
EXTERIOR SQUARE L-FUNCTION FOR GL(n)J.W. Cogdell and I.I. Piatetski-Shapiro1. Introdu
tion. Let � be an irredu
ible generi
 representation of GL(n) over a non-Ar
himedean lo
al �eld k. By Bernstein and Zelevinsky [1,11℄ we know we 
an write� = Ind(�1 
 � � � 
 �r)with ea
h �i quasi-square-integrable of the form�i = Q(Ind(�i 
 �i� 
 � � � 
 �i�ki))where Q denotes the unique irredu
ible quotient and � is the unrami�ed 
hara
ter �(g) =j det(g)j.Question. Can we express L(�;^2; s) in terms of the L-fun
tions of �1; : : : ; �r? Can weexpress L(�i;^2; s) in terms of L-fun
tions of �i?Here, by L(�;^2; s) we mean the exterior square L-fun
tion one gets from the Rankin{Selberg integral representation of Ja
quet and Shalika [8℄.The real goal is to do this in the Ar
himedean 
ase and 
ompare L(�;^2; s) as indi
atedby Ja
quet and Shalika [8℄ with that predi
ted by the Langlands 
lassi�
ation. So we wantte
hniques that have a 
han
e of generalizing to the Ar
himedean 
ase.It is the global L(�;^2; s) that 
ontrols the poles of the Eisenstein series used in de�ningthe twisted L-fun
tion for SO(2n+ 1) [6,9,10℄. The 
ontrol of the poles of this L-fun
tionis the last step we need to a
hieve the global Langlands lifting from SO(2n+1) to GL(2n)for generi
 
usp forms via the Converse Theorem [3,5℄.2. Derivatives and Whittaker models. The basi
 tool of [1,11℄ is to analyze the rep-resentations of GL(n) by �rst analyzing the representations of Pn, the miraboli
 subgroup:Pn = GLn�1 n Un where GLn�1 ,! GLn by h 7! �h 1� and Un ' kn�1 ,! GLn byu 7! � In�1 u1�.The �rst author was supported in part by the NSA.The se
ond author was supported in part by the NSF.Talk given at Fields Institute, 11 April 1994. Typeset by AMS-TEX1



2 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROThe representations of Pn are analyzed by the use of four fun
torsRep(Pn�1) �+�����! ������� Rep(Pn) 	+ ����������!	� Rep(GLn�1):�+ and 	+ are indu
tion fun
tors, while �� and 	� are lo
alization fun
tors or Ja
quetfun
tors. All are normalized. They are de�ned as follows:(a) Rep(Pn) 	+ ����������!	� Rep(GLn�1).To de�ne 	� we 
onsider the spa
e of Un 
ovariants. We let (�; V�) be a smoothrepresentation of Pn and letV� (Un;1) = h�(u)v � v j v 2 V� ; u 2 Uni:Then the spa
e of 	�(�) is V�=V� (Un;1), the largest quotient of V� on whi
h Un a
tstrivially. Sin
eGLn�1 preserves Un, GLn�1 will stabilize V� (Un;1) and we have the naturala
tion of GLn�1 on V�=V� (Un;1). Letting � denote 	�(�), then � is the normalized a
tionof GLn�1 on V�=V� (Un;1) given by�(g)(v + V� (Un;1)) = j det(g)j�1=2(�(g)v + V� (Un;1)):The fun
tor 	+ is just indu
tion, or in this 
ase, normalized extension by the trivialrepresentation. Given a smooth representation (�; V�) of GLn�1 we let � = 	+(�) bethe representation of Pn on V� su
h that Un a
ts trivially and GLn�1 a
ts by �(g) =j det(g)j1=2�(g).(b) Rep(Pn�1) �+�����! ������� Rep(Pn).Here we 
onsider Pn�1 ,! GLn�1 ,! Pn. If we �x a non-trivial additive 
hara
ter  of K, then  de�nes a 
hara
ter of Un, whi
h by abuse of notation we again denote by , de�ned by  (u) =  (un�1;n). GLn�1 is the stabilizer of Un and the stabilizer of this
hara
ter in GLn�1 is exa
tlyPn�1.To 
onstru
t ��, let (�; V�) be a smooth representation of Pn. We form the spa
e of(Un;  )-
ovariants by takingV� (Un;  ) = h�(u)v �  (u)v j u 2 Un; v 2 V� iand forming the quotient ve
tor spa
e V�=V� (Un;  ). This is the largest quotient on whi
hUn a
ts by the 
hara
ter  . Then � = ��(�) is the normalized representation of Pn�1 onV�=V� (Un;  ) given by�(p)(v + V� (Un;  )) = j det(p)j�1=2(�(p)v + V� (Un;  )):



EXTERIOR SQUARE L-FUNCTION FOR GL(n) 3�+ is the fun
tor of normalized 
ompa
tly supported indu
tion. If (�; V�) is a smoothrepresentation of Pn�1 we extend it to a representation of Pn�1Un by letting Un a
t bythe 
hara
ter  . Then � = �+(�) = indPnPn�1Un(j det j1=2� 
  )where the indu
tion ind is non-normalized using smooth fun
tions of 
ompa
t supportmodulo Pn�1Un.Fa
ts:(1) Any irredu
ible representation of � of Pn is of the form � ' (�+)k�1	+(�) with �an irredu
ible representation of GLn�k. The index k and the representation � are
ompletely determined by � .(2) The derivatives: Let � 2 Rep(Pn). For ea
h k = 1; 2; : : : ; n there are representa-tions �(k) 2 Rep(Pn�k) and � (k) 2 Rep(GLn�k) asso
iated to � by�(k) = (��)k(�) and � (k) = 	�(��)k�1(�):Diagrammati
ally: �. &�(1) � (1). &�(2) � (2). &. . . � (3)where all leftward arrows represent an appli
ation of �� and the rightward arrowsan appli
ation of 	�. � (k) is 
alled the kth derivative of � .(3) We have a short exa
t sequen
e1! �+��(�)! � ! 	+	�(�)! 1:(4) There is a 
anoni
al �ltration of � by derivatives. Any � 2 Rep(Pn) has a natural�ltration by Pn submodules0 � �n � �n�1 � � � � � �2 � �1 = �su
h that �k = (�+)k�1(��)k�1(�). The su

essive quotients are 
ompletely de-termined by the derivatives of � sin
e�k=�k+1 = (�+)k�1	+(� (k)):



4 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROThe proofs of these statements 
an be found in the work of Bernstein and Zelevinsky[1,11℄If � is an irredu
ible admissible representation of GLn, its derivatives are de�ned by�(0) = �, �(0) = �jPn and then �(k) = (�(0))(k), et
.Now suppose that � is an irredu
ible generi
 representation of GLn. This is the 
asei� �(n) = 1. Then this stru
ture 
an easily be seen in its Whittaker model W(�;  ) [4℄.Namely:(1) �W � gm In�m� jW 2 W(�;  )� is a model for �(n�m�1).(2) �+��(�(n�m�1)) is realized as the subspa
e of those W � gm In�m � su
h thatthere exists an N su
h that maxi jgm;ij < q�N implies W � gm In�m� = 0.(3) If �(n�m) is either irredu
ible or at most 
ompletely redu
ible and v 2 �(n�m�1)proje
ts to p(v) 2 � an irredu
ible 
onstituent of �(n�m) then � is generi
 withWhittaker model given by Wp(v)(gm) = lima!0 !� (a)Wv � agm In�m�, with thelimit existing in the stable sense.Note that the fun
tions W � gm In�m� often arise in Rankin{Selberg integrals forGLn.3. The integrals of Ja
quet and Shalika. Let � be an irredu
ible representation ofGL2n and W 2 W(�;  ) a fun
tion in its Whittaker model. Let � 2 S(kn). The Ja
quetand Shalika [8℄ indi
ate that L(�;^2; s) should be 
omputed by the following family ofintegrals:J(W;�; s) = ZNnnGLn ZVnnMn W ��� I X0 I �� g g�� �1(trX)dx �(eng)j det(g)jsdgwhere Mn is the spa
e of n � n matri
es, Vn is the subspa
e of stri
tly upper triangularmatri
es in Mn, and � is the permutation given by� = � 1 2 � � � n j n+ 1 n+ 2 � � � 2n1 3 � � � 2n� 1 j 2 4 � � � 2n�Theorem. (i) These integrals 
onverge for Re(s) >> 0 and de�ne rational fun
tions inq�s.(ii) I = fJ(W;�; s)g forms a fra
tional C [qs ; q�s℄ ideal with generator of the formP (q�s)�1 with P (x) 2 C [X℄ satisfying P (0) = 1.De�nition. We set L(�;^2; s) = P (q�s)�1.If � is unrami�ed, Ja
quet and Shalika showed that this de�nition agrees with what ispredi
ted by Langlands [8℄.



EXTERIOR SQUARE L-FUNCTION FOR GL(n) 5One analyses P (q�s) by analyzing the poles of the integrals J(W;�; s). Suppose thatJ(W;�; s) has a pole at s = s0. Its Laurent expansion at that point will be of the formJ(W;�; s) = B(W;�)(qs � qs0)k + � � �with B(W;�) a bilinear form on W(�;  )� S(kn) with 
ertain equivarian
e properties.We now split the poles into two families. S(kn) has a small �ltration f0g � S0(kn) �S(kn) with S0(kn) = f� j �(0) = 0g. Suppose that B(W;�) is trivial on S0(kn). Then we
an write B(W;�) = �(W )�(0) where � is a so-
alled (twisted) Shalika fun
tional [7℄ on�. If we let R2n = �r = � I X0 I �� g g� ��X 2Mn; g 2 GLn�then �(�(r)W ) =  (tr(X))j det(g)js0�(W ). We 
all su
h poles ex
eptional and we letLex(�;^2; s) denote their 
ontribution to L(�;^2; s).In the other 
ase, B(W;�) remains non-zero upon restri
tion toW(�;  )�S0(kn). Thenwe 
an �nd �0 2 S0(kn) whi
h is responsible for this pole. Using the support of �0 one
an redu
e the integral J(W;�0; s) to a �nite sum of integrals of the formJ 0(W; s) = ZNnnPn ZVnnMn W ��� I0 I �� p p�� �1(trX)dX j det(p)jsdp:Now, the argument of W lies in P2n, that is, the integral depends on �(0), the restri
tionof � to P2n. We 
an now use the theory of derivatives. Still the pole at s = s0 looks likeJ 0(W; s) = �(W )(q�s � q�s)k + � � �where � is now a (twisted) Shalika fun
tional on �(0) with respe
t toR02n = �r = � I X0 I �� p p� ��X 2Mn p 2 Pn� :4. Results on Shalika fun
tionals. First 
onsider the Shalika fun
tionals on represen-tations of GLn. These are mainly due to Ja
quet and Rallis [7℄.Theorem [7℄. Let � be an irredu
ible representation of GLn. Then there is at most a onedimensional spa
e of Shalika fun
tionals on �. If � has a Shalika fun
tional (untwisted),then � must be self{
ontragredient.It is not hard to establish the following result.Proposition. An irredu
ible representation of the form Ind(�
~�) with � square integrablehas a Shalika fun
tional.Shalika fun
tionals on Pn seem to be easier to analyze. The results are as follows.



6 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROTheorem. (i) If � = (�+)n�k�1	+(�) with � an irredu
ible representation of GLk, then� has no Shalika fun
tional unless k = 2m is even. In this 
ase there is at most a onedimensional spa
e of Shalika fun
tionals on � .(ii) If k = 0 above, then � has a Shalika fun
tional.Note that (ii) is responsible for the lo
al fun
tional equation for the exterior squareL-fun
tion, while (i) ensures that this method works equally well for the Ja
quet{Shalikaintegrals for the exterior square for GL2n+1.5. Consequen
es of the existen
e of Shalika fun
tionals for Pn. Using the resultson Shalika fun
tionals on Pn above, the 
anoni
al �ltration by derivatives for �(0) fromSe
tion 2, and the properties of the Whittaker fun
tions relative to this �ltration, one 
anprove the following result.Theorem. If all derivatives of � are 
ompletely redu
ible, then the non-ex
eptional polesof L(�;^2; s) are exa
tly the ex
eptional poles of the even derivatives of �, i.e., L(�;^2; s)is 
ompletely determine by the Lex(�(2m);^2; s) for m = 0; : : : ; n.6. Deformation and spe
ialization. Now take � = Ind(�1
� � �
�r) generi
 with ea
h�i quasi-square-integrable. We introdu
e 
omplex parameters by setting z = (z1; : : : ; zr),�i(zi) = �i�(zi) and �(z) = Ind(�1(z1)
 � � � 
 �r(zr)). Consider I = fJ(Wz;�; s) jWz 2W(�(z);  );� 2 S(kn)g. These fun
tions will de�ne rational fun
tions in q�zi and q�sand will form a fra
tional C [q�s ; q�zi ℄ ideal. It may no longer be prin
ipal. But for z ingeneral position, �(z) will be irredu
ible and its derivatives will be 
ompletely redu
ible[2℄. Our method then 
omputes a polynomial P (q�s; q�z) whi
h 
ontrols the poles as arational fun
tion in r + 1 variables. These poles will 
ome from Lex(�(z)(2m);^2; s).The existen
e of a (twisted) Shalika fun
tional for �(z)(2m) gives a 
ertain number oflinear 
onditions on the variables z1; : : : ; zr and s from the (twisted) self-
ontragredian
erequirement. Sin
e a fun
tion of several 
omplex variables 
annot have isolated singularitiesof 
o-dimension greater than or equal to two by Hartog's Theorem, then we really need only
onsider those Lex(�(z)(2m);^2; s) whi
h 
ontribute the 
o-dimension one poles. Thesederivatives will all be either of the form �i(zi)(ki) or of the form Ind(�i(zi)(ki)
�j(zj)(kj))with ~�i = �j up to a twist. The �rst type will reassemble to give a 
ontribution ofQL(�i(zi);^2; s) = QL(�i;^2; s+ 2zi). Sin
e we understand the Shalika fun
tionals onthe se
ond type of representation, these should 
ontribute QL(�i��j ; s+ zi+ zj). Hen
ewe would arrive atP (q�s; q�z)�1 =Yi L(�i;^2; s+ 2zi)Yi<jL(�i � �j ; s+ zi + zj):If we then let z ! 0 we get the expe
ted equalityL(�;^2; s) =Yi L(�i;^2; s)Yi<jL(�i � �j ; s):



EXTERIOR SQUARE L-FUNCTION FOR GL(n) 77. A 
omputation for square-integrables. Suppose now that � is the simplest non-
uspidal quasi-square-integrable: � = Q(Ind(�
 ��))with � a 
uspidal representation of GLk. The the derivatives of � are �(0) = � and�(k) = ��. Then the above givesL(�;^2; s) = Lex(�;^2; s)Lex(��;^2; s) = Lex(�;^2; s)L(�;^2; s+ 2):On the other hand, if I have 
omputed 
orre
tly, the predi
ted L-fun
tion should beL(�;^2; s) = L(�; Sym2; s)L(�;^2; s+ 2):This leads qui
kly to the following 
onje
ture.Conje
ture.Lex(Q(Ind(�
 � � � 
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