃∈∆̃

uα̃

)
, (2.1)

where the simple root subgroups generating U(K) are now

{xα̃(uα̃) | uα̃ ∈ Kα̃}α̃∈∆̃.

We recall that to get U(k) we require σ(uα̃) = uσ(α̃) for all σ ∈ ΓK . This is equivalent to
xα̃ being a k-splitting. One can, of course, use the notation and the definition of splitting
given in [26], but this paper being a sequel to [11], we have chosen to follow [11]. The
notions are equivalent. We finally recall that our fixed splitting also determines a natural
choice of Weyl group representatives as explained in [23,24]. For any Weyl group W that
arises, we will let w̃ denote elements of the abstract group W and let w ∈ G(k) denote
this choice of representative of w̃. They all lie in the derived group of G.

The parabolic subgroup P being maximal, we use α to denote the unique simple root
whose root subgroup sits in N . As in [26], throughout this paper we shall assume P is
self-associate. This means that N̄ = w�Nw−1

� = N−, where N− is the opposite subgroup
to N . Equivalently w̃�(α) = −α and w̃�(Ω) = −Ω if Ω = ∆\{α}. Here w� is the
corresponding representative for the longest Weyl group element w̃� in W (A0, G).

We use w̃0 to denote the element w̃0 = w̃�w̃
Ω
� , where w̃Ω

� is the longest Weyl group
element in W (A0, M). Then w̃0(Ω) = Ω, P being self-associate, while w̃0(α) < 0.

Let X(M)k be the group of k-rational characters of M . Referring to [24] we have

a = Hom(X(M)k, R)

and a∗ = X(M)k ⊗Z R as well as a∗
C = a∗ ⊗R C. We also recall HP (k) = HP : M(k) → a

defined by
q〈χ,HP (m)〉 = |χ(m)|k

for all χ ∈ X(M)k.
Throughout this paper π denotes an irreducible admissible ψ-generic representation of

M(k). Given ν ∈ a∗
C, let

I(ν, π) = IndG(k)
M(k)N(k)(π ⊗ q〈ν,Hp(·)〉 ⊗ 1).

We denote the space for this representation by V (ν, π).
Since P is maximal, we shall use sα̂ to denote an arbitrary element of a∗

C modulo that
of the complex dual of the real Lie algebra of the split centre of G, where s ∈ C and
α̂ = 〈ρP , α〉−1ρP as in [26] (denoted α̃ there). Here ρP is half the sum of the roots in N .
We then set I(s, π) for I(sα̂, π).

We now recall the intertwining operator A(s, π) : I(s, π) → I(−s, w0(π)), as defined in
equation (2.6) of [26], for example, given by

A(s, π)f(g) =
∫

N(k)
f(w−1

0 ng) dn (2.2)
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for g ∈ G(k), where f ∈ V (s, π), since P is self-associate. If λψ(s, π) is the canonical
Whittaker functional for I(s, π) defined by equation (2.7) of [26], then the local coefficient
Cψ(s, π) is defined by (equation (2.8) of [26])

λψ(s, π) = Cψ(s, π)λψ(−s, w0(π))A(s, π). (2.3)

Then, rewriting equation (2.9) of [26],

Cψ(s, π) = λG(ψ, w0)−1
m∏

i=1

γ(is, π, r̃i, ψ̄), (2.4)

where γ(s, π, ri, ψ), 1 � i � m, is the γ-function attached to π, ri and ψ. Here ri is
the ith irreducible component of the adjoint action of LM , the L-group of M , on the
Lie algebra Ln of LN , the L-group of N . We refer to [24] and particularly Theorem 3.5
of [24] for the ordering of ri, inductive definition of γ(s, π, ri, ψ), the constant λG(ψ, w0)
and equation (2.9) of [26].

The aim of this paper is to prove the stability of γ(s, π, ri, ψ) under highly rami-
fied twists in a number of important cases. It follows from the inductive definition of
γ(s, π, ri, ψ) that one only needs to prove this for the corresponding Cψ(s, π).

3. An integral representation for local coefficients

In this section we shall reformulate Theorem 6.2 of [26] so that it can be used to prove
stability in a number of cases of quasi-split groups. It will cover all the cases which
are needed for the proof of functoriality for all the groups whose connected L-groups
have classical groups as their derived groups. This includes all the quasi-split classical
groups [9,10,16] and general spin groups [1].

As in [26], we start with the important Bruhat decomposition

w−1
0 n = mn′n̄ (3.1)

valid for almost all n ∈ N(k), where m ∈ M(k), n′ ∈ N(k) and n̄ ∈ N̄(k). Decomposition
(3.1) is crucial as we will need to integrate over orbits of elements of N satisfying (3.1)
under conjugation by UM . We will repeatedly refer to this.

Given n satisfying (3.1) we write

m = u1twu2 (3.2)

with t ∈ T (k), ui ∈ UM (k), i = 1, 2, and w the representative for an appropriate Weyl
group element in W (A0, M) giving the Bruhat decomposition of m in M(k). Moreover,
assume that wu2w

−1 ∈ U−
M ; this determines u1 and u2 uniquely.

(3.3) If m = u1twu2 corresponds to n ∈ N(k) satisfying (3.1), then for any m0 ∈ M(k)

m1 = w0(m0)u1twu2m
−1
0

corresponds to n1 = m0nm−1
0 ∈ N(k), where w0(m0) = w−1

0 m0w0.
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For our calculations we may suppose that w is such that its Bruhat double coset

CM (w) = UM (k)T (k)wUM (k)

intersects the set of all possible m whose n satisfy (3.1) in a subset of highest possible
dimension. In fact, then by (3.3), w will have highest length among those Bruhat cells
which have a non-empty intersection with the subset of all m whose n satisfy (3.1).
Observe that a priori, there may be several w satisfying this property, but we will rule
this out now.

We start with some general consequences of the stratification of G by the Bruhat
decomposition. Let G be a connected reductive group. Let H be a closed connected sub-
group of G. Fix a Borel subgroup B of G. Write B = TU . Let B′ = TU ′ be another Borel
subgroup sharing T as a maximal torus. Given w ∈ W = W (T, G), let C(w) = BwB′ be
the corresponding Bruhat double coset with respect to B and B′. Then G =

∐
w∈W C(w)

will be the corresponding Bruhat decomposition. This then defines a stratification
H =

∐
w∈W H(w) of H by locally closed subspaces, where H(w) = H ∩ C(w).

Let w̄ ∈ W be an element such that H(w̄) is open in H. Since H is irreducible and
closed H(w̄) = H, where H(w̄) is the Zariski closure of H(w̄). In particular, if H(w̄1) is
another open strata of H, then w̄1 = w̄.

Moreover, since

C(w̄) = C(w̄)
∐ ( ∐

w∈S(w̄)
w �=w̄

C(w)
)

one gets

H(w̄)
∐ ( ∐

w∈S(w̄)
w �=w̄

H(w)
)

= H ∩ C(w̄) ⊃ H ∩ C(w̄).

Here S(w̄) (Aw̄ in Borel’s notation [3] and Xw̄ in Springer’s [28]) is a subset of W con-
taining w̄ for which �(w) < �(w̄) for w = w̄ as specified in § 1.4 of [11] or § 8.5.4 of [28].
On the other hand,

H ∩ C(w̄) = H(w̄) =
∐
w

H(w) = H.

Thus

H = H(w̄)
∐ ( ∐

w∈S(w̄)
w �=w̄

H(w)
)

. (3.4)

We collect this as the following result.

Proposition 3.1. There exists a unique Bruhat double coset C(w̄) such that H(w̄) =
H ∩ C(w̄) is open in H. Every other Bruhat double coset intersecting H is of dimension
less than that of C(w̄). In other words, if H(w) 	= φ and w 	= w̄, then �̃(w) < �̃(w̄), where
�̃ denotes the length function on W = W (T, G).
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We will apply this in the cases that H = N and H = U . More precisely, assume n and
m satisfy (3.1) and (3.2). Then

w0u
−1
1 w−1

0 n = w0tw
−1
0 (w0wu2w

−1w−1
0 )(w0wn′w−1w−1

0 )w0wn̄.

Set u′ = w0u
−1
1 w−1

0 and n1 = u′n(u′)−1 ∈ N . Then n1 ∈ B̄w0wN̄UM as well. Note
that n determines n1 uniquely. Conversely, given n1 ∈ B̄w0wN̄UM one can write n1 =
b̄w0wn̄u uniquely by imposing that wuw−1 ∈ UM . Then n = un1u

−1 will satisfy (3.1)
and therefore the map n 
→ n1 is a bijection on the set of all n satisfying (3.1).

Let C̄(w̄) = B̄w̄N̄UM be the Bruhat double coset intersecting N in an open set. Then
by the disjointness of the Bruhat decomposition, we have w̄ = w0w. This then gives the
following result.

Proposition 3.2. Let C̄(w̄) be the unique Bruhat double coset intersecting N in an
open set. Then

w̄ = w0w, (3.2.1)

where w is as in (3.2). In particular, ˜̄w ∈ W (A0, G) and B̄(k)w̄N̄(k)UM (k) ⊂ G(k).

To use Theorem 6.2 of [26] to establish stability, we must analyse the integral appearing
there, which is reproduced in (3.10.1) here. For this integral to be non-vanishing, which
is expected for generic values of s, the m that appear in the integration must support
a Bessel function in the sense of [11], at least for a set whose complement has measure
zero. On the other hand, with m and n related by (3.1) and (3.2), Proposition 3.2 says
that there is a unique w with this property. In the split case, as noted before, Rajan
Sundaravaradhan has shown that the w in Proposition 3.2 supports a Bessel function
as needed [29]. In the cases of interest to us, this will follow from the rank assumption
we impose in § 4. For the remainder of this section we will simply assume that the w of
Proposition 3.2 supports a Bessel function.

Suppose now that w supports a Bessel function. For this we appeal to discussions
in § 2.2 of [11]. We will redefine the appropriate subsets as follows. Let

Tw = {t ∈ T | wµ̃(t) = 1 for all µ̃ ∈ ∆̃ for which wµ > 0, where µ = µ̃ | A0}, (3.5)

where as usual we embed the (relative) Weyl group W of A0 in the Weyl group W̃ of
T (relative to either G or M) by realizing W as the subgroup of all those w ∈ W̃ which
fix the annihilator of A0 in the character module X(T ) of T (in G or M respectively),
i.e. those w such that Int(w) sends A0 to itself.

Let θ = θw = {µ ∈ ∆ | wµ > 0} ⊂ ∆. Then

Tw = {t ∈ T | wµ̃(t) = 1 for all µ ∈ θ with µ = µ̃ | A0}. (3.6)

For w to support a Bessel function on M(k), we must have w = wΩ
� wθ

� (cf. § 2.2 of [11]),
where wΩ

� and wθ
� are the long Weyl group elements of M and Mθ, the Levi subgroup

of M containing T and spanned by θ, respectively, and Ω = ∆\{α}. Observe that then
Tw is precisely the centre of the Levi component Mw(θ) of the parabolic subgroup PM

w(θ)
associated to PM

θ by w, containing T . When w(θ) = θ, i.e. PM
θ is self-associate, then Tw
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is precisely the centre of Mθ. (Here the superscript M in PM
θ signifies that PM

θ ⊂ M .)
We use Pθ = PM

θ N for the corresponding parabolic in G.
For m = u1twu2 to be in the support of a Bessel function, for all µ̃ ∈ ∆̃ we must have

ψ

( ∏
σ∈AKµ̃/k

xσ(µ̃)(σ(y))
)

= ψ(TrKµ̃/k(y)) = ψ(TrKµ̃/k(wµ̃(t)y)) (3.7)

for y ∈ Kµ̃. The set AKµ̃/k is the set of all the k-injections of Kµ̃ into k̄. This then implies
that t ∈ Tw(k) since the image of TrKµ̃/k is not compact.

We collect this information as follows.

Proposition 3.3. For m = u1twu2 ∈ M(k) to support a Bessel function, one must have
w = wΩ

� wθ
� , where θ is the subset of all µ ∈ ∆ for which wµ > 0, and t must belong

to Tw(k).

Our intention is to use Theorem 6.2 of [26] to prove the stability of local coefficients
Cψ(s, π) defined by (2.3) and thus local γ-factors (cf. [22–24]) under highly ramified
twists in the generality of every quasi-split group. To use Theorem 6.2 of [26] we need
to assume P is self-associate which we will assume from this point on. All the cases of
interest fit into this situation.

As explained earlier we may and will also assume that H1(k, ZG) = 1. We can then
use Lemma 5.2 of [26], but not in the form there.

Lemma 3.4. Let α̃ be a root restricting to α. Then there exists a bijection α∨ from k̄×

onto ZG(k̄)\ZM (k̄) such that
(σα̃)(α∨(t)) = σ(t) (3.4.1)

for all t ∈ k̄× and σ ∈ Γ . The map α∨ depends on the choice of α̃. Suppose H1(k, ZG) = 1
so that (ZG\ZM )(k) = ZG(k)\ZM (k). Then α∨ descends to a bijection from K×

α̃ onto
ZG(k)\ZM (k) satisfying (3.4.1) for all t ∈ K×

α̃ and σ ∈ Γ .

Proof. The proof is as in Lemma 5.2 of [26], except that we require

(σα̃)(α∨(t)) = σ(t),

for t ∈ k̄× and all σ ∈ Γ for a fixed α̃ ∈ ∆̃ restricting to α, while γ̃(α∨(t)) = 1 for all
other non-restricted roots γ̃ which do not restrict to α. This guarantees that α∨(t) ∈
ZG(k̄)\ZM (k̄). The embedding from ZG(k̄)\ZM (k̄) into Tad(k̄) is obtained by applying
α̃, giving an injection of ZG(k̄)\ZM (k̄) into k̄×.

If H1(k, ZG) = 1, we then conclude as in Lemma 5.2 of [26], that α∨(t) ∈ ZG(k)\ZM (k)
for all t in K×

α̃ . We thus get an injection from K×
α̃ into ZG(k)\ZM (k) ⊂ Tad(k). The

embedding from ZG(k)\ZM (k) into Tad(k) is again obtained by applying α̃, giving an
injection of ZG(k)\ZM (k) into K×

α̃ . Thus α∨ defines a bijection onto ZG(k)\ZM (k) sat-
isfying (3.4.1). �

Remark. Changing σ to στ , τ ∈ Γ , in (3.4.1), which will change α̃ to τα̃ in its Γ -
orbit, now replaces K×

α̃ with K×
τα̃ and α∨ with α∨ · τ−1 from τ(K×

α̃ ) = K×
τα̃ again into

ZG(k)\ZM (k). Thus changing α̃ to τα̃ will change α∨ to α∨ ·τ−1, but their images remain
the same.
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We also need the following lemma. Its proof came out of discussions with Harder and
Labesse and, although quite natural, does not seem to have appeared anywhere before.
Kottwitz seems to be aware of it. His proof, which is similar to ours, has not yet appeared
in any form.

Lemma 3.5. Let G be a connected reductive group over k. Let M be a Levi subgroup
in G. Let ZM and ZG be centres of M and G, respectively. If H1(k, ZG) = 1, then
H1(k, ZM ) = 1.

Proof. Consider the exact sequence

1 → ZG → ZM → ZG\ZM → 1.

It is enough to show that H1(k, ZG\ZM ) = 1. We therefore need to show that if G is
adjoint, then H1(k, ZM ) = 1 for the centre of every Levi subgroup. By induction we may
assume P is maximal and let α be the unique simple root whose root group lies in N . Let
X(ZM ) and X(T ) be the character modules of ZM and T , M ⊃ T , respectively. Then
X(ZM ) ⊂ X(T ) and X(ZM ) is the Z-span of all those roots α̃ ∈ X(T ) which restrict to α.
Let Kα̃ be the splitting field of α̃; then it is one of ZM . Moreover, Γ = Gal(k̄/k) permutes
the roots α̃ among themselves in one orbit and therefore is an induced Γ -module from a
Γα̃-module X̃, where Γα̃ = Gal(k̄/Kα̃). Choose a split torus Z̃M , defined and split over
Kα̃, such that X̃ = X(Z̃M ). Then by [2, § 5.1], ZM = ResKα̃/k Z̃M . By Shapiro’s lemma,

H1(k, ZM ) = H1(Kα̃, Z̃M ) = 1,

completing the lemma. �

Remark. The converse is not true as G = SL(2) gives a counterexample.

To proceed we recall a number of important subgroups inside UM (k) = U(k) ∩ M(k).
Given n in N(k) satisfying (3.1), i.e. w−1

0 n = mn′n̄, we let UM,n(k) be the centralizer of
n in UM (k), i.e.

UM,n(k) = {u ∈ UM (k) | unu−1 = n}.

Observe that UM,n(k) = UM,n̄(k), the later being defined the same way. Next, let

U t
M,m(k) = {u ∈ UM (k) | w0(u)mu−1 = m}

be the twisted centralizer of m in UM (k), where w0(u) = w−1
0 uw0. Note that if UM,n and

U t
M,m are the corresponding algebraic groups, then the notation is justified since k-points

of these groups are precisely UM,n(k) and U t
M,m(k), respectively. Clearly, UM,n(k) ⊂

U t
M,m(k). Finally, let

U ′
M,m(k) = {u ∈ UM (k) | mum−1 ∈ UM (k) and ψ(mum−1) = ψ(u)}.

Moreover, suppose u ∈ U t
M,m(k); then w0(u) = mum−1 and therefore

ψ(mum−1) = ψ(w0(u)) = ψ(u)
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by compatibility of ψ and w0 which is valid by our choices (cf. Proposition 9.3.5 of [28]).
Thus u ∈ U ′

M,m(k). We therefore have

UM,n(k) ⊆ U t
M,m(k) ⊆ U ′

M,m(k).

We finally recall the following (Assumption 4.1 of [26]).

Assumption 3.6. Assume n ∈ N(k) satisfies (3.1). Then except for n in a set of measure
zero with respect to dn, UM,n(k) = U ′

M,m(k).

Remark. Since we completed the results in this paper, a full proof of Assumption 3.6
has been announced by Sundaravaradhan [29]. Granting this, the results that follow, as
well as those in [26], are now unconditional.

Now assume m = u1twu2 as in (3.2) with w supporting a Bessel function and t ∈ Tw

(cf. Proposition 3.3). In this case U ′
M,n(k) has a simple description. (We do not need

Assumption 3.6 for this.)
As in [11], we let U+

M,w be the subgroup of UM generated by simple roots which are
sent to positive ones by w. Then UM = U+

M,wU−
M,w and U+

M,w normalizes U−
M,w.

Lemma 3.7. Let m = u1twu2, t ∈ Tw(k), u2 ∈ U−
M,w(k). Then

U+
M,w(k) = u2U

′
M,m(k)u−1

2 .

This in particular justifies the notation of k-points U ′
M,m(k) for U ′

M,m.

Proof. If u ∈ U ′
M,m(k), then u2uu−1

2 must belong to U+
M,w(k). In fact, mum−1 ∈ UM (k)

implies wu2uu−1
2 w−1 ∈ UM (k) or u2uu−1

2 ∈ U+
M,w(k). Thus u2U

′
M,m(k)u−1

2 ⊂ U+
M,w(k).

Now suppose u ∈ U+
M,w(k). Then we need to show u−1

2 uu2 ∈ U ′
M,m(k). Consider

mu−1
2 uu2m

−1 = u1twu2u
−1
2 uu2u

−1
2 (tw)−1u−1

1

= u1twu(tw)−1u−1
1 ∈ UM (k).

Thus
ψ(mu−1

2 uu2m
−1) = ψ(w(w−1twuw−1t−1w)w−1) = ψ(u)

using compatibility and the fact that w−1tw centralizes U+
M,w(k) since w supports the

corresponding Bessel function. This completes the lemma. �

Corollary 3.8. Under Assumption 3.6

UM,n(k) = u−1
2 U+

M,w(k)u2

for m = u1twu2 corresponding to an n satisfying (3.1).

Remark 3.9. It is not clear whether one can even prove U ′
M,m(k) = U+

M,m(k) for m = tw

in general, that is, not satisfying (3.1). In fact, suppose u ∈ U+
M,m(k) and w0(u)twu−1 =

tw. Then w0(u)w−1(u−1)tw = tw which requires w0wu−1w−1w−1
0 = u. If w̃� is the

longest element of the Weyl group of A0 in G, then we must have w̃�w̃
θ
� (α′) = α′ for
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every α′ > 0 for which w̃�w̃
θ
� (α′) > 0. Although this is true for rank two parabolic

subgroups in classical groups, it fails for the Mθ in G, where G = E8 and the derived
group of Mθ is of type E6. Thus, if we consider the pair (E8, M) with MD = E7 and
assume that an n appears for which m = u1twu2 with (Mθ)D = E6, then U t

M,m(k)
is strictly smaller than U ′

M,m(k) and thus the assumption fails. One hopes that such
elements in the context of this pair constitute a set of measure zero with respect to dn.
This is clearly the case for split groups by [29].

We finally need to state a version of Theorem 6.2 of [26] that can be used to prove
stability for arbitrary quasi-split groups.

We again let Z0
M denote the image of α∨, but this time, as we agreed in Lemma 3.4,

K×
α̃

α∨

� Z0
M = ZG(k)\ZM (k).

We will also use ψKα̃ to denote ψk ◦ TrKα̃/k and as in (6.16) of [26], we write

uα =
∑
α̃

uα̃ ∈ k

(denoted by xα in [26]). Then

ψKα̃(uα̃) = ψk · TrKα̃/k(uα̃) = ψk(uα).

Next, as in equations (6.33)–(6.36) of [26], we have that for z = α∨(t)

q〈sα̂,HM (z)〉 = |α̂(α∨(t))|sk = |α̂(α∨(t))|s/[Kα̃:k]
Kα̃

,

where to avoid confusion we use α̂ to denote 〈ρP , α〉−1ρP (previously denoted by α̃

in [24,26]). Again, since
t 
→ |α̂(α∨(t))|Kα̃

is an unramified character of K×
α̃ , we can define 〈α̂, α∨〉 ∈ C such that

|α̂(α∨(t))|Kα̃ = |t|〈α̂,α∨〉
Kα̃

and therefore
q〈sα̂,HM (z)〉 = |t|〈α̂,α∨〉s/[Kα̃:k]

Kα̃
.

Assume now that π is an irreducible admissible ψ-generic representation of M (cf. [24,
26]). Let ωπ be its central character. Then ωπ(w0ω

−1
π ) is a character of ZG(k)\ZM (k)

which we will consider as one of K×
α̃ via the isomorphism α∨ : K×

α̃ � Z0
M (cf. Remark 4.11

later). We then use

γKα̃(2〈α̂, α∨〉s/[Kα̃ : k], ωπ(w0ω
−1
π ), ψKα̃)

to denote the corresponding γ-function.
The second part of Theorem 6.2 of [26] which is of interest to us can be now reformu-

lated as follows.



Stability of γ-factors for quasi-split groups 13

Proposition 3.10. Assume H1(k, ZG) = 1 and that Assumption 3.6 (Assumption 4.1
of [26]) is valid, i.e. UM,n(k) = U ′

M,m(k), for almost all n satisfying (3.1). Moreover,
suppose ωπ(w0ω

−1
π ) is ramified as a character of K×

α̃ . Then

Cψ(s, π)−1 = γKα̃
(2〈α̂, α∨〉s/[Kα̃ : k], ωπ(w0ω

−1
π ), ψKα̃

)

×
∫

Z0
M UM (k)\N(k)

jṽ,N̄0
(m)ω−1

πs
(uα̃)(w0ωπs)(uα̃)q〈sα̂+ρ,HM (m)〉 dn, (3.10.1)

where jṽ,N̄0
(m) = jṽ,N̄0

(m, y0) with ordKα̃(y0) = −d − f , where d and f are conductors
of ψKα̃ and ω−1

π (w0ωπ), respectively. We recall that jṽ,N̄0
(m, y0) is defined by equa-

tions (6.24) and (6.21) of [26], i.e.

jṽ,N̄0
(m) = jṽ,N̄0

(m, y0) =
∫

UM,n(k)\UM (k)
Wṽ(mu−1)ϕN̄0

(zun̄u−1z−1)ψ(u) du, (3.10.2)

with z = α∨(y−1
0 uα̃), Wṽ(e) = 1. Moreover, if α̃ is the non-restricted simple root used to

identify Z0
M with K×

α̃ , then uα̃ is the coordinate of w−1
0 n̄w0 at the root α̃ by means of

our fixed splitting {xα̃}. The subgroup N̄0 is a sufficiently large open compact subgroup
of N̄ and ϕN̄0

is its characteristic function.

Proof. Exactly as in Theorem 6.2 of [26]. �

Remark. This reformulation is necessary if we are to use this result to prove stability
for non-split quasi-split groups. It is this form of the Mellin transform to which the
asymptotic expansion proved in [11] can be applied.

To be able to use asymptotics of partial Bessel functions proved in [11], we need to
show that the domain of integration in the definition of jṽ,N̄0

(m) is independent of m.
This was proved in [10,16] by looking at special matrix presentations or root coordinates.
Here we will prove the following general lemma.

Lemma 3.11. The domain of integration of

jṽ,N̄0
(m) =

∫
UM,n(k)\UM (k)

Wṽ(mu−1)ϕN̄0
(uzn̄z−1u−1)ψ(u) du (3.11.1)

is independent of m, and in fact depends only on N̄0 and y0.

Proof. Recall that z = α∨(y−1
0 uα̃). Since ordKα̃(y0) is fixed, we need to consider those

u for which uα∨(uα̃)n̄α∨(uα̃)−1u−1 belongs to a fixed open compact subgroup of N̄0,
defined only by y0 and N̄0. Write

n̄ =
∏
µ̃

w0xµ̃(uµ̃)w−1
0 n̄1, (3.11.2)

where the product runs over all non-restricted roots µ̃ restricting to α and n̄1 belongs to
the derived group of N̄ . Then

α∨(uα̃)w0xµ̃(uµ̃)w−1
0 α∨(uα̃)−1 = w0xµ̃(µ̃(w0(α∨(uα̃)))uµ̃)w−1

0 . (3.11.3)
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Now, by equation (6.28) of [26] and equation (3.4.1) here

µ̃(w0(α∨(uα̃))) = µ̃(α∨(uα̃)−1) = µ̃(α∨(u−1
α̃ ))

= (σjα̃)(α∨(u−1
α̃ )) = σj(u−1

α̃ )

= u−1
σj α̃ = u−1

µ̃ (3.11.4)

for some σj ∈ AKα̃/k. By 8.1.12 (2) of [28], there exists a non-zero constant dµ̃, depending
on µ̃ and our splitting giving the Weyl group representatives, such that (3.11.3) equals

w0xµ̃(1)w−1
0 = xµ̃(dµ̃). (3.11.5)

We thus conclude that the coordinate of

α∨(uα̃)n̄α∨(uα̃)−1

at each root subgroup attached to w0(µ̃) is equal to dµ̃ and is therefore independent of
n (and m).

Next, we need to consider

uα∨(uα̃)n̄α∨(uα̃)−1u−1 = uxw0(µ̃)(dµ̃)u−1

for u ∈ UM,n(k)\UM (k). This means to consider

xγ̃′(uγ̃′)xw0(µ̃)(dµ̃)xγ̃′(uγ̃′)−1 (3.11.6)

as γ̃′ runs over non-restricted roots whose root subgroups are in UM,n\UM . Consequently,
by Proposition 8.2.3 of [28], (3.11.6) equals

xw0(µ̃)(dµ̃)
∏

xiw0(µ̃)+jγ̃′(Cw0(µ̃),γ̃′,i,jd
i
µ̃uj

γ̃′), (3.11.7)

where the product runs over all positive integers i and j for which iw0(µ̃)+ jγ̃′ is a root.
Here Cw0(µ̃),γ̃′,i,j is the corresponding structure constant. Since UM,n = UM,n̄, which
implies that γ̃′ and w0(µ̃) do not commute, one concludes that at least one term in
the product over i and j in (3.11.7) must appear. Consequently, the compactness of N̄0

implies a bound on |uγ̃′ |, giving a domain of integration for (3.11.1) depending only on N̄0

and y0. We finally point out that the choice γ̃′ among the non-restricted roots restricting
to the same root is irrelevant since xγ̃′ lies in a compact set if and only if σ(xγ̃′) does for
all σ ∈ Γ . The lemma is now complete. �

4. The integral representation as a Mellin transform

In this section we shall show that, under certain restrictive assumptions, the integral
representation given in equation (3.10.1) can be written as a Mellin transform of a Bessel
function [11]. The stability of γ-factors then follows as in [1,7,10,16]. This will cover
all the cases treated so far, as well as that of any quasi-split group whose L-group has a
classical derived group [1,9,10,16,27].
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The cases for which stability is proved here for their corresponding γ-factors all satisfy
a dimension condition for UM\N and in fact are among those where UM\N has the
smallest non-trivial dimension. (While the geometry of UM\N is quite fascinating, in
this paper we restrict ourselves to this special case.) Let us now be more precise.

By Rosenlicht’s generic quotient theorem (cf. [15,20,21]), N contains a Zariski open
dense subset N ′ such that the quotient UM\N ′, the equivalence classes of elements of N ′

under conjugation by UM , exists. Then the orbits of UM in N ′ are all equidimensional
(cf. § 6 of [3]) and of maximal possible dimension (Theorem 19.5 and Corollary 19.6
of [15]). Moreover, since UM is connected so is the closed subgroup UM,n for each n ∈ N .
On the other hand, since k is perfect, H1(k, UM,n) = 1 and therefore UM -conjugation
and UM (k)-conjugation are the same. (That H1 is trivial when k is perfect follows from
the fact that the consecutive quotients in a composition series for a unipotent group are
isomorphic over k to k̄.) Therefore,

(UM\N)(k) = UM (k)\N(k)

as well as

(UM\N ′)(k) = UM (k)\N ′(k).

Here (UM\N)(k) represents the conjugacy classes which have a k-rational representative,
i.e. which intersect N(k), while (UM\N ′)(k) are the k-points of the quotient variety
UM\N ′. The k-points of the quotient variety UM\N ′ will differ from (UM\N)(k) only
on a set of measure zero.

Proposition 4.1. Under Assumption 3.6, dim(UM\N ′) = �̃(w0) − �̃(w), where w =
w−1

0 w̄ with w̄ the unique Weyl group element for which C̄(w̄) intersects N in an open
subset. Conversely, if dim(UM\N ′) = �̃(w0) − �̃(w), then Assumption 3.6 is valid.

Proof. The generic stabilizer of elements n ∈ N(k) is by definition the centralizer
UM,n(k). Under Assumption 3.6, Corollary 3.8 gives that UM,n(k) � U+

M,w(k). Note that
these are all affine algebraic groups. Hence the dimension of the UM orbit through a
generic n is dim(UM ) − dim(U+

M,w) = dim(U−
M,w). But dim(U−

M,w) = �̃(w). Hence by
Corollary 19.6 of [15] we have that dim(UM\N ′) = dim(N)−�̃(w). Since dim(N) = �̃(w0)
we obtain dim(UM\N ′) = �̃(w0) − �̃(w) as desired. The converse is a consequence of the
inclusion UM,n ⊂ U ′

M,n and the connectedness of these unipotent groups. �

We shall now assume that dim(UM\N ′) = 2, that is, �̃(w0) − �̃(w) = 2. Equivalently,
the quotient manifold UM (k)\N ′(k) will be of dimension 2. For simplicity, we shall write
dim(UM\N) = 2 with the understanding that only UM\N ′ has a quotient structure.

To choose a representative for almost all orbits in UM\N we proceed as follows. Let
M = M(k̄) act on n(k̄), the Lie algebra of N = N(k̄) by adjoint action and let V1 ⊂ n(k̄)
be the subspace obtained by roots restricting to α̃, when considered as roots of the split
centre of M = M(k̄). Here α̃ is the non-restricted root restricting to α we fixed earlier.
Then the action on V1 is irreducible. Let h̃ be the highest weight of this representation.
It will be a non-restricted highest root, restricting to a positive root h. We shall call h
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(respectively h̃) the highest root (respectively a highest non-restricted root) restricting
to α (respectively α̃). (Note the two different meanings of restrictions.) Since α is simple,
α and h will be distinct roots, α̃ and h̃ being the lowest and highest weights respectively
in V1, as long as the rank is larger than one, which we can assume.

We fix a lexicographic order on the positive roots Φ̃+ and therefore one-parameter
subgroups of U . More precisely, we will choose an order with initial point α̃ and we order
the roots in V1 from α̃ to h̃, which then induces one from α to h.

For γ ∈ Φ+, let Φ̃γ be the set of non-restricted roots restricting to γ. If we fix one
γ̃ ∈ Φ̃γ then for uγ ∈ Kγ̃ we define

xγ(uγ) =
∏

µ̃∈Φ̃γ

xµ̃(uµ̃),

where uσ(γ̃) = σ(uγ̃) for all σ ∈ Gal(Kγ̃/k) and where the product is taken with respect
to our fixed lexicographic order on Φ̃+. When γ is a simple root whose associated rank
one subgroup Gγ is isomorphic to ResKγ̃/k SL2 this notation is consistent with that
of [11, § 1.1].

We start with the following lemma.

Lemma 4.2. Every u ∈ UM (k) commutes with xh(uh).

Proof. We shall use the fact that h + γ is not a root for any γ whose root group lies in
UM . Clearly, no h + jγ, j > 1, can be a root since h + γ is not one (cf. Proposition 9,
§ 3, Chapter VI of [4] for non-reduced root systems). Similarly, no ih+ γ, i > 1, can be a
root. We now consider the possibility of roots of type i and j � 2. If G is not split, then
2(h + γ) will not be a root since h + γ is not. Other possibilities cannot be non-split.
Now, assume G is split. The only possible roots where every simple root appears in their
expressions with multiplicity 2 or higher are the highest roots in G2, F4 and E8. It then
follows by inspection that there are no positive roots h and γ such that ih+jγ, i, j � 2, is
one of the these highest roots. The lemma now follows from Proposition 8.2.3 of [28]. �

Let n ∈ N(k) be such that w−1
0 n = mn′n̄ and m = u1twu2. If w supports a Bessel

function, then by Proposition 3.3 w must be of the form w = wΩ
� wθ

� , where Ω = ∆\{α}
and t ∈ Tw.

In this paper we will be only interested in the case where the rank of ZG\Tw is equal
to 2 for the w in Proposition 4.1. In fact, even under the assumption that dim(UM\N) =
2, this semisimple rank could be bigger than 2. One only needs to consider the Levi
subgroup M = GL2 × GL2 inside G = GL4. Then rank(ZG\Tw) = 3, but dim(UM\N) =
2 (Bruhat decomposition). Note that still �̃(w0) − �̃(w) = 2 and thus dim(UM\N ′) =
�̃(w0) − �̃(w) = 2 does not necessarily imply rank(ZG\Tw) = 2. It should be pointed out
that in order to apply the asymptotic formulae proved in [7,11] for Bessel functions, as to
conclude stability for corresponding γ-factors, we need to assume that rank(ZG\Tw) =
2. It is a fascinating problem to prove a more explicit integral representation for our
γ-factors, as those we obtain here in the rank 2 case, for ranks higher than 2.

From this point on we shall assume that the w of Proposition 4.1 satisfies the rank
condition rank(ZG\Tw) = 2. Then θ = ∆\{α, β} for some β ∈ ∆, β 	= α. Consequently,
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the parabolic subgroup of M = MΩ whose standard Levi subgroup is generated by θ

is maximal, thus putting us in the situation considered in [7, 11]. In particular, this
assumption implies that w supports a Bessel function.

We shall now make the following assumptions.

(4.1) The parabolic subgroup whose standard Levi subgroup is generated by θ is self-
associate in M = MΩ, or equivalently wΩ

� (θ) = −θ and wΩ
� (β) = −β.

(4.2) wθ
� (α) = α.

We expect that if dim(UM\N) = 2, then (4.2) is automatically satisfied. We, in fact,
verify this in a case by case analysis later in § 5. It should be pointed out that in general
(4.2) is false. One only needs to consider

Ω = {α1, α3, α4, α5, α6} ⊃ {α1, α3, α5, α6} = θ

for E6 (Bourbaki’s notation [4]).

Remark 4.3. Under the assumption that rank(ZG\Tw) = 2, so that ∆ = {α}∪{β}∪ θ,
then one has

�̃(w0) = |{η̃ > 0 | η̃|AM
= mα̃|AM

for some m ∈ Z
+}|

and

�̃(w) = |{γ̃ > 0 | γ̃|AMθ
= mβ̃|AMθ

for some m ∈ Z
+}|.

So in the case of non-exceptional groups G, by which we mean that the derived group
GD is a quasi-split form of a split group of type A, B, C or D, with α̃ = α1 and β̃ = α2

in Bourbaki’s numbering, one can compute from this that �̃(w0) − �̃(w) = 2. Hence in
these cases, rank(ZG\Tw) = 2 actually implies that dim(UM\N ′) = 2. For exceptional
groups this in no longer the case.

Lemma 4.4.

(a) Assume (4.1) is valid. Then w̃2
0 = w̃2 = 1.

(b) Assume both (4.1) and (4.2) are valid. Then −w̃0α̃ = h̃, where h̃ is the highest
weight in V1 as in the proof of Lemma 4.2. Moreover, w̃α̃ = h̃.

Proof. (a) follows from the fact that w̃�|〈Ω〉 = w̃Ω
� and w̃Ω

� |〈θ〉 = w̃θ
� since Ω and θ are

self-associate in ∆ and Ω, respectively. Here 〈·〉 means the Z-span.

(b) We first show that w̃0α̃ = −h̃. In fact, write w̃0α̃ = −α̃ − ν̃, where ν̃ restricts to an
element in 〈Ω〉, the Z-span of roots in Ω. Now, given γ̃ restricting to an element in Ω, the
adjoint action of xw̃0γ̃(1) will send the weight space w̃0α̃ to w̃0α̃ + w̃0γ̃ = −α̃ − ν̃ + w̃0γ̃.
This requires ν̃ − w̃0γ̃ to be a non-negative Z-linear combination of roots restricting to
roots in Ω for all γ̃ as above. Thus w̃0α̃ = −h̃.

Now consider w̃0w̃α̃ = w̃�w̃
θ
� α̃ = −α̃, using (4.2). This implies w̃α̃ = −w̃−1

0 α̃ =
−w̃0α̃ = h̃, completing the lemma. �
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Lemma 4.5. Suppose wθ
� (α) = α. Then α + γ is not a root for any root γ whose root

subgroup is contained in U+
M,w, i.e. for any root γ whose root group lies in UM and for

which w(γ) > 0.

Proof. Let W = W (A0, G). Fix a W -invariant inner product 〈· , ·〉 on X(A0)Q (cf. [4]).
Then

〈α, γ〉 = 〈w̃0w̃(α), w̃0w̃(γ)〉, (4.5.1)

where we insist to use Weyl group elements and not their representatives in the group
fixed earlier. Then, using w̃0 = w̃�w̃

Ω
� , w̃ = w̃Ω

� w̃θ
� and (w̃Ω

� )2 = 1, we conclude that
w̃0w̃ = w̃�w̃

θ
� . Observe that now

w̃0w̃(α) = w̃�(w̃θ
� (α)) = w̃�(α).

Since Ω is self-associate w̃�(α) = −α. On the other hand, w̃0w̃(γ) = η > 0. Thus (4.5.1)
implies

〈α, γ〉 = −〈α, η〉.

If 〈α, γ〉 > 0, then α − γ will be a root which is not possible since α and γ are both
positive. (This is valid whether the root system is reduced or not, cf. [4].) On the other
hand 〈α, γ〉 < 0 implies α − η is a root which is again absurd. Thus 〈α, γ〉 = 0. Now,
suppose α + γ is a root. Then

sα(α + γ) = γ − α

must be a root, a contradiction. This completes the lemma. �

Corollary 4.6. wθ
� (α) = α if and only if 〈α, γ〉 = 0 for all roots γ whose root groups are

inside UM and w(γ) > 0, where w = wΩ
� wθ

� . Here 〈· , ·〉 is a W -invariant inner product
on X(A0)Q.

Proof. For the converse write w̃θ
� = w̃η1 · · · w̃η�

in the shortest way, where the ηi are
(simple) roots in θ. Then

w̃θ
� (α) = w̃η1 · · · w̃η�−1(α − 2〈α, η�〉/〈η�, η�〉η�) = α

since 〈α, ηi〉 = 0 for ηi ∈ θ. �

Here we need not assume dim(UM\N) = 2 or rank(ZG\Tw) = 2 and the result is valid
for any θ ⊂ Ω ⊂ ∆ as long as Ω is self-associate in ∆.

Lemma 4.7. Assume rank(ZG\Tw) = 2 and (4.1) and (4.2) are valid. Then for n of
the form n = xα(uα)xh(uh), with uα ∈ K×

α̃ and uh ∈ K×
h̃

, satisfying (3.1) we have that
Assumption 3.6 holds, i.e. UM,n = U ′

M,m. More precisely UM,n = U+
M,w. In particular, u2

normalizes both U ′
M,m and U+

M,w.

Proof. By Lemma 4.2 we know that UM (k) centralizes xh(uh). Hence we need only
consider the centralizer of xα(uα) with uα ∈ K×

α̃ . Write w−1
0 n = mn′n̄ with m = u1twu2.

We first show that every u ∈ U+
M,w commutes with xα(uα) under the assumptions in

the statement of the lemma. It is enough to consider u = xγ(uγ) with xγ(uγ) ∈ U+
M,w.
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We already showed that α + γ is not a root. To apply Proposition 8.2.3 of [28], we need
to show no iα + jγ, i, j � 1, are roots. But this can be argued exactly as in Lemma 4.2.
Hence U+

M,w ⊂ UM,n.
On the other hand, we always have UM,n ⊂ U ′

M,m. By Lemma 3.7 we know that
U ′

M,m = u−1
2 U+

M,wu2, so that

dim(U+
M,w) � dim(UM,n) � dim(U ′

M,m) = dim(U+
M,w).

Since these are all connected affine algebraic groups, this implies that UM,n = U ′
M,m,

i.e. Assumption 3.6 holds.
The fact that u2 normalizes both U ′

M,m and U+
M,w then follows from Lemma 3.7 and

Corollary 3.8. �

Proposition 4.8. Under Assumption 3.6, assume in addition that dim(UM\N) = 2.
Then the set

R = {xα(uα)xh(uh) | uα ∈ K×
α̃ , uh ∈ K×

h̃
},

is a set of representatives for UM (k)\N(k), outside a set of measure zero. (Since iα̃+ jh̃,
i, j ∈ Z

+, may still be a root, the order of the product needs to be fixed as it is.) If we
also allow uh = 0, then the set

R′ = {xα(uα)xh(uh) | uα ∈ K×
α̃ , uh ∈ Kh̃}

will be a set of representatives for UM (k)\N ′(k) when N ′ is the largest open subset of
N giving a quotient structure, again outside a set of measure zero.

We note that one can replace K×
α̃ and K×

h̃
with their conjugates under AKα̃/k and

AKh̃/k, respectively, so that the representatives are independent of the choice of basis.

Proof. We have fixed a lexicographic order on the positive roots, and therefore one-
parameter subgroups of U , such that the roots in V1 are ordered from α̃ to h̃. This then
induces an order from α to h. We must first show that no two different n = xα(uα)xh(uh)
are conjugate by elements of UM (k). Since UM (k) centralizes xh(uh), we only need to
consider conjugation for xα(uα).

Write u ∈ UM (k) as a product of xη(uη) according to our fixed order for roots η generat-
ing UM using Proposition 8.2.1 of [28]. We now appeal to Proposition 8.2.3 of [28], applied
to non-restricted roots, to conjugate xα(uα) by each of xη(uη) to express uxα(uα)u−1 as
a product of xν(uν) as ν runs over roots in N between α and h, or rather roots between
α̃ and h̃. Since the decomposition of u is unique with no repetition (Proposition 8.2.1
of [28]), there will be no two terms belonging to the same root ν between α and h coming
from consecutive conjugation by factors in u, as dictated by Proposition 8.2.3 of [28].
Consequently, no cancellation will happen and the number of factors in n = xα(uα)xh(uh)
between α and h will increase upon conjugation by a u 	∈ UM,n(k). It thus cannot equal
another such representative. Hence the elements in the set R represent distinct UM (k)
orbits in N(k). Let us identify R with the set of orbits it represents.

Consider now the subgroup Ũα,h of N generated by xα(uα) and xh(uh) with uα, uh ∈ k̄.
This is a closed connected affine subgroup of N . Unless xα(uα) and xh(uh) commute,
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Ũα,h will be of dimension greater than two. (This already happens when G = Sp2n and
M = GL1 × Sp2n−2.) Moreover, an arbitrary element u ∈ Ũα,h(k̄) can be written as

u = xα(uα)xh(uh)
∏

xγ(uγ) (4.8.1)

with uα, uh, uγ ∈ k̄, where γ runs over all restricted roots which are restrictions of non-
restricted roots γ̃ of the form γ̃ = iα̃ + jh̃ with i, j ∈ Z, i, j > 0. The product is taken
with respect to our fixed lexicographic order. Setting uγ = 0 for all γ occurring in (4.8.1),
we see that the set

Uα,h = {xα(uα)xh(uh) | uα, uh ∈ k̄}

is Zariski closed in Ũα,h. Consequently, the subset U ′
α,h ⊂ Uα,h defined by the conditions

uα 	= 0 and uh 	= 0 is locally closed in the affine variety Ũα,h and is therefore a con-
structible set. Note that the previous argument is still valid over k̄ and therefore the
elements in U ′

α,h represent distinct orbits under UM conjugation.
By Lemma 4.7 the generic stabilizer of an element n ∈ U ′

α,h is U+
M,w. Hence, as in

Proposition 4.1, the dimension of an UM orbit through a generic element of U ′
α,h is

dim(UM ) − dim(U+
M,w) = �̃(w). Since UM = U+

M,wU−
M,w we can identify U+

M,w\UM �
U−

M,w. Consider the map
U ′

α,h × U−
M,w ↪→ N

sending (xα(uα)xh(uh), u−) 
→ (u−)−1xα(uα)xh(uh)u−. Since U ′
α,h × U−

M,w is a con-
structible set, by Chevalley’s theorem (cf. [18, Chapter 2, § 6]) we know that the closure
of its image is a closed subvariety of N and its image contains a Zariski open subset of
its closure. Since dim(Uα,h × U−

M,w) = 2 + �̃(w) = dim(N) and the map is injective, we
see that the image contains a Zariski open subset of N . Hence Im(U ′

α,h × U−
M,w) ∩ N ′

is Zariski open in N ′. Composing with the projection map to UM\N ′, and using that
R = U ′

α,h(k), we obtain the first statement of the proposition.
For the second statement, note that if we let U ′′

α,h be the larger open subset of Uα,h

defined only by uα 	= 0, then still the stabilizers in UM are the same for all elements of
U ′′

α,h and the above discussion applies to this set as well. Since R′ = U ′′
α,h(k) the second

statement of the proposition follows. �

We finally have the following lemma.

Lemma 4.9. Assume dim(UM\N) = 2, rank(ZG\Tw) = 2 and that (4.1) and (4.2) are
valid. Then the simple root β appears in the expression of h in terms of simple roots.

Proof. Since the subgroup generated by

{xβ(uβ) | uβ ∈ K×
β̃

}

is not contained in UM,n = U+
M,w, conjugation by xβ̃(1) must send a weight space α̃ + η̃

in V1 under the adjoint action to another weight space α̃ + η̃ + β̃. This must then be of
the form h̃ −

∑
hiγ̃i, for some non-restricted simple roots γ̃i in UM and integers ki � 0,

h̃ being the highest weight of this action which completes the lemma. �
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We shall now proceed to compute the integral in (3.10.1) as a genuine Mellin transform
as in [1, 10, 16] to which techniques of [7, 11] can be applied to prove the stability of
γ-factors. We start with the following lemma.

Lemma 4.10. Fix β̃ restricting to β such that it appears in the expression of the highest
root h̃ in V1. Then there exist embeddings α∨ and β∨ from k̄× into ZG(k̄)\ZM (k̄) and
ZM (k̄)\Tw(k̄), respectively, such that

σα̃(α∨(q)) = σ(q), (4.10.1)

σα̃(β∨(r)) = σ(r−1) (4.10.2)

and

σβ̃(β∨(r)) = σ(r), (4.10.3)

for all q, r ∈ k̄× and σ ∈ Γ . Assume H1(k, ZG) = 1. Moreover, assume that the split-
ting fields Kα̃ and Kβ̃ of α̃ and β̃ are equal. Then there exist embeddings α∨ and β∨

from K×
α̃ = K×

β̃
into ZG(k)\ZM (k) and ZM (k)\Tw(k), respectively, such that (4.10.1),

(4.10.2), and (4.10.3) hold for all q, r ∈ K×
α̃ and σ ∈ Γ . Moreover,

α∨ : K×
α̃

∼= Z0
M = ZG(k)\ZM (k), (4.10.4)

ZM (k) ∼= K×
α̃ × ZG(k), (4.10.5)

with α∨(K×
α̃ ) ∩ ZG(k) = {1} while α∨(K×

α̃ ) ⊂ (ZG ∩ GD)(k̄)\(ZM ∩ GD)(k̄);

Tw(k) ∼= K×
α̃ × K×

β̃
× ZG(k) ∼= K×

β̃
× ZM (k), (4.10.6)

with β∨(K×
β̃

) ∩ ZM (k) = {1} while β∨(K×
β̃

) ⊂ (ZM ∩ MD)(k̄)\(Tw ∩ MD)(k̄), and

(α∨, β∨) : K×
α̃ × K×

β̃
∼= ZG(k)\Tw(k) (4.10.7)

as well as
K×

α̃ × K×
β̃

∼= (ZG(k)\ZM (k)) × (ZM (k)\Tw(k)), (4.10.8)

where
ZM (k)\Tw(k) ∼= (ZG(k)\ZM (k))\(ZG(k)\Tw(k)). (4.10.9)

Finally, we note that the Weyl group W (A0, G) acts only on K×
α̃ and K×

α̃ × K×
β̃

in
(4.10.5) and (4.10.6), respectively, and leaves ZG(k) fixed pointwise.

Proof. The map α∨ is obtained exactly as in Lemma 3.4. For β∨, besides (4.10.2) and
(4.10.3), we require again that γ̃(β∨(r)) = 1 for all non-restricted roots γ̃ restricting to
roots in θ; otherwise the proof proceeds as for Lemma 3.4.

For assertions (4.10.4)–(4.10.9), we appeal to Lemma 3.5 to conclude that H1(k, ZM ) =
H1(k, Tw) = 1. Consequently, we get, just as before, a split exact sequence of k-points

1 → ZG(k) → Tw(k) → ZG(k)\Tw(k) → 1,
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with analogous exact sequences for ZG(k), ZM (k) and ZG(k)\ZM (k) as well as for ZM (k),
Tw(k) and ZM (k)\Tw(k).

The map (α∨, β∨)(q, r) = α∨(q)β∨(r) defines a bijection from K×
α̃ × K×

β̃
onto

ZG(k)\Tw(k), this quotient being two dimensional. Using the previous splittings, we get
Tw(k) ∼= K×

α̃ × K×
β̃

× ZG(k). The facts that α∨(K×
α̃ ) ∩ ZG(k) = β∨(K×

β̃
) ∩ ZM (k) = {1}

are consequences vanishing of roots in ∆ and Ω on ZG(k) and ZM (k), respectively.
Finally, to show α∨(K×

α̃ ) ⊂ (ZG ∩ GD)(k̄)\(ZM ∩ GD)(k̄) we only need to observe that

Z0
M = ZG(k)\ZM (k) = (ZG\ZM )(k)

= (ZG ∩ GD\ZM ∩ GD)(k)

⊂ (ZG ∩ GD)(k̄)\(ZM ∩ GD)(k̄),

similarly for β∨(K×
β̃

) ⊂ (ZM ∩ MD)(k̄)\(Tw ∩ MD)(k̄). �

Remark 4.11. Writing ZM (k) ∼= K×
α̃ × ZG(k), we can write the central character ωπ of

π as ωπ = η ⊗ ωπ,0, via
ωπ((α∨(q), z)) = η(q)ωπ,0(z), (4.3)

realizing K×
α̃ in ZM (k) through α∨.

We shall now add the equality
Kα̃ = Kβ̃ (4.4)

as in Lemma 4.10 to the list of our assumptions.
To write out integral (3.10.1) as a genuine Mellin transform, we need to replace the

domain of integration Z0
MUM (k)\N(k) by integration over a torus (see [6,10]). By Propo-

sition 4.8, for purposes of integration we can replace UM (k)\N(k) by the set R since this
differs from UM (k)\N(k) by a set of measure zero. To proceed we will choose a base
point n0 ∈ R and consider the space of conjugates of n0 under Tw(k̄), or more precisely,
under elements of the form b = α∨(q)β∨(r) ∈ Tw(k̄). As we will see, this space will be
two dimensional and since dim(UM\N) = 2 this will then cover UM (k)\N(k) up to a set
of measure zero, Hence we will replace the domain of integration Z0

MUM (k)\N(k) by the
domain (Z0

M\Tw(k̄) · n0) ∩ R.
Without loss of generality, we may assume our base point n0 ∈ N satisfies (3.1), since

this is an open condition, which we emphasize here as

w−1
0 n0 = m0n

′
0n̄0. (4.5)

We may assume that we have m0 of the form m0 = wt0u2. As we shall see, there is no
loss of generality in assuming t0 ∈ ZG(k) ∩ GD(k) which is a finite set.

For each n ∈ N satisfying (3.1), i.e. w−1
0 n = mn′n̄, let uα̃ ∈ Kα̃ be the coordinate such

that xα̃(uα̃) appears in the decomposition of w−1
0 n̄w0 as in Proposition 8.2.1 of [28].

We may assume uα̃ ∈ K×
α̃ . (This is one of the ingredients going into equation (3.10.1) of

Proposition 3.10.) We then use uα̃,0 to denote the corresponding coordinate appearing
in the decomposition of w−1

0 n̄0w0.
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Writing n = bn0b
−1, (4.5) implies

w−1
0 n = w0(b)m0b

−1 · bn′
0b

−1 · bn̄0b
−1, (4.6)

where w0(b) = w−1
0 bw0. Thus, under such conjugation, m0 will change to m =

w0(b)m0b
−1. Moreover,

w−1
0 bn̄0b

−1w0 = w0(b)[w−1
0 n̄0w0]w0(b)−1 (4.7)

implies that uα̃,0 will change to α̃(w0(b))uα̃,0 under this conjugation.

Lemma 4.12. Suppose b = α∨(q)β∨(r). Let nβ̃ = nβ be the multiplicity of β̃ in
−w0α̃ = h̃, which is independent of the choice of α̃. Then

α̃(w0(b)) = q−1r1−nβ (4.12.1)

and therefore, under conjugation by b, uα̃,0 will transform to q−1r1−nβ uα̃,0.

Proof. We need to calculate α̃(w0(α∨(q))w0(β∨(r))). First,

α̃(w0(α∨(q))) = w̃0α̃(α∨(q)) = w̃�w̃
Ω
� α̃(α∨(q)). (4.12.2)

Write w̃Ω
� α̃ = α̃ + ν̃, with ν̃ restricting to an element in the Z-span 〈Ω〉 of roots in Ω.

Then w̃�(α̃ + ν̃) = −α̃ − µ̃ with again µ̃ restricting to an element in 〈Ω〉. Now

(−α̃ − µ̃)(α∨(q)) = (−α̃)(α∨(q)) = q−1

since all the roots in Ω act trivially on Z0
M .

For α̃(w0(β∨(r))) we note that w̃0α̃ = −α̃ − µ̃ and thus

(w̃0α̃)(β∨(r)) = (−α̃ − µ̃)(β∨(r)) = rµ̃(β∨(r))−1

= r · r−nβ = r1−nβ ,

completing the lemma, except that we need to observe that nβ̃ = nβ is independent
of the choice of α̃ (and thus β̃). For that, note that σw̃0 = w̃0 for all σ ∈ Γ . Thus
w̃0(σα̃) = σw̃0(σα̃) = w̃0α̃. Consequently, β̃ and σβ̃ appear in −w̃0α̃ and −w̃0(σα̃),
respectively, with the same multiplicities. �

The next ingredient we need to compute is m = w0(b)m0b
−1. We may assume m0 =

wt0u2,0. Then

m = w0(b)m0b
−1 = w · (w0w)(b)t0b−1 · bu2,0b

−1

= w · (w0w)(b)b−1t0 · bu2,0b
−1

= wtu2 (4.8)

with t = (w0w)(b)b−1t0 and u2 = bu2,0b
−1. We shall prove the following lemma.
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Lemma 4.13. Under assumptions (4.1), (4.2) and (4.4), for b = α∨(q)β∨(r) we have

w0w(b) = b−1 (4.13.1)

and hence t = b−2t0.

Proof. Clearly, (4.1) implies that w̃�(β) = −β. In fact, since M is self-associate in G,
w̃� | 〈Ω〉 = w̃Ω

� which implies w̃�(β) = −β by self-associativity of θ in Ω. Here 〈Ω〉 is the
Z-span of Ω. We shall now compute the effect of roots on w0w(b). We get

α̃(w̃0w̃(b)) = α̃(w̃�w̃
θ
� (b)) = w̃�w̃

θ
� α̃(b)

= w̃�α̃(b) = (−α̃)(α∨(q)β∨(r))

= q−1r

using w̃θ
� α̃ = α̃ implied by (4.2).

Next we have
β̃(w0w(b)) = w̃�w̃

�
θβ̃(b) = w̃�(w̃�

θβ̃)(b).

Write w̃�
θβ̃ = γ̃. Then γ̃ restricts to a root in the Z-span 〈Ω〉 of Ω. Write γ̃ = β̃ + µ̃,

where µ̃ is in the Z-span 〈θ〉 of θ. Then

w̃�(γ̃) = w̃�(β̃) + w̃�(µ̃) = −β̃ + w̃�(µ̃).

Note that w̃�(µ̃) is now a Z-linear combination of simple roots restricting to roots in
θ. Consequently,

β̃(w0w(b)) = (−β̃)(α∨(q)β∨(r)) = r−1.

All other simple roots act trivially. We therefore can write w0w(b) = α∨(q1)β∨(r1).
Computing α̃ and β̃ on w0w(b), one gets r1 = r−1 and q1 = q−1. This completes the
lemma. �

Next, we need to compute jṽ,N̄0
(m) for m = wtu2 = wb−2t0u2. We may and will assume

that u2 ∈ U−
M,w. Recall that n0 = xα(uα,0)xh(uh,0), uα ∈ K×

α̃ , uh ∈ K×
h̃

satisfying (4.5).
Then

jṽ,N̄0
(m) =

∫
UM,n(k)\UM (k)

Wṽ(wtu2u
−1)ϕN̄0

(uzn̄z−1u−1)ψ(u) du. (4.9)

We need the following lemma.

Lemma 4.14. Under assumptions (4.1) and (4.2), u2 belongs to the derived group of UM .
In particular ψ(uu−1

2 ) = ψ(u). Moreover, u2 centralizes U+
M,w(k) = UM,n(k) = U ′

M,m(k).

Proof. Since wθ
� (α) = α, Corollary 4.6 implies that 〈α, γ〉 = 0 for all γ ∈ θ. If every root

in θ is perpendicular to β, then ∆ will be reducible with the relevant part being the rank
two system generated by α and β since P is maximal. They can be handled case by case
if need be. They will not be of interest to us. Thus we may assume there exists a simple
root δ ∈ θ such that 〈β, δ〉 	= 0. Since β and δ are both simple this implies that β + δ is
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a root. Let u = xδ(uδ) ∈ U+
M,w(k) = UM,n(k), uδ 	= 0 (cf. Lemma 3.7 and Lemma 4.7).

Since by Lemma 4.7, u2 normalizes U+
M,w(k), u−1

2 uu2 ∈ U+
M,w(k) and consequently

u−1
2 uu2u

−1 ∈ U+
M,w(k).

But uu2u
−1 ∈ U−

M,w(k) since U+
M,w(k) normalizes U−

M,w(k), from which we conclude that
u−1

2 uu2u
−1 = 1 or uu2 = u2u. This is in fact true for any u in U+

M,w(k) and thus u2

centralizes U+
M,w(k).

Since u2 ∈ U−
M,w, we can write u2 = u′

1u
′
2, where u′

1 =
∏

β̃ xβ̃(uβ̃) with the product
over roots restricting to the simple root β, and u′

2 in the derived group of UM . Since
β + δ is a root, Propositions 8.2.1 and 8.2.3 of [28] imply that if u and u2 commute, then
at least uβ̃ = 0 for all β̃. Thus u2 = u′

2, completing the lemma. �

Using Lemma 4.14, we can write (4.9) as

jṽ,N̄0
(wtu2) =

∫
UM,n(k)\UM (k)

Wṽ(wtu−1)ϕN̄0
(uzu2n̄u−1

2 z−1u−1)ψ(u) du (4.10)

or

jṽ,N̄0
(wtu2) =

∫
UM,n(k)\UM (k)

Wṽ(wtu−1)ϕN̄0
(uzn̄′z−1u−1)ψ(u) du, (4.11)

where n̄′ = u2n̄u−1
2 . We set

j′
ṽ,N̄0

(wt) =
∫

UM,n(k)\UM (k)
Wṽ(wtu−1)ϕN̄0

(uzn̄′z−1u−1)ψ(u) du. (4.12)

We observe that since the xw0(µ̃)-coordinates of n̄ and n̄′, as µ̃ runs over roots restricting
to α, are the same, (3.11.3) will be the same for n̄ and n̄′ and thus Lemma 3.11 applies.
Consequently, j′

ṽ,N̄0
(wt) becomes another partial Bessel function, replacing jṽ,N̄0

(m).

Remark 4.15. This is a generalization of the case of symplectic groups (as well as
unitary ones [16]) discussed by means of equation (7.20)–(7.25) in pp. 2115, 2116 of [26].
In view of Lemma 3.11 one need not know the precise coordinates of n̄′ = u2n̄u−1

2 ,
Hn̄H−1 in the notation of [26], given in the case studied there.

Now consider
jṽ,N̄0

(m) = j′
ṽ,N̄0

(wα∨(q−2)β∨(r−2)t0). (4.13)

We in fact have the following lemma.

Lemma 4.16. With assumptions the same as in Lemma 4.13 one has

jṽ,N̄0
(m) = j′

ṽ,N̄0
(wβ∨(r−2)t0)η(q−2),

where jṽ,N̄0
and η are defined by (3.10.2) and (4.3), respectively.

Proof. Using (4.13) we need to determine wα∨(q−2)w−1. Since α∨(q−2) is in ZM (k)
and since w is in the Weyl group of T in M , wα∨(q−2)w−1 = α∨(q−2). The lemma now
follows by Remark 4.11. �



26 J. W. Cogdell, I. I. Piatetski-Shapiro and F. Shahidi

Corollary 4.17. One has

jṽ,N̄0
(m)ω−1

π (uα̃)(w0ωπ)(uα̃) = j′
ṽ,N̄0

(wβ∨(r−2)t0)ηnβ−1(r2)η(u−2
α̃,0),

where uα̃,0 is the corresponding uα̃ for n0.

Proof. We only need to calculate

ω−1
π (uα̃)w0ωπ(uα̃)

which is easily checked, using Lemma 4.12, to equal

ω−2
π (α∨(q−1r1−nβ uα̃,0)) = η(q2)ηnβ−1(r2)η(u−2

α̃,0),

proving the corollary. �

We now prove the following lemma.

Lemma 4.18. We have

j′
ṽ,N̄0

(wβ∨(r−2)t0) = j′
ṽ,N̄0

(β∨(r2)wt0)η2−nβ (r2). (4.18.1)

Proof. We need to calculate

β̃(wβ∨(r−2)w−1) = w−1β̃(β∨(r−2)).

Note that

w̃−1β̃ = (w̃θ
� )−1(w̃Ω

� )−1β̃

= (w̃θ
� )−1(−β̃) = −(w̃θ

� )−1(β̃) = −(β̃ + ν̃1),

where ν̃1 restricts to a non-negative Z-linear combination of roots in θ. Thus

β̃(wβ∨(r−2)w−1) = (−β̃)(β∨(r−2)) = r2.

Moreover, by Lemma 4.4,

α̃(wβ∨(r−2)w−1) = w̃α̃(β∨(r−2)) = h̃(β∨(r−2))

= α̃(β∨(r−2))β̃(β∨(r−2))nβ = r2r−2nβ .

In view of the last statement in Lemma 4.10 this implies that

wβ∨(r−2)w−1 = α∨(r4−2nβ )β∨(r2), (4.18.2)

from which we conclude

j′
ṽ,N̄0

(wβ∨(r−2)t0) = j′
ṽ,N̄0

(β∨(r2)wt0)η2−nβ (r2),

completing the lemma. �
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Corollary 4.19. With assumptions as before one has

jṽ,N̄0
(m)ω−1

π (uα̃)w0ωπ(uα̃) = j′
ṽ,N̄0

(β∨(r2)wt0)η(r2)η(u−2
α̃,0).

Proof. Combine Corollary 4.17 and Lemma 4.18. �

We now need to calculate the modulus characters in (3.10.1) of Proposition 3.10.

Lemma 4.20. With assumptions as before, let m = wα∨(q−2)β∨(r−2)t0u2 with t0 taken
in ZG(k) ∩ GD(k). Let nα be the multiplicity of α in 2ρ, sum of the positive roots in N .
Then

(a) q−〈sα̂,HM (α∨(uα̃))〉+〈sα̂,HM (w−1
0 α∨(uα̃)w0)〉+〈sα̂,HM (m)〉

= |r2|nαs/2〈ρ,α〉|u2
α̃,0|−nαs/2〈ρ,α〉, (4.20.1)

where m0 = wt0u2,0, w
−1
0 n0 = m0n

′
0n̄0 is a fixed representative with uα̃,0 the

corresponding uα̃ in n̄0;

(b) suppose 〈β̃, α̃〉 = −1; then (4.20.1) is equal to |r2|s|uα̃,0|−2s.

Proof. (a) Recall that (cf. [26])

ωπs = ωπ ⊗ q〈sα̂,HM (·)〉.

By Lemma 4.12

uα̃ = q−1r1−nβ uα̃,0. (4.20.2)

Using (4.20.2) and (4.18.2), and the fact that HM (KUM (k)) = 1, we calculate the left-
hand side of (4.20.1) as q�, where

� = 〈sα̂, HM (α∨(r4−2nβ )α∨(q−2))〉 − 2〈sα̂, HM (α∨(q−1)α∨(r1−nβ )α∨(uα̃,0))〉
= 〈sα̂, HM (α∨(r4−2nβ )α∨(q−2)α∨(q2)α∨(r2nβ−2)α∨(u−2

α̃,0))〉
= 〈sα̂, HM (α∨(r2u−2

α̃,0))〉 (4.20.3)

from which (4.20.1) is equal to

|2ρ(α∨(r2u−2
α̃,0))|s/2〈ρ,α〉. (4.20.4)

Here, we have applied Lemma 4.10 to conclude that 〈sα̂, HM (β∨(r2))〉 = 0 since β∨(r2) ∈
(ZM ∩ MD)(k̄)\(Tw ∩ MD)(k̄). We note that 〈sα̂, HM (t0)〉 = 0 since t0 is central.

Write
2ρ =

∑
α̃|α

nα̃α̃ +
∑

γ̃|γ∈Ω

nγ̃ γ̃,

where the first sum runs over all the non-restricted α̃ restricting to α and the second over
non-restricted γ̃ restricting to roots in Ω. It then follows from Lemma 4.10 that (4.20.4)
is equal to

|r2|nαs/2〈ρ,α〉|u2
α̃,0|−nαs/2〈ρ,α〉, (4.20.5)

as desired.
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(b) Suppose 〈β̃, α̃〉 = −1. Let

t̃ = α∨(t)β∨(t)Hα̃(t)−1,

where Hα̃ is the standard coroot at α̃. Then

α̃(t̃) = α̃(α∨(t))α̃(β∨(t))α̃(Hα̃(t)−1)

= t · t · t−2 = 1.

Similarly,
β̃(t̃) = t−1t−〈β̃,α̃〉 = 1.

Since wθ(α) = α, 〈γ̃, α̃〉 = 0 for all γ̃ restricting to γ ∈ θ and γ̃(α∨(t)β∨(t−1)) = 1, and
thus γ̃(t̃) = 1. Consequently, α∨(t)β∨(t−1)Hα̃(t)−1 ∈ ZG. Thus

2ρ(α∨(t)β∨(t)) = 2ρ(Hα(t)).

�

Now by Lemma 4.10, β∨(K×
β̃

) ∩ ZM (k) = {1} and β∨(K×
β̃

) sits inside a quotient of
the derived group of M(k̄) on which ρ, being a character of M(k̄), acts trivially. Thus
2ρ(α∨(t)) = 2ρ(Hα(t)) and consequently (4.20.5) equals

|2ρ(α∨(r2u−2
α̃,0))|s/2〈ρ,α〉 = |2ρ(Hα(r2u−2

α̃,0))|s/〈2ρ,α〉

= |r2u−2
α̃,0|s,

as desired.

Remark 4.21. In all the cases studied in [1,9,10,16] we have 〈β̃, α̃〉 = −1 and therefore
case (b) is always valid.

Finally, we need to compute the invariant measure

q〈ρ,HM (m)〉 dn, (4.14)

for m = wtu2 = α∨(q−2)wβ∨(r−2)t0u2. Again as before by (4.18.2) and the discussion
below (4.20.4)

q〈ρ,HM (m)〉 dn = q〈ρ,HM (α∨(r4−2nβ )α∨(q−2))〉 dn. (4.15)

As before, (4.15) is equal to

|2ρ(α∨(r4−2nβ q−2))|1/2 dn = |r4−2nβ q−2|nα/2 dn. (4.16)

Using conjugation by b = α∨(q)β∨(r) as before and the fact that h̃ = −w0α̃, equa-
tions (4.10.1) and (4.10.2) imply that our representative can now be written as

xα(qr−1uα̃,0)xh(qrnβ−1uh̃,0). (4.17)
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To integrate over Z0
MUM (k)\N(k), we may assume qr−1 = 1 or q = r. Our representa-

tive (4.17) will then reduce to

xα(uα̃,0)xh(rnβ uh̃,0). (4.18)

The measure dn is then the additive measure on the variable rnβ uh̃,0, i.e.

dn = |uh̃,0| |r
nβ | d×(rnβ ).

We can now write (4.16) as

|uh̃,0| |r
2−2nβ |nα/2|rnβ | d×(rnβ ) = |uh̃,0| |r

nα+nβ−nαnβ | d×(rnβ ). (4.19)

To continue, we make our final hypothesis

nβ = 2. (4.20)

Then (4.19) equals
|r2|1−(nα/2) d×(r2).

We now gather everything together, using all the lemmas and corollaries proved in this
section, as well as assumptions (4.1), (4.2), (4.4) and (4.20), to conclude that the integral
in (3.10.1) can be written as

η(uα̃,0)−2|uα̃,0|−2s|uh̃,0|
∫

r2∈K×
α̃

j′
ṽ,N̄0

(β∨(r2)wt0)η(r2)|r2|nαs/〈2ρ,α〉|r2|−(nα/2)+1 d×(r2),

(4.21)
since Kh̃ = Kα̃ by Lemma 4.4 (b). The function j′ is defined in (4.12).

The integration is over r2 ∈ K×
α̃ . In fact, as we recall from the statement of Lemma 4.12,

qrnβ−1 must lie in K×
α̃ as uα̃,0 already is. Setting nβ = 2 by (4.20) and q = r, we conclude

that we can let r ∈ k̄ freely change so long as r2 ∈ K×
α̃ . Now, changing r2 to r, we can

state the main result of this paper as follows.

Theorem 4.22. Assume H1(k, ZG) = 1, dim(UM\N) = rank(ZG\Tw) = 2, and that
Assumption 3.6 as well as assumptions (4.1), (4.2), (4.4) and (4.20) are all valid. More-
over, suppose ωπ(w0ω

−1
π ) is ramified as a character of K×

α̃ .

(a) One has

Cψ(s, π)−1 = η(uα̃,0)−2|uα̃,0|−2s|uh̃,0|γKα̃(2〈α̂, α∨〉s/[Kα̃ : k], ωπ(w0ω
−1
π ), ψKα̃)

×
∫

r∈K×
α̃

j′
ṽ,N̄0

(β∨(r)wt0)η(r)|r|(nαs/〈2ρ,α〉)−(nα/2)+1 d×r. (4.22.1)

The element n0 satisfying (4.5) is so normalized that t0 ∈ ZG(k) ∩ GD(k), where m0 =
wt0u2,0. The character η of K×

α̃ is defined by (4.3). Here nα is the multiplicity of α in 2ρ

and the partial Bessel function j′
ṽ,N̄0

is defined by (4.12). We observe that uα̃,0 and uh̃,0
are structural and independent of π.
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(b) Suppose 〈β̃, α̃〉 = −1, then (4.22.1) equals

Cψ(s, π)−1 = η(uα̃,0)−2|uα̃,0|−2s|uh̃,0|γKα̃(2〈α̂, α∨〉s/[Kα̃ : k], ωπ(w0ω
−1
π ), ψKα̃)

×
∫

K×
α̃

j′
ṽ,N̄0

(β∨(r)wt0)η(r)|r|s−〈ρ,α〉+1 d×r. (4.22.2)

Fix a character ν of K× and realize it as a character ν̃ of M(k) by

ν̃(m) = ν(det(Adn(m))),

where n is the Lie algebra of N(k). If π is an irreducible admissible representation of
M(k) with central character ωπ = η ⊗ ωπ,0 as in Remark 4.11, then the central character
of π ⊗ ν̃ is equal to

ωπν(det(Adn(α∨(q), z))) = η(q)ν(det(Adn(α∨(q))))ωπ,0(z)

= ηνa(q)ωπ,0(z),

where a is some fixed positive integer depending only on G and M . We now have the
following corollary.

Corollary 4.23. With assumptions as in Theorem 4.22, Cψ(s, π) is stable, i.e. if π1 and
π2 are two irreducible admissible ψ-generic representations of M(k) sharing the same
central character, then

Cψ(s, π1 ⊗ ν̃) = Cψ(s, π2 ⊗ ν̃)

for all the sufficiently highly ramified characters ν of K∗ extended to a ν̃ on M(k) as
above.

Proof. Lemma 3.11 implies, exactly as in § 4.2.2 of [10], that the Bessel function j′
ṽ,N̄0

is a jv,w,Y as in [11]. The proof of Proposition 4.4 of [10] then goes through line by line
when applied to our equation (4.22.1) (or (4.22.2)) by means of Theorem 7.1 of [11] and
implies the corollary. �

Remark 4.24. The corollary is valid even without the assumption that H1(k, ZG) = 1
since one can in fact extend G to a group G̃ for which GD = G̃D and H1(k, ZG̃) = 1.
The assertion then easily follows by extending the character ν̃ of M(k) to one of M̃(k)
which is still highly ramified since M = M̃ ∩ G and the corresponding local coefficients
are equal.

Remark 4.25. We expect that the assumption that dim(UM\N) = 2 and the semisimple
rank of Tw is equal to 2 must automatically imply the validity of (4.2), (4.4) and (4.20),
as well as 〈β̃, α̃〉 = −1. We will discuss this in the next section.
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5. Removing some conditions

In this section we will show that (4.1), (4.2), (4.4) and (4.20) are all automatically valid
under Assumption 3.6 and the assumptions that dim(UM\N) = 2 and rank(ZG\Tw) = 2.

The conditions on the semisimple rank and the dimension are quite restrictive. In fact,
if d = dim(UM\N), then considering the fibre bundle

N ′ → UM\N ′

whose fibres, UM,n\UM � UM · n, n ∈ N ′, all have the same dimension by Rosenlicht’s
generic quotient theorem (cf. Theorem 19.5 and Corollary 19.6 of [15]), one concludes
that

dim N = dimUM − dim UM,n + d (5.1)

for all n ∈ N ′, or
dim N � d + dimUM ,

or
dim U = dimN + dimUM � d + 2 dimUM .

Thus, we have the following proposition.

Proposition 5.1. dim U � d + 2 dimUM .

We now add the restriction that dim(UM\N) = 2 as well.
If we assume G is split over F and d = 2, then Proposition 5.1 implies

card(Φ̃+) � 2(1 + dimUM ). (5.2)

One can easily check that maximal parabolic subgroups of G with GD = G2 or GD = F4

cannot entertain inequality (5.2).
Let GD = E6. Inequality (5.2) then reduces to dimUM � 17 and the only possibil-

ities are for α ∈ {α1, α2, α6}, i.e. one of the external nodes (as always, in Bourbaki’s
numbering). In the cases that α = α1 or α = α6, M will not be self-associate.

Suppose GD = E7. Then (5.2) reduces to dimUM � 31 and the only possibility here
is α = α7.

Finally, assume GD = E8. Then (5.2) implies that dimUM � 59 which can only happen
if α = α8.

We point out that by Corollary 4.6, (4.2) is valid if and only if β is adjacent to α.
Note that in all these cases 〈β̃, α̃〉 = −1. Also, we can explicitly compute that in all

these cases that �̃(w0) − �̃(w) > 2, in violation of Proposition 4.1. Hence the conditions
that dim(UM\N) = 2 and rank(ZG\Tw) = 2 are incompatible for these E-type excep-
tional groups. The last assertion is easily checked to hold even if β is not adjacent to α.

We observe that in these last two cases the corresponding main L-functions are those
of standard L-functions of E6 and E7, respectively.

Finally, assume that G is the quasi-split form of E6. Then by Proposition 5.1, we may
assume α̃ ∈ {α1, α2}. If α̃ = α1 then for β̃ = α3 it is easily checked that �̃(w0) − �̃(w) =
24 − 9 = 15 > 2. For α̃ = α2 and β̃ = α4 again �̃(w0) − �̃(w) = 21 − 9 > 2.

We summarize the relevant parts of this discussion as the following.
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Proposition 5.2. Suppose GD = E7 or E8 and let P = MN be a maximal parabolic of
G. Assume dim(UM\N) = 2. Then P is self-associate and wθ

� (α) = α, where α = α7 or
α8 and β = α6 or α7, respectively. If GD = E6 and dim(UM\N) = 2 then wθ

� (α) = α for
an adjacent β, but P may not be self-associate. However, in these cases, the conditions
that dim(UM\N) = 2 and rank(ZG\Tw) = 2 are incompatible, and similarly for GD the
quasi-split form of E6. Thus no exceptional group can satisfy our dimension and rank
conditions simultaneously.

Now assume GD is not exceptional. To study the conditions in hand, we may restrict
ourselves to an appropriate member of the isogeny class of GD. In particular we will
assume GD is classical. We can then use the results from [12–14,25] to remove some of
the conditions.

Let G = GD be a quasi-split classical group of rank r + � and assume M = GLr × G�,
where G� is a quasi-split classical group of the same type as G of (semisimple) rank �. If
G is of either type B or C, then (5.2) implies

(r + �)2/2 � 1 + �2 + r(r − 1)/2. (5.3)

One can then see that this is possible for all � if r = 1. On the other hand, if r = 2, then
� � 4, and for r > 2, � > 2r.

When G is of type D, then (5.2) is equivalent to

[(r + �)2 + (r + �)]/2 � 1 + (�2 − �) + r(r − 1)/2. (5.4)

This then implies that if r = 1, then � � 2, while for r > 1, � � 2r + 1.
We point out that the case r = 1 corresponds to the cases of stability needed for

functoriality (cf. [1,9,10,16]).
It is clear that wθ

� (α) = α if and only if α̃ = α1 and β̃ = α2 (Corollary 4.6). Using
calculations in [12–14,25], we will show that rank(ZG\Tw) = 2 will imply α = α1 and
thus wθ

� (α) = α.
To use the results from [12–14,25], we will assume r is even. If n ∈ N corresponds to

(X, Y ), i.e. n = n(X, Y ) as in Lemma 2.1 of [12] or equation (3.2) of [25], then n satisfies
equation (3.1) here if and only if Y ∈ GLr(k) (Lemma 2.2 of [12] and Lemma 3.1 of [25]).
Moreover, n(gXh, gY ε(g)−1) also satisfies (3.1) for all g ∈ GLr(k) and all h ∈ G�(k).
Then

m(gXh, gY ε(g)−1) = diag(ε(g)ε(Y )g−1, h−1(I2� − X ′Y −1X)h, gY ε(g)−1) (5.5)

will correspond to n = n(gXh, gY ε(g)−1) by means of (3.1).
To proceed, write (3.1) as

w0u
−1
1 w−1

0 n = w0tw
−1
0 (w0wu2w

−1w−1
0 )(w0wn′w−1w−1

0 )w0wn̄, (5.6)

where
m = u1twu2, (5.7)

with u2 ∈ U−
M,w(k). This gives a Bruhat decomposition for n as n ∈ B̄(k)w0wN̄(k)UM (k).
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Assume rank(ZG\Tw) = 2 with α and β as before. We note that w̃0w̃ = w̃�w̃
θ
� sends α

and β to negative roots, but keeps other simple roots positive. We thus see that β will
be the unique simple root which is sent to a negative one by w. To show that for r � 2
this will not be the case, we need to show that for such r, w in the Bruhat decomposition
of m = (mr, m�), mr ∈ GLr(k), m� ∈ G�(k) will send more than one simple root to
negative ones. This would be accomplished if one shows that the Weyl group elements
appearing in the Bruhat decomposition of mr and m� are both non-trivial for almost
all n.

Suppose that r � 2, then inequalities (5.3) and (5.4) imply that r < 2� and we will
be in the setting in p. 288 of [12]. We now use the fact that the norm map of [12,25] is
a surjection with finite fibres onto C∨, where C∨ is the set of conjugacy classes in G�(k)
whose semisimple parts intersect Gr/2(k), with Gr/2 identified as a subgroup of G� as
in [12].

The discussion leading to equality (5.5) now allows us to conclude that the m� will
generate an open set in Gr/2(k) and that consequently the Weyl group element in the
Bruhat decomposition of mr will be non-trivial for almost all n satisfying (3.1). In fact,
one of the consequences of the norm calculations in [12–14,25] is that the Weyl group
elements in the m� are non-trivial if and only if the elements for the mr are.

This basically sketches an argument towards proving rank(ZG\Tw) > 2 if r � 2, at
least when r is even. The odd case can be treated similarly. We collect these discussions
in the following result. Note that in view of the last statement in Proposition 5.2, it also
covers all the exceptional cases.

Proposition 5.3. Under Assumption 3.6, assume also that

dim(UM\N) = rank(ZG\Tw) = 2.

Then (4.1), (4.2), (4.4) and (4.20) are all valid. Moreover, 〈β̃, α̃〉 = −1.

6. Stability of local coefficients

The most basic statements of our stability results for local coefficients were given in
Theorem 4.22 and Corollary 4.23 under a list of conditions. However the best way to
formulate our results is in terms of Bruhat double cosets in G. This provides a formulation
of our main result in a format which can be applied to the isogeny class of the derived
group of G. Thus if the conditions of the theorem are verified for any member of the
isogeny class, then it is valid for all, proving stability for every G whose derived group
belongs to the given isogeny class.

We now state the main result of this paper as follows.

Theorem 6.1. Let G be a quasi-split connected reductive algebraic group over k

with B = TU , P = MN , U ⊃ N , M ⊃ T and the representation π as before.
Let C̄(w̄) = B̄w̄B′ be the unique Bruhat double coset with respect to B̄ = B− and
B′ = TN̄UM , intersecting N in an open set. Then C̄(w̄) is the Bruhat double coset
of largest dimension intersecting N (Proposition 3.1), w̄α < 0 and B̄(k)w̄N̄(k)UM (k) is



34 J. W. Cogdell, I. I. Piatetski-Shapiro and F. Shahidi

the unique Bruhat double coset of G(k) intersecting N(k) in an open set. Assume there
exists a simple root β such that w̄β < 0 but w̄(θ) > 0, where θ = ∆ \ {α, β}. Moreover,
assume dim(UM\N) = �̃(w0) − �̃(w0w̄) = 2. Then Cψ(s, π) is stable, i.e. if π1 and π2 are
two such representations sharing the same central character, then

Cψ(s, π1 ⊗ ν̃) = Cψ(s, π2 ⊗ ν̃),

for all sufficiently highly ramified characters ν of K×. Moreover, w̄α = −α.

Proof. Using (3.4) one can write

N(k) = N(w̄)(k)
∐ ( ∐

w∈S(w̄)
w �=w̄

N(w)(k)
)

. (6.1.1)

Since the k-topology is finer than the Zariski topology, N(w̄)(k) will be open in the
(relative) k-topology of N(k). Thus they both have the same dimension upon realizing
N(w̄)(k) as a submanifold of N(k). Moreover, since N is a product of affine spaces,
dimk̄ N = dimk N(k). On the other hand, dimk̄ N(w) < dimk̄ N = dimk̄ N(w̄) for all w 	=
w̄ in S(w̄), and since dimk N(w)(k) � dimk̄ N(w), one concludes that N(w̄)(k) is the
only open strata in (6.1.1).

Next, write m = u1twu2 as in (5.7) for n satisfying (3.1). Equation (5.6) then implies
that

n ∈ B̄(k)w0wN̄(k)UM (k).

Thus
w̃0w̃ = ˜̄w = w̃�w̃

θ
� . (6.1.2)

Clearly, w̄α < 0. Since w̄β < 0 while w̄θ > 0, this implies that ˜̄w = w̃�w̃
θ
� . Writing w̃0 =

w̃�w̃
Ω
� , then implies w̃ = w̃Ω

� w̃θ
� , which implies, in particular, that PM

θ supports a Bessel
function on M(k) (see § 2.2 of [11]). (Also see the discussion just before Proposition 3.2.)

Since dim(UM\N) = �̃(w0) − �̃(w) = 2 and rank(ZG\Tw) = 2, Propositions 4.1 and 5.3
and Corollary 4.23 now imply the stability assertion. �

Corollary 6.2. Let G be a quasi-split connected reductive algebraic group over k such
that the Γ -diagram of GD is of either type Bn, Cn, Dn, 2An or 2Dn (n � 4). Let P = MN

be a self-associate maximal parabolic subgroup of G over k such that the unique simple
root in N is the restriction of the root α̃1, the first root in the Dynkin diagram of the
Chevalley type of the derived group of G in Bourbaki’s numbering [4]. Let π be an
irreducible admissible generic representation of M(k). Then Cψ(s, π) is stable, that is, if
ν is a character of K×, realized as a character ν̃ of M(k) by

ν̃(m) = ν(det(Adn(m))),

then
Cψ(s, π1 ⊗ ν̃) = Cψ(s, π2 ⊗ ν̃)

for any two such representations π1 and π2 with same central characters and all suffi-
ciently highly ramified ν. Here n is the Lie algebra of N(k).
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Proof. One needs to verify that the conditions of Theorem 6.1 are valid.
Observe that the conditions depend only on the isogeny class of GD. Moreover, if Ñ

and ŨM̃ are the full inverse images of N and UM under the defining k̄-isomorphism
f : G̃D → GD from the Chevalley type G̃D of GD to GD, both of which are defined over
k, then dim(ŨM̃,ñ) = dim(UM,n), where ŨM̃,ñ is the centralizer of ñ = f−1(n) in ŨM̃ .
In fact, one only needs to observe that f(ŨM̃,ñ) = UM,n, using the definitions of ŨM̃,ñ

and UM,n.
Together with the fact that one is only interested in the lengths of the Weyl group

elements as elements in W (T, G), this then reduces our task to checking the conditions
for the split form of GD, i.e. here we may assume that GD is a split classical group.

We can then show as in [26] that if β̃ = α2 and θ is obtained by restricting the set θ̃

of all other simple roots in ∆̃ which do not restrict to α or β, then ˜̄B ˜̄wB̃′ intersects Ñ

in an open set (cf. § 7), where w̄ = w�w
θ
� , ˜̄w = f−1(w̄), ˜̄B = f−1(B̄), and B̃′ = f−1(B′).

Note that since w� = f(w∆̃
� ) and wθ

� = f(wθ̃
� ), then ˜̄w = w∆̃

� wθ̃
� . Observe that all these

representatives are chosen to lie in GD. We now apply f to ˜̄B ˜̄wB̃′ to conclude that
B̄w̄B′ intersects N in an open set as desired. This completes the proof. �

Corollary 6.3. Let C̄(w̄) be the unique Bruhat cell intersecting N openly. Then under
Assumption 3.6 we have

dim(UM\N) = �̃(w0) − �̃(w0w̄).

Proof. From Proposition 4.1, under Assumption 3.6 we have that dim(UM\N) =
�̃(w0) − �̃(w). On the other hand, from (6.1.2) we know w = w−1

0 w̄. Since P is self-
associate, w−1

0 = w0. The corollary now follows. �

Remark 6.4. Sundaravaradhan [29] has determined w̄ for a given N in Theorem 6.1
without doing any explicit Bruhat decomposition. The algorithm is quite clever, simple
and general. He also has proved that if w̄(θ) > 0 then w̄(θ) = θ and thus (4.1) is
automatically satisfied. In particular, in part (a) of Theorem 6.1 we may replace w̄(θ) = θ

with the seemingly weaker assumption w̄(θ) > 0.

Remark 6.5. The rational character

ξ(m) = det(Adn(m))

of M is not necessarily defined over k. In general, it is only defined over the splitting
field K of G. On the other hand ξ|A0 is defined over k.

7. Examples

If Gn+1 is a split classical groups of Chevalley type Bn+1, Cn+1, or Dn+1 the parabolic
P arising in Corollary 6.2 is the maximal parabolic with Levi of the form GL1 × Gn

associated to the root α1 in the Bourbaki numbering. It and the associated Weyl group
element w0 = w�w

Ω
� are given explicitly in § 4.2.1 of [10]. The root β as in Theorem 6.1

then corresponds to α2 in Bourbaki’s numbering. The associated Weyl group element
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w = wΩ
� wθ

� is then explicitly given after Proposition 4.1 of [10]. From these, w̄ = w0w =
w�w

θ
� is easily computed and the rank and dimension conditions easily verified. As we

pointed out in § 5, this may well be the only situation in the classical groups for which
our rank and dimension conditions are satisfied.

We next assume that G = Gn+1 is the quasi-split special orthogonal group SO∗
2n+2

defined by a quadratic extension K of k, that is, the case 2Dn+1 of Corollary 6.2. This
is particularly interesting since it should lead to functorial transfer from SO∗

2n to GL2n,
accounting for self-dual representations with non-trivial central character which still need
to be treated (cf. [9,10] for the split cases). The parabolic subgroup that we are concerned
with in connection with functoriality has M = GL1 × SO∗

2n as its Levi subgroup. As we
observed in the proof of Corollary 6.2, this satisfies all the conditions of our main theorem
since its Chevalley type above does (cf. [10,26]). The cases of GSpin∗

2n+2 (and Spin∗
2n+2)

are the same, either using [1] or Corollary 6.2.
Our next example concerns the quasi-split group of type 2An+1, that is, the case of

unitary groups. In fact, to prove the transfer of automorphic forms from Un, the quasi-
split unitary group in n variables, i.e. the unitary group defined by a quadratic extension
K of k and of signature (1

2n, 1
2n) if n is even or ( 1

2 (n + 1), 1
2 (n − 1)) if n is odd. Then

one needs to consider the Levi subgroup M = ResK/k GL1 × Un of G = Un+2. In this
case, stability has been proven in [16] in the even case by proving Theorem 4.22 directly
for the unitary group. Here we will use Corollary 6.2 to conclude it as a special case of
our more general results.

To apply the corollary, we need to consider the Chevalley form G̃ of G = Un+2. Strictly
speaking we should consider G̃ = SLn+2 as the Chevalley form of G = SUn+2, but for our
purposes we may consider G̃(K) = GLn+2(K) and let f : GLn+2(K) ∼−→ Un+2(K) be the
defining K-isomorphism between K-points of K-groups. Since both groups are defined
over k,

{σ 
→ aσ = f−σf} ∈ H1(ΓK , Aut(G̃(K))).

If σ 	= 1 is the non-trivial element of ΓK = Gal(K/k) then aσ(h) = w th−1w−1 for
h ∈ GLn+2(K), where w is an appropriate permutation matrix which fixes the standard
splitting of the upper triangular unipotent matrices in GLn+2(K), i.e. a second diagonal
matrix with alternating ±1 as non-zero entries. Then

f(aσ(σ(g))) = σ(f(g))

which leads to the standard definition

g = w tσ(g)−1w−1

for the k-points of Un+2 for which σ(f(g)) = f(g).
To use Corollary 6.2 we only need to show that ¯̃B ¯̃wB̃′ intersects Ñ in an open set,

where ¯̃w = w∆̃
� wθ̃

� . Note that ¯̃B = ˜̄B and ¯̃w = ˜̄w and thus our notation agrees with that of
the corollary. Here the parabolic subgroup P̃ = M̃Ñ of G̃ has GL1 × GLn × GL1 as Levi
subgroup, which restricts to ResK/k GL1 × Un upon restriction of roots, giving the case
of unitary groups of the corollary (as 2An+1). This means that we need to show that if
w̃−1

0 ñ = m̃ñ′ ¯̃n and m̃ = ũ1t̃w̃ũ2 then w̃0w̃ = ¯̃w = w∆̃
� wθ̃

� on a dense open set.
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For the sake of simplicity of calculations we will take

w̃0 =

⎛
⎜⎝ 1

In

1

⎞
⎟⎠

by multiplying m̃ by an appropriate member of T̃ , the subgroup of diagonal elements of
GLn+2. If

ñ =

⎛
⎜⎝1 X a

In Y

1

⎞
⎟⎠

with X, Y ∈ Kn then
w̃−1

0 ñ = m̃ñ′ ¯̃n (7.1)

if and only if a ∈ K×.
A quick calculation using (7.1) then implies that if m̃ = diag(b, m, c), with b, c ∈ K×

and m ∈ GLn(K), then
m = In − a−1Y X.

All we need to check is that the dominant Bruhat double coset for m is attached to

w̃ =

⎛
⎜⎝ 1

In−2

1

⎞
⎟⎠ .

This is an exercise in Gaussian elimination. There exists a unipotent upper triangular
element u in GLn(K) such that uY = t(0, . . . , 0, x) with x ∈ K× for almost all ñ and
thus on a dense open set

Z = umu−1 =

⎛
⎜⎜⎜⎜⎝

0

In−1
...
0

z1 · · · zn−1 zn

⎞
⎟⎟⎟⎟⎠

with z1, . . . , zn 	= 0. Then

w̃Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

z1 z2 · · · zn−1 zn

0 0
... In−2

...
0 0
1 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let

ū1 =

⎛
⎜⎜⎜⎜⎝

0

In−1
...
0

−z−1
1 0 · · · 0 1

⎞
⎟⎟⎟⎟⎠ .
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Then

ū1w̃Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

z1 z2 · · · zn−1 zn

0 0
... In−2

...
0 0
0 α2 · · · αn−1 αn

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Next, let

ū2 =

⎛
⎜⎜⎜⎜⎝

0

In−1
...
0

0 −α2 0 · · · 0 1

⎞
⎟⎟⎟⎟⎠ ,

which implies

ū2ū1w̃Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

z1 z2 · · · zn−1 zn

0 0
... In−2

...
0 0
0 0 α3 · · · αn

⎞
⎟⎟⎟⎟⎟⎟⎠

and inductively
ūw̃Z ∈ B̃n or w̃(w̃−1ūw̃)Z ∈ B̃n,

where

ū =

⎛
⎜⎜⎜⎜⎝

0

In−1
...
0

∗ · · · ∗ 1

⎞
⎟⎟⎟⎟⎠ .

Note that w̃−1ūw̃ ∈ B̃n and thus Z ∈ B̃nw̃B̃n or m ∈ B̃nw̃B̃n. This implies that
w̃0w̃ = w∆̃

� wθ̃
� as claimed. Thus the conditions of Theorem 6.1 are satisfied for the

parabolic P̃ of G̃, and hence for the parabolic P of G obtained by restriction of roots.
Finally, as we observed in § 5, there are no cases of exceptional groups that satisfy the

rank and dimension requirements of Theorem 6.1.
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