EXTERIOR SQUARE L-FUNCTION FOR GL(n)

J.W. COGDELL AND I[.I. PIATETSKI-SHAPIRO

1. Introduction. Let 7 be an irreducible generic representation of GL(n) over a non-
Archimedean local field k. By Bernstein and Zelevinsky [1,11] we know we can write

7=Ind(o; ® - ®0y)
with each o; quasi-square-integrable of the form
o, =Q(Ind(p; @piv® -+ ® piuki))

where QQ denotes the unique irreducible quotient and v is the unramified character v(g) =
| det(g)]-

Question. Can we express L(m, A% s) in terms of the L-functions of o1,...,0,.¢? Can we
express L(o;, A2, ) in terms of L-functions of p; ?

Here, by L(7, A%, s) we mean the exterior square L-function one gets from the Rankin
Selberg integral representation of Jacquet and Shalika [8].

The real goal is to do this in the Archimedean case and compare L(m, A2, s) as indicated
by Jacquet and Shalika [8] with that predicted by the Langlands classification. So we want
techniques that have a chance of generalizing to the Archimedean case.

It is the global L(m, A%, s) that controls the poles of the Eisenstein series used in defining
the twisted L-function for SO(2n + 1) [6,9,10]. The control of the poles of this L-function
is the last step we need to achieve the global Langlands lifting from SO(2n+ 1) to GL(2n)
for generic cusp forms via the Converse Theorem [3,5].

2. Derivatives and Whittaker models. The basic tool of [1,11] is to analyze the rep-
resentations of GL(n) by first analyzing the representations of P,, the mirabolic subgroup:

P, =GL,_, x U, where GL,,_y — GL,, by h — (h 1> and U, ~ k" ! < GL, by

. I,_1 u
U 1)
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The representations of P, are analyzed by the use of four functors

ot vt

— PR A
Rep(P,_1) ¢ Rep(P,) Rep(GL, 1).

&t and U are induction functors, while ®~ and ¥~ are localization functors or Jacquet

functors. All are normalized. They are defined as follows:

‘~I’+
(*

—
.
To define ¥~ we consider the space of U, covariants. We let (7,V;) be a smooth

representation of P, and let

(a) Rep(P,) Rep(GLy—1).

Vo(Up,1) = (t(u)v —v | v € V,, uelU,).

Then the space of ¥~ (1) is V;/V,.(U,, 1), the largest quotient of V. on which U, acts
trivially. Since GL,,_; preserves U,,, GL,,_1 will stabilize V, (U,, 1) and we have the natural
action of GL,, 1 on V; /V,(U,,1). Letting o denote ¥~ (7), then ¢ is the normalized action
of GL,, 1 on V;/V.(U,, 1) given by

o(9)(v + Vr (Un, 1)) = | det(g)|~/2(r(9)v + Vi (U, 1)).

The functor ¥ is just induction, or in this case, normalized extension by the trivial
representation. Given a smooth representation (o,V,) of GL,, 1 we let 7 = ¥T (o) be
the representation of P, on V, such that U, acts trivially and GL,_, acts by 7(g) =

| det(g)*/%0(g). .

(b) Rep(P,—1) «_ Rep(F,).

o
Here we consider P,y — GL,,_1 — P,. If we fix a non-trivial additive character 1
of K, then v defines a character of U,,, which by abuse of notation we again denote by
1, defined by ¢ (u) = ¢ (up_1,). GL,_1 is the stabilizer of U,, and the stabilizer of this
character in GL,, 1 is exactlyP, 1.
To construct @, let (7,V;) be a smooth representation of P,. We form the space of
(Un, ¥)-covariants by taking

Vi(Un, o) = (t(u)v —Y(u)v | u € Uy, v e V)

and forming the quotient vector space V. /V, (U,, ). This is the largest quotient on which
U,, acts by the character ¢». Then 0 = ®~ (1) is the normalized representation of P, ; on
Ve /Va(Un, ) given by

o (p) (v + Vi (Un, ) = | det(p) |72 (r(p)v + Vi (U, 9)).
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®7 is the functor of normalized compactly supported induction. If (o, V,) is a smooth
representation of P,_; we extend it to a representation of P,_,U, by letting U,, act by
the character ¢). Then

=& (o) =indp"  (|det|'?o®1))

where the induction ind is non-normalized using smooth functions of compact support
modulo P,_1U,,.
Facts:

(1)

(2)

Any irreducible representation of 7 of P, is of the form 7 ~ (®+)*=1W+(p) with p
an irreducible representation of GL,,_ . The index k£ and the representation p are
completely determined by 7.

The derivatives: Let 7 € Rep(P,). For each k = 1,2,...,n there are representa-
tions () € Rep(P,_x) and 7(*) € Rep(GL,,_j) associated to 7 by

T(k) = (¢7)k(7—) and T(k) — \D*(@*)kfl(/r).
Diagrammatically:
-
v N\
T(1) 7'(1)
T(2) 7(?)
v
+(3)

where all leftward arrows represent an application of ®~ and the rightward arrows
an application of ¥~. 7(¥) is called the k** derivative of 7.
We have a short exact sequence

150t (1) 57— VT (1) > 1.

There is a canonical filtration of 7 by derivatives. Any 7 € Rep(P,) has a natural
filtration by P, submodules

0Ct, C1p1 C---C19CT1 =T

such that 7, = (®+)*~1(d)*1(7). The successive quotients are completely de-
termined by the derivatives of 7 since

T/ Thar = (@T)F1OH (7 (R),
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The proofs of these statements can be found in the work of Bernstein and Zelevinsky
[1,11]

If 7 is an irreducible admissible representation of GL,,, its derivatives are defined by
70 =7, Ty = 7|p, and then (k) = (ﬂ'(o))(k), etc.

Now suppose that 7 is an irreducible generic representation of GL,,. This is the case
iff 7(") = 1. Then this structure can easily be seen in its Whittaker model W(r, ) [4].
Namely:

(1) {W (gm In_m> W e W(W,¢)} is a model for m(,, _p, 1).

(2) ®T O~ (m(y_m—1)) is realized as the subspace of those W (gm ) such that

Infm

there exists an N such that max; [gm, ;| < ¢~ implies W (gm I ) = 0.
n—m

(3) If 7(™=m) ig either irreducible or at most completely reducible and v € 7, _,, 1)
projects to p(v) € 7 an irreducible constituent of 7("~™) then 7 is generic with

Whittaker model given by Wy, (9m) = lima—o wr(a)W, (agm L. > , with the
limit existing in the stable sense.
Note that the functions W <gm
GL,.

> often arise in Rankin Selberg integrals for

In—m

3. The integrals of Jacquet and Shalika. Let 7 be an irreducible representation of
GLs,, and W € W(m, ) a function in its Whittaker model. Let ® € S(k™). The Jacquet
and Shalika [8] indicate that L(m, A2, s) should be computed by the following family of
integrals:

J(W, ®, 5) = /Nn\an '/VH\M" W <a (é )I() (9 q)) L (tr X)da ®(eng)| det(q)|*dg

where M, is the space of n x n matrices, V,, is the subspace of strictly upper triangular
matrices in M,,, and o is the permutation given by

s (12 - n | n+1 n+2 - 2n
13 -1 | 2 4 - o

Theorem. (i) These integrals converge for Re(s) >> 0 and define rational functions in
q°.

(ii) T = {J(W,®,s)} forms a fractional C[q®,q~*%] ideal with generator of the form
P(q=%)~" with P(x) € C[X] satisfying P(0) = 1.

Definition. We set L(m, A%, s) = P(q™*)~ "

If 7 is unramified, Jacquet and Shalika showed that this definition agrees with what is
predicted by Langlands [8].
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One analyses P(¢~%) by analyzing the poles of the integrals J(W, ®,s). Suppose that
J(W,®, s) has a pole at s = sg. Its Laurent expansion at that point will be of the form

B(W, @)

N L

with B(W, ®) a bilinear form on W(m, ¢) x S(k™) with certain equivariance properties.
We now split the poles into two families. S(k™) has a small filtration {0} C So(k™) C

S(k™) with So(k™) = {® | ®(0) = 0}. Suppose that B(W,®) is trivial on Sy(k™). Then we

can write B(W,®) = A(W)®(0) where A is a so-called (twisted) Shalika functional [7] on

m. If we let
(T X\ [y
RQn_{r_<0 1)( g)\XeMn,geGLn}

then A(m(r)W) = 9(tr(X))|det(g)|*°*A(W). We call such poles exceptional and we let
Ley(m, A2, 5) denote their contribution to L(m, A%, s).

In the other case, B(W, ®) remains non-zero upon restriction to W(mw,9) x So(k™). Then
we can find &y € Sy(k™) which is responsible for this pole. Using the support of ®; one
can reduce the integral J(W, @y, s) to a finite sum of integrals of the form

J' (W, s) :/Nn\Pn ./vn\MnW <0 (é I) <p p)) ¢~ (br X)dX | det(p)|*dp.

Now, the argument of W lies in Py, that is, the integral depends on 7, the restriction
of ™ to Py,. We can now use the theory of derivatives. Still the pole at s = s¢ looks like

, AW
O = o

where A is now a (twisted) Shalika functional on () with respect to

R’Qn:{r:<é f) (p p)XGanePn}.

4. Results on Shalika functionals. First consider the Shalika functionals on represen-
tations of GL,,. These are mainly due to Jacquet and Rallis [7].

Theorem [7]. Let w be an irreducible representation of GL,,. Then there is at most a one
dimensional space of Shalika functionals on 7. If m has a Shalika functional (untwisted),
then m must be self-contragredient.

It is not hard to establish the following result.

Proposition. An irreducible representation of the form Ind(oc®a) with o square integrable
has a Shalika functional.

Shalika functionals on P,, seem to be easier to analyze. The results are as follows.
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Theorem. (i) If 7 = (®T)"~*=1W*(p) with p an irreducible representation of G Ly, then
T has no Shalika functional unless k = 2m is even. In this case there is at most a one
dimensional space of Shalika functionals on 7.

(ii) If k = 0 above, then T has a Shalika functional.

Note that (ii) is responsible for the local functional equation for the exterior square
L-function, while (i) ensures that this method works equally well for the Jacquet—Shalika
integrals for the exterior square for GLay, 1.

5. Consequences of the existence of Shalika functionals for P,. Using the results
on Shalika functionals on P, above, the canonical filtration by derivatives for (g from
Section 2, and the properties of the Whittaker functions relative to this filtration, one can
prove the following result.

Theorem. If all derivatives of m are completely reducible, then the non-exceptional poles
of L(m, A%, s) are exactly the exceptional poles of the even derivatives of w, i.e., L(m, A%, s)
is completely determine by the L, (n(?™ A2 s) form =0,...,n.

6. Deformation and specialization. Now take 7 = Ind(01 ® - -®0,.) generic with each
0; quasi-square-integrable. We introduce complex parameters by setting z = (z1,...,2,),
0i(z;) = ov(z;) and w(z) = Ind(01(21) ® - - - @ 0, (2,)). Consider Z = {J(W,, ®,s) | W, €
W(r(2),v),® € S(k™)}. These functions will define rational functions in ¢** and ¢**
and will form a fractional C[¢T*, ¢**!] ideal. It may no longer be principal. But for z in
general position, 7 (z) will be irreducible and its derivatives will be completely reducible
[2]. Our method then computes a polynomial P(q *, ¢ #) which controls the poles as a
rational function in 7 + 1 variables. These poles will come from L., (m(2)(2™) A2, s).

The existence of a (twisted) Shalika functional for 7(z)™) gives a certain number of
linear conditions on the variables z1, ..., z. and s from the (twisted) self-contragrediance
requirement. Since a function of several complex variables cannot have isolated singularities
of co-dimension greater than or equal to two by Hartog’s Theorem, then we really need only
consider those L, (m(2)®™, A2, s) which contribute the co-dimension one poles. These
derivatives will all be either of the form o;(2;) ) or of the form Ind(o;(2;)*) ® 0 (2;) k1))
with o; = o, up to a twist. The first type will reassemble to give a contribution of
[T1L(ci(2), A, s) = ]] L(oi, A%, s + 22;). Since we understand the Shalika functionals on
the second type of representation, these should contribute [[ L(o; X 0, s+ z; + z;). Hence
we would arrive at

P(q—s’q—z)—l = HL(Ui’ /\278 + 22’1) HL(O-Z X 05,8 + z; + Zj).
i 1<j

If we then let 2 — 0 we get the expected equality

L(m, A% s) = [ [ L(os, A, 8) [ [ Lo x 0, 5).

1<J
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7. A computation for square-integrables. Suppose now that ¢ is the simplest non-
cuspidal quasi-square-integrable:

o = Q(Ind(p ® pr))

with p a cuspidal representation of GLj. The the derivatives of ¢ are ¢(® = ¢ and

o) = pv. Then the above gives
L(0, A2, 8) = Lew(0, A2, 8) Loy (pr, A2, 8) = Loy (0, A2, 8)L(p, A%, s+ 2).
On the other hand, if I have computed correctly, the predicted L-function should be
L(o, A%, s) = L(p,Sym?, s)L(p, A%, s + 2).

This leads quickly to the following conjecture.

Conjecture.

L(p, A2, if ki
Le;,;(Q(Ind(p ®R-® pl/k)), /\27 S) _ { (P S) Zf 1S even .

L(p,Sym?®,s) if k is odd
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