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Functoriality is one of the most central questions in the theory of au-
tomorphic forms and representations [1,2,35,36]. Locally and globally, it is
a manifestation of Langlands’ formulation of a non-abelian class field the-
ory. Now known as the Langlands correspondence, this formulation of class
field theory can be viewed as giving an arithmetic parameterization of lo-
cal or automorphic representations in terms of admissible homomorphisms of
(an appropriate analogue) of the Weil-Deligne group into the Langlands dual
group or L-group. When this conjectural parameterization is combined with
natural homomorphisms of the L-groups it predicts a transfer or lifting of
local or automorphic representations of two reductive algebraic groups. As
a purely automorphic expression of a global non-abelian class field theory,
global functoriality is inherently an arithmetic process.

In this paper we establish global functoriality from the split classical
groups Gn = SO2n+1, SO2n, or Sp2n to an appropriate general linear group
GLN , associated to the natural embedding of L-groups, for globally generic
cuspidal representations π of Gn(A) over a number field k. We had pre-
viously presented functoriality for the case Gn = SO2n+1 in [6], but were
limited at that time by a lack of suitable local tools in the other cases. The
present paper is by no means a simple generalization of [6]. There were seri-
ous local problems to be overcome in the development of the tools that now
allow us to cover all three series of classical groups simultaneously and that
will be applicable to other cases of functoriality in the future. In addition,
we have completely determined the associated local images of functoriality
and as a result are able to present several new applications of functoriality,
including both global results concerning the Ramanujan conjecture for the
classical groups and various applications to the local representation theory of
the classical groups.

There are several approaches to the question of functoriality: the trace
formula, the relative trace formula, and the Converse Theorem. In this work
we use the Converse Theorem, which is an L-function method. The Converse
Theorem itself states that if one has an irreducible admissible representation
Π ≃ ⊗′Πv of GLN(A), then Π is in fact automorphic if sufficiently many
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of its twisted L-functions L(s,Π × τ), with τ cuspidal automorphic repre-
sentations of smaller GLm(A), are nice [7,9]. As a vehicle for establishing
functoriality from cuspidal representations π = ⊗π′

v of some Gn(A) to an
automorphic representation of GLN(A), there are three main steps. The first
is to construct a candidate lift Π = ⊗′Πv. This is done by locally lifting
each local component representation πv of Gn(kv) to Πv of GLN(kv) in such
a way that twisted local L- and ε-factors are matched. At the archimedean
places and the finite places where πv is unramified we may accomplish this
local lift by using the local Langlands correspondence, i.e., the local arith-
metic Langlands classification. At the remaining finite set of places where πv

is ramified we must finesse the lack of a local Langlands correspondence by
using the stability of the local γ-factor under highly ramified twists. This
highly ramified twist has the effect of “washing out” any subtle local prop-
erties of the representation and gives a matching of local representations πv

of Gn(kv) and Πv of GLN(kv) for which the twisted local L- and ε-factors
match after this highly ramified twist. We used this method in [6], how-
ever the key new ingredient here is a uniform method of expressing the local
γ-factor as the Mellin transform of a Bessel function in fairly wide general-
ity which is applicable in all of our cases as well as many more [55]. With
this new general result in hand, the necessary stability result then follows
from the asymptotic properties of the Bessel functions as in [8]. With this,
we can finally lift πv locally to Πv at all places and form a candidate lift
Π = ⊗′Πv such that L(s,Π × τ) = L(s, π× τ) for all τ in a suitable twisting
set. The second step is to then control the analytic properties of the twisted
L-functions L(s, π × τ) on the classical groups. As in our previous work, we
control these L-functions through the Fourier coefficients of Eisenstein series
– the Langlands-Shahidi method. Once we know that the L(s, π × τ), and
hence L(s,Π × τ), are nice for a suitable twisting set of τ , we may move to
the third main step, which is the application of the Converse Theorem for
GLN to the representation Π . This then gives global functoriality from any
of the Gn to the appropriate GLN (Theorem 1.1).

Assuming the existence of global functoriality, the result which we es-
tablish here, Ginzburg, Rallis, and Soudry had previously used their descent
technique to characterize the image of global functoriality for globally generic
representations of the split classical groups [56]. In particular, they show the
image of global functoriality consists of isobaric sums of certain self-dual cus-
pidal representations of GLd(A) satisfying an appropriate L-function criterion
(Theorems 7.1 and 7.2). Using the rigidity of isobaric representations afforded
by the strong multiplicity one theorem for isobaric representations of GLN(A)
[21], this implies that there is in fact no ambiguity in our global functorial
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lift coming from our use of the highly ramified twist and we are able to then
compute explicitly the compatible local functorial lifts of the various series of
generic representations of Gn(kv). For the case of Gn = SO2n+1 this was done
in [30] and we follow that general method here, but again giving a uniform
treatment for all split classical groups. For generic supercuspidal representa-
tions πv we show that their lift is a local isobaric sum of certain self-dual
supercuspidal representations of general linear groups, again satisfying the ap-
propriate L-function condition (Theorem 7.3). With the local supercuspidal
lift in hand, one can then use the classification of local generic discrete se-
ries representations for the classical groups [24,25,39,40,43] to compute the
explicit form of their lifts (Proposition 7.3), and in turn work one’s way up
the classification to obtain explicit lifts of generic tempered representations
(Proposition 7.4) and finally of arbitrary generic representations (Proposition
7.5). Finally we are able to refine these local results to compute the local
factors of our global functorial lift Π (Theorem 7.4) with a second applica-
tion of the Converse Theorem. This explicit knowledge of the local functorial
lifts is crucial to our applications.

Let us note that in the case Gn = SO2n+1 Jiang and Soudry [26,27]

were able to combine our global functoriality with the local descent to S̃p2n

and then the theta correspondence to prove a Local Converse Theorem for
SO2n+1 over a p-adic field. This allowed them to prove the injectivity of the
local functorial lifts as we have defined them here and establish the local
Langlands correspondence for SO2n+1. Once the local descent is available in
the other cases, we would expect similar results to follow. However, for the
other classical groups the Local Converse Theorem will be more subtle since
the torus does not act transitively on the set of generic characters. This
will lead to more than one generic representation in each local L-packet,
distinguished by their character of genericity. For a clean statement one may
need to pass to similitude groups.

The global application we present is indeed of an arithmetic nature
and concerns the Ramanujan conjecture for generic representations of the
split classical groups. In the late 1970’s, when the first counterexamples to
the generalized Ramanujan conjecture for reductive groups were found for
Sp4 and U3 [18], the Ramanujan conjecture for a general reductive group
G(A) was refined and conjectured to hold for generic cuspidal representations
of quasi-split reductive groups [18,45,50]. On the other hand, Langlands, in
Section 3 of [35], suggests that the Ramanujan conjecture should hold for
cuspidal representations of quasi-split groups which functorially lift to iso-
baric representations of GLN(A) (cf. the Remark at the end of Section 10
here). This is the case for the globally generic representations of our classi-
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cal groups Gn(A) as we have noted above. Thus, with either formulation, we
would expect that if π ≃ ⊗′πv is a generic cuspidal automorphic represen-
tation of Gn(A) then each local component πv should be tempered. This is
widely believed to hold for GLN . The best current general bounds towards
Ramanujan for GLN(A) over a number field are those of Luo, Rudnick, and
Sarnak [37]. Via functoriality we are able to link the Ramanujan conjecture
for globally generic representations of the split classical groups to the Ra-
manujan conjecture for cuspidal representations of GLN (Theorem 10.1). In
particular, we show that the Ramanujan conjecture for these groups, in its
strong form giving temperedness at all places, would follow from the Ra-
manujan conjecture for GLN (Corollary 10.2), at least for globally generic
cuspidal representations, and any bounds towards Ramanujan for GLN , such
as the Luo–Rudnick–Sarnak bounds, lead to similar bounds for the classical
groups (Corollary 10.1). We note that once our results on functoriality are
extended to the case of global function fields, which is primarily a matter of
understanding the theory of L-functions for the classical groups over a global
function field, then the Ramanujan conjecture for these groups over a global
function field would become a theorem, thanks to Lafforgue’s proof of the
Ramanujan conjecture for GLN over a global function field [33]. We hope to
return to this extension in future papers.

Even though functoriality is inherently arithmetic, many of its applica-
tions are to the local representation theory of the groups Gn. These results
seem difficult to establish locally on the classical groups themselves, but are
rather straightforward applications of functoriality. The first local application
presented in this paper is a proof of Mœglin’s conjecture on the “dimension
relation” for generic discrete series representations πv of p-adic split classical
groups of Gn(kv) [38]. This relation essentially states that the sum of the
sizes of the Jordan blocks associated to πv is equal to the dimension of the
natural representation of the L-group of Gn, which is itself equal to the rank
N of the general linear group GLN to which πv functorially lifts (Theorem
8.1). Our second application is to establishing of the basic properties of the
conductor of a generic representation πv of Gn(kv). The conductor is the ex-
ponent f(πv) occurring in the local ε-factor ε(s, πv, ψv). We show, as is known
to be the case for general linear groups [19], that f(πv) is a non-negative in-
teger and f(πv) = 0 iff πv is unramified (Theorem 9.1). E. Lapid has informed
us that this should in turn have applications to the relative trace formula.
Finally, we turn to one local application which in turn is expected to have
global arithmetic applications. Using our bounds towards Ramanujan we show
that the local normalized intertwining operators N(s, π′

v ×πv) with πv a local
component of a globally generic cuspidal representation π of Gn(A) and π′

v
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a generic representation of GLm(kv), are holomorphic and non-vanishing for
Re(s) ≥ 0 (Theorem 11.1). For Gn = SO2n+1 this was done in [29]. This local
result is necessary for the understanding of the global residual spectrum of
the classical groups Gn(A) [29].

While this project has been in the works for several years, the finaliza-
tion of the proof of functoriality and the formulation of most of the applica-
tions took place while three of the authors were participants in the Thematic
Program on Automorphic Forms held at the Fields Institute for Research in
the Mathematical Sciences in the spring of 2003. We would like to thank
the Fields Institute for providing us with a wonderful working environment.
We would also like to thank D. Ban, C. Jantzen, G. Muić, and M. Tadić
for helpful discussions on the classification of generic discrete series repre-
sentations. Finally, we thank the referee for several pertinent comments and
corrections.
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1. Functoriality for classical groups

Let k be a number field and let A = Ak be its ring of adeles. We fix
a non-trivial continuous additive character ψ of A which is trivial on the
principal adeles k.

We will let Gn denote a split classical group of rank n defined over k.
More specifically, we will consider the following three cases.

(i) Odd orthogonal groups. In this case Gn = SO2n+1, the split spe-
cial orthogonal group in 2n+ 1 variables defined over k. For definiteness, we
will take Gn as the connected component of the isometry group of the form
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Φ2n+1 =




1
. .

.

1


. The connected component of the Langlands dual group

of Gn is LG
0
n = Sp2n(C).

(ii) Even orthogonal groups. In this case Gn = SO2n, the split spe-
cial orthogonal group in 2n variables defined over k. We will again take
Gn as the connected component of the isometry group of the form Φ2n =


1
. .

.

1


. The connected component of the Langlands dual group of Gn is

LG
0
n = SO2n(C).

(iii) Symplectic groups. In this case Gn = Sp2n, the symplectic group in
2n variables defined over k. For definiteness, we will take Gn as the isometry

group of the alternating form J2n =

(
0 Φn

−Φn 0

)
. The connected component

of the Langlands dual group of Gn is LG
0
n = SO2n+1(C).

In these realizations we can take the standard Borel subgroup of Gn to
be represented by upper triangular matrices. We will denote this Borel sub-
group by Bn and its unipotent radical by Un. The abelianization of Un is a
direct sum of copies of k and we may use ψ to define a non-degenerate char-
acter of Un(A) which is trivial on Un(k). By abuse of notation we continue
to call this character ψ.

In each of these cases there is a general linear group GLN such that
LG

0
n embeds naturally in GLN (C) = LGL

0
N . Since both Gn and GLN are split,

this embedding completely determines an L-homomorphism ι : LGn →֒ LGLN

by extending ι to be the identity on the Weil group. By Langlands’ principle
of functoriality [1,2,5], associated to these L-homomorphisms there should be
a transfer or lift of automorphic representations from Gn(A) to GLN(A) as
in the following table.
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Gn
LG

0
n ι : LG

0
n →֒ LGL

0
N

LGL
0
N GLN

SO2n+1 Sp2n(C) Sp2n(C) →֒ GL2n(C) GL2n(C) GL2n

SO2n SO2n(C) SO2n(C) →֒ GL2n(C) GL2n(C) GL2n

Sp2n SO2n+1(C) SO2n+1(C) →֒ GL2n+1(C) GL2n+1(C) GL2n+1

To be more precise, let π = ⊗′πv be an irreducible automorphic repre-
sentation of Gn(A).

For v a finite place of k where πv is unramified the representation
πv of Gn(kv) is completely determined by its Satake parameter, a semi-
simple conjugacy class [tv] in LG0

n [2,47]. [tv] then determines a semi-simple

conjugacy class [ι(tv)] in LGL
0
N . An unramified irreducible admissible rep-

resentation Πv of GLN (kv) is called the local functorial lift of πv if its

associated semi-simple conjugacy class in LGL
0
N is [ι(tv)], or equivalently,

L(s,Πv) = det(I − tvq
−s
v )−1 = L(s, πv).

If v is an archimedean place, then by the arithmetic Langlands classi-

fication πv is determined by an admissible homomorphism ϕv : Wv −→ LG
0
n

where Wv is the local Weil group of kv [2,34]. The composition ι ◦ ϕv is an

admissible homomorphism of Wv into LGL
0
2n and hence determines a repre-

sentation Πv of GL2n(kv) such that L(s,Πv) = L(s, πv). This is again the
local functorial lift of πv.

An irreducible automorphic representation Π = ⊗′Πv of GL2n(A) is
called a functorial lift of π if for every archimedean place v and for almost
all non-archimedean places v for which πv is unramified we have that Πv is
a local functorial lift of πv. In particular this entails an equality of (partial)
Langlands L-functions LS(s,Π) =

∏
v/∈S L(s,Πv) =

∏
v/∈S L(s, πv) = LS(s, π).

(We had previously referred to this lift as a weak lift, but there is noth-
ing weak about it. This definition of a functorial lift is consistent with the
formulations in [1,5,36].)

Let π be an irreducible cuspidal representation of Gn(A). We say that
π is globally generic if there is a cusp form ϕ ∈ Vπ such that ϕ has a non-
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vanishing ψ-Fourier coefficient along Un, i.e., such that
∫

Un(k)\Un(A)

ϕ(ug)ψ−1(u) du 6= 0.

Cuspidal automorphic representations of GLn are always globally generic in
this sense. For cuspidal automorphic representations of the classical groups
this is a condition. In general the notion of being globally generic may de-
pend on the choice of splitting of the group. However, as is shown in the
Appendix to this paper, given a π which is globally generic with respect to
some splitting there is always an “outer twist” which is globally generic with
respect to a fixed splitting. This outer twist provides an abstract isomorphism
between globally generic cuspidal representations and will not effect the L-
or ε-factors nor the notion of the functorial lift. Hence we lose no generality
in considering cuspidal representations that are globally generic with respect
to our fixed splitting.

The principle result that we will prove in this paper is the following.

Theorem 1.1. — Let k be a number field and let π be an irreducible
globally generic cuspidal automorphic representation of Gn(A). Then π has a
functorial lift to GLN(A).

The low dimensional cases of this theorem, that is, when n = 1, are
already well understood. As we will need them in the later sections of this
paper, let us review them briefly here.

(i) Odd orthogonal groups. When n = 1 the split SO3 ≃ PGL2. The asso-
ciated lifting from PGL2 to GL2 simply takes a representation π of PGL2(A)
and views it as a representation Π of GL2(A) having trivial central charac-
ter.

(ii) Even orthogonal groups. When n = 1 the split SO2 ≃ Gm ≃ GL1.
The natural embedding of L-groups then embeds GL1 in GL2 as a split rank
one torus. The associated lifting then takes a character µ of A× ≃ GL1(A) to
the appropriate constituent of the induced representation Ind(µ⊗µ−1), namely
the isobaric sum Π = µ ⊞ µ−1 which takes the local Langlands quotient
at each place if there is reducibility [35]. Let us note that if we take a
character µ of A× and let πµ be the corresponding representation of SO2(A)
then the standard L-function of πµ is the degree two L-function associated
to the standard embedding of L-groups discussed above, so indeed we have
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L(s, πµ) = L(s, µ)L(s, µ−1) = L(s, µ ⊞ µ−1), with similar equalities locally. In
what follows, we will make recourse to the work of Mœglin and Tadić on
local discrete series representations [39,40]. In keeping with their conventions,
we will adopt the convention that SO2(kv), for a p-adic local field kv, has no
supercuspidal representations, nor discrete series representations.

(iii) Symplectic groups. When n = 1 then Sp2 ≃ SL2 and this functori-
ality is also well understood. The map on dual groups is then PGL2(C) ≃
SO3(C) →֒ GL3(C), which is the adjoint representation of PGL2(C). Thus if
π is a generic cuspidal representation of Sp2(A) ≃ SL2(A) then its functorial
lift Π to GL3(A) is the adjoint square lifting of Gelbart and Jacquet [11].

Thus we will concentrate primarily on the cases where n ≥ 2.

The preparations for and proof of Theorem 1.1 when n ≥ 2 will take
place over the next five sections. Note that the case of Gn = SO2n+1 is
completely contained in our previous paper [6], but we include it here to
provide a uniform treatment of all classical groups.

2. The Converse Theorem

In order to effect the functorial lifting from Gn to GLN we will use the
Converse Theorem for GLN as we did in [6]. We give the formulation here.

Let us fix a finite set S of finite places of k. For each integer m, let

A0(m) = {τ | τ is a cuspidal representation of GLm(A)}

AS
0 (m) = {τ ∈ A0(m) | τv is unramified for all v ∈ S}.

We set

T (N − 1) =

N−1∐

m=1

A0(m) and T S(N − 1) =

N−1∐

m=1

AS
0 (m).

If η is a continuous character of k×\A×, let us set

T (S; η) = T S(N − 1) ⊗ η = {τ = τ ′ ⊗ η : τ ′ ∈ T S(N − 1)}.

Theorem 2.1 (Converse Theorem). — Let Π = ⊗′Πv be an irreducible
admissible representation of GLN(A) whose central character ωΠ is invariant
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under k× and whose L-function L(s,Π) =
∏

v L(s,Πv) is absolutely convergent
in some right half plane. Let S be a finite set of finite places of k and let η
be a continuous character of k×\A×. Suppose that for every τ ∈ T (S; η) the
L-function L(s,Π × τ) is nice, that is, satisfies

1. L(s,Π × τ) and L(s, Π̃ × τ̃) extend to entire functions of s ∈ C,

2. L(s,Π × τ) and L(s, Π̃ × τ̃) are bounded in vertical strips, and
3. L(s,Π × τ) satisfies the functional equation

L(s,Π × τ) = ε(s,Π × τ)L(1 − s, Π̃ × τ̃).

Then there exists an automorphic representation Π ′ of GLN(A) such that
Πv ≃ Π ′

v for almost all v. More precisely, Πv ≃ Π ′
v for all v /∈ S.

In the statement of the theorem, the twisted L- and ε-factors are de-
fined by the products

L(s,Π × τ) =
∏

v

L(s,Πv × τv) ε(s,Π × τ) =
∏

v

ε(s,Πv × τv, ψv)

of local factors as in [7,6].

To motivate the next few sections, let us describe how we will apply
this theorem to the problem of Langlands lifting from Gn to GLN . We begin
with our globally generic cuspidal automorphic representation π = ⊗′πv of
Gn(A). For each place v we need to associate to πv an irreducible admissible
representation Πv of GLN(kv) such that for every τ ∈ T (S; η) we have

L(s, πv × τv) = L(s,Πv × τv)

ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

For archimedean places v and those non-archimedean v where πv is unram-
ified, we take Πv to be the local functorial lift of πv described above. For
those places v where πv is ramified, we will take for Πv an essentially arbi-
trary irreducible admissible generic representation of GLN(kv) having trivial
central character. However, we must choose our finite set of places S of k
such that S contains the places where πv is ramified and choose our character
η of k×\A× such that ηv is sufficiently highly ramified so that L(s, πv × ηv),
L(s,Πv × ηv), ε(s, πv × ηv, ψv), and ε(s,Πv × ηv, ψv) are all standard. This
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will be possible by the result on the stability of the local γ-factors that we
establish in Section 4.

Now consider the restricted tensor product Π = ⊗′Πv. This is an irre-
ducible representation of GLN(A). With the choices above we have

L(s, π × τ) = L(s,Π × τ)

ε(s, π × τ) = ε(s,Π × τ)

for Re(s) >> 0 and all τ ∈ T (S; η). This is our candidate lift.

The theory of L-functions for Gn ×GLm, which we address in the next
section, will then guarantee that the twisted L-functions L(s, π × τ) are nice
for all τ ∈ T (S; η). Then the L(s,Π×τ) will also be nice and Π satisfies the
hypotheses of the Converse Theorem. Hence there exists an irreducible auto-
morphic representation Π ′ of GLN(A) such that Πv ≃ Π ′

v for all archimedean
v and almost all finite v where πv is unramified. Hence Π ′ is a functorial
lift of π.

3. L-functions for Gn ×GLm

Let π be a globally generic cuspidal representation of Gn(A). For τ
a cuspidal representation of GLm(A) we will let L(s, π × τ) be the com-
pleted L-function as defined in [51] via the theory of Eisenstein series. The
local factors are then defined via the arithmetic Langlands classification for
the archimedean places, through the Satake parameters for the finite un-
ramified places, as given by the poles of the associated γ–factors (or local
coefficients) if πv and τv are tempered, by analytic extension if πv and τv are
quasi-tempered, and via the representation theoretic Langlands classification
otherwise.

The global theory of these twisted L-functions is now quite well under-
stood.

Theorem 3.1. — Let S be a non-empty set of finite places of k. Let η
be a character of k×\A× such that, for some v ∈ S, the square η2

v is ramified.
Then for all τ ∈ T (S; η) the L-function L(s, π × τ) is nice, that is,
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1. L(s, π × τ) is an entire function of s,
2. L(s, π × τ) is bounded in vertical strips of finite width, and
3. we have the functional equation

L(s, π × τ) = ε(s, π × τ)L(1 − s, π̃ × τ̃ ).

Proof: (1) In the case of Gn = SO2n+1 we explicitly established this in [6].
In all cases this now follows from the more general Proposition 2.1 of [32].
Note that in view of the results of Muić [44] and of [4], the necessary result
on normalized intertwining operators, Assumption 1.1 of [32], usually referred
to as Assumption A [28], is valid in all cases as proved in [28,31]. Note that
this is the only part of the theorem where the twisting by η is needed.

(2) The boundedness in vertical strips of these L-functions is known in
wide generality, which includes the cases of interest to us. It follows from
Corollary 4.5 of [12] and is valid for all τ ∈ T (N − 1), provided one removes
neighborhoods of the finite number of possible poles of the L-function.

(3) The functional equation is also known in wide generality and is a
consequence of Theorem 7.7 of [51]. It is again valid for all τ ∈ T (N −1). �

In order to mediate between the result as stated and the references for
its proof, let us recall how these twisted L-functions are obtained from the
theory of Eisenstein series.

Given our classical group Gn and a general linear group GLm with m ≥
1 let Gm+n be the classical group of the same type as Gn, but of rank
m + n. Then if we let M = GLm × Gn then M is a Levi subgroup of a
standard maximal parabolic subgroup P = Pm,n ⊂ Gm+n. Let d = m+ n and
let N = Nm,n be the unipotent radical of P.

Let A×,1 denote the group of ideles of norm 1. Fix a subgroup A+ ⊂
A× such that A+ ≃ R×

+ and A× = A×,1 × A+. It suffices to assume that τ
is unitary and its central character is a character of k×\A× which is trivial
on A+. Any cuspidal representation τ of GLr(A) can be written as τ ≃
τ ′ ⊗ | det |s

′

, where τ ′ is unitary with central character trivial on A+, and
then L(s, π × τ) = L(s + s′, π × τ ′). Note that if τ ∈ T (S; η), then so is τ ′.
Hence we may assume that τ is unitary.

With π and τ as in the theorem, then σ = τ̃ ⊗ π is a unitary globally
generic representation of M(A). As such, we can form the induced represen-
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tation

I(s, σ) = Ind
Gd(A)
P(A) (| det |sτ̃ ⊗ π).

If α is the simple root associated to the maximal parabolic subgroup P and
we let, as usual, α̃ = ρP/〈ρP, α〉 then as in [51]

I(s, σ) = Ind
Gd(A)
P(A) (e〈sα̃,HP〉σ).

Since the adjoint action r of LM on the Lie algebra Ln of LN has two
irreducible constituents in general, that is, r = r1 ⊕ r2, then the L-functions
which naturally arise in the theory of intertwining operators and Eisenstein
series for these representations will be a product L(s, σ, r1)L(2s, σ, r2) where

L(s, σ, r1) = L(s, π × τ),

the L-function of interest, and a second L-function, namely

L(2s, σ, r2) = L(2s, τ, Sym2) if Gn = SO2n+1,

and if m ≥ 2 and Gn = Sp2n or Gn = SO2n, then

L(2s, σ, r2) = L(2s, τ,∧2).

In these later two cases, if m = 1, then r = r1 is irreducible.

4. Stability of γ-factors for Gn × GL1

This section is devoted to the formulation and proof of the stabil-
ity of the local γ-factors for generic representations of the split classical
groups. This result is necessary for defining a suitable local lift at the non-
archimedean places where we do not have the local Langlands conjecture at
our disposal. Following the ideas of [8] our method will be first to express
the γ–factor as the Mellin transform of a certain partial Bessel function. This
has been done in our cases as well as others in [55]. Then we will analyze
the asymptotics of the Bessel functions as in [8] to obtain the stability. A
more complete exposition and extensions to quasi-split groups will soon be
available in [10].

For this section, let k denote a non-archimedean local field of character-
istic zero. Let π be a generic irreducible admissible representation of Gn(k)
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and let η be a continuous character of GL1(k) ≃ k×. Let ψ be a fixed non-
trivial additive character of k. Let γ(s, π × η, ψ) be the associated γ-factor
as defined in Theorem 3.5 of [51]. These are defined inductively through the
local coefficients of the local induced representations analogous to those given
above. They are related to the local L- and ε-factors by

γ(s, π × η, ψ) =
ε(s, π × η, ψ)L(1 − s, π̃ × η−1)

L(s, π × η)
.

The main result of this section is the following.

Theorem 4.1. — Let π1 and π2 be two irreducible admissible generic
representations of Gn(k). Then for every sufficiently highly ramified character
η of k× we have

γ(s, π1 × η, ψ) = γ(s, π2 × η, ψ).

For the case of Gn = SO2n+1 this is [8].

4.1. Preliminaries on Bessel functions. — Let us review the basic def-
initions from Section 3 of [8]. Note that, as their proofs show, the results in
Section 3 of [8] are valid for any Chevalley group over k, not just SO2n+1.
In this paper we specialize them to the split classical groups.

Fix G = Gn and recall that B = Bn is the standard upper triangular
Borel subgroup of G, T = Tn the standard maximal split torus of B, i.e.,
the diagonal matrices in Gn, and U = Un is its unipotent radical. Let Φ+ be
the set of positive roots defining U and let ∆ denote the associated simple
roots. Let W be the Weyl group of G. Then W ≃ N(T)/T and for each
w ∈ W we choose a representative in N(T), which by abuse of notation we
will continue to call w. To be specific, for what follows it will be necessary
to choose the representatives as in Section 2 of [55] (see Section 4.2 below).
For α ∈ Φ+ let Uα denote the one parameter root subgroup corresponding to
α [57]. For any w ∈W let us set

U−
w =

∐

α>0
wα<0

Uα and U+
w = w−1Bw ∩ U

so that U = U+
wU−

w .
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Recall that we say that w ∈ W supports a Bessel function if for every
α ∈ ∆ such that wα > 0 we have that wα ∈ ∆. If we let w0 denote the
long Weyl element of W then this is equivalent to w0w being the long Weyl
element of the Levi subgroup Mw of some standard parabolic subgroup Pw ⊃
B. In this case, U−

w is the unipotent radical of Pw. Let Aw denote the center
of Mw. Then

Aw = {t ∈ T | wα(t) = 1 for all α ∈ ∆ with wα > 0}.

Suppose that w ∈ W is such that w supports a Bessel function and
the only w′ ∈ W with w′ ≤ w in the Bruhat order which support a Bessel
function are w itself and the identity e. This is equivalent to Pw being a
maximal parabolic subgroup. Let α = αw be the simple root associated to
Pw. There is an injection α∨ from k× into Aw such that α(α∨(t)) = t for
all t ∈ k× and, setting A0

w = α∨(k×), we have the decomposition Aw = ZA0
w,

where Z = ZG is the (finite) center of G. (See, for example, the remarks after
Assumption 5.1 in [55].)

Now let π be an irreducible admissible generic representation of G(k).
Let v ∈ Vπ be such that the associated Whittaker function Wv ∈ W(π, ψ)
satisfies Wv(e) = 1. Then if w ∈ W supports a Bessel function, and is a
minimal non-trivial such with respect to the Bruhat order, we may formally
define the associated Bessel function as the function on A0

w ≃ k× defined by

Jπ,w(a) =

∫

U−
w(k)

Wv(awu)ψ
−1(u) du.

Since the arguments of Section 4 of [8] again only depended on G being
a Chevalley group, then by the Corollary to Proposition 4.2 we know that
Jπ,w exists and is independent of the choice of v ∈ Vπ used to define it.
This function is hard to work with. As a substitute, for every compact open
subgroup Y ⊂ U−

w(k) we define the partial Bessel function jπ,w,v,Y (a) by

jπ,w,v,Y (a) =

∫

Y

Wv(awy)ψ
−1(y) dy.

In the case where π and w are fixed, we will simply write jπ,w,v,Y = jv,Y .

4.2. An integral representation for γ(s, π × η, ψ). — Our proof of the
stability of the γ-factor is based upon expressing the γ-factor as the Mellin
transform of one of our Bessel functions.
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Proposition 4.1. — Let π be a generic representation of Gn(k) and η a
non-trivial character of k× such that η2 is ramified. Then for each classical
group Gn there exists a Weyl element w which supports a Bessel function and
is minimal, non-trivial with this property, an elementary factor g(s, η), and a
rational number δ such that for every sufficiently large open compact subset
Y ⊂ U−

w(k), setting jv,Y = jπ,w,v,Y , we have

γ(s, π × η, ψ)−1 = g(s, η)

∫

k×

jv,Y (a)η(a)|a|s−n+δ d×a.

The data for each classical group is as follows.

(i) If Gn = SO2n+1, then the Weyl element is w =




1
−I2n−1

1


. The

elementary factor is simply g(s, η) = η(−1)n+1 and δ = 1/2.

(ii) If Gn = SO2n, then the Weyl element is w =




1
−K2n−2

1


 where

K2n−2 =




1
. . .

1
0 1
1 0

1
. . .

1




.

The elementary factor is g(s, η) = η(−1)n+1γ(2s, η2, ψ)−1 and δ = 1.

(iii) If Gn = Sp2n, then the Weyl element is w =




−1
−I2n−2

1


. The

elementary factor is again g(s, η) = η(−1)n+1γ(2s, η2, ψ)−1 and now δ = 0.

In all cases, a = diag(a, 1, . . . , 1, a−1) ∈ A0
w.

This proposition is essentially Corollary 1.2 of [55]. To obtain it in this
form, we must relate the Bessel functions of [55] to the ones we have defined
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here. While this is essentially an exercise, it will be useful to have it written
down.

4.2.1. Corrections to [55]. — We begin with some minor corrections to
[55]. In that paper the relevant Weyl elements w0 were miscalculated. This
results in the following corrections (in the notation of that paper).

(i) In the case GL1 × SO2n+1 ⊂ SO2n+3 the relevant Weyl element w0

given in (4.19) is replaced by

w0 =




(−1)n

−I2n+1

(−1)n


 .

This change only effects the elementary factor g(s, η) in a minor way. It will
change formula (7.12) to

C(s,η ⊗ σ)−1 = η(−1)n+1γ(2s, η2, ψ)−1×

×

∫

F×

jṽ,N0





h
I2n−1

h−1






1
−I2n−1

1




 η(h)|h|s−n+1/2 d×h

with a similar change of η(−1) to η(−1)n+1 in formulas (1.5) and (1.6).

(ii) In the case GL1 × SO2n ⊂ SO2n+2 the relevant Weyl element w0

given in (4.43) is replaced by

w0 =




(−1)n

−K2n

(−1)n


 .

The source of the error is an incorrect multiplication in (4.43). This change
only effects the elementary factor g(s, η) in a minor way. It will change for-
mula (7.13) to

C(s,η ⊗ σ)−1 = η(−1)n+1γ(2s, η2, ψ)−1×

×

∫

F×

jṽ,N0





h
I2n−2

h−1






1
−K2n−2

1




 η(h)|h|s−n+1 d×h

with a similar change of η(−1) to η(−1)n+1 in formulas (1.5) and (1.7).
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(iii) In the case GL1×Sp2n ⊂ Sp2n+2 the relevant Weyl element w0 given
in (4.56) is replaced by

w0 =




(−1)n+1

−I2n

(−1)n


 .

The source of the error is an incorrect multiplication in (4.56). This change
only effects the elementary factor g(s, η) in a minor way. It will change for-
mula (7.26) to

C(s,η ⊗ σ)−1 = η(−1)n+1γ(2s, η2, ψ)−1×

×

∫

F×

jṽ,N0





h
I2n−2

h−1






−1
−I2n−2

1




 η(h)|h|s−n d×h

with a similar change of η(−1) to η(−1)n+1 in formulas (1.5) and (1.7).

4.2.2. A comparison of Bessel functions. — For this section, let us
use j̃ to denote any of the Bessel functions occurring in [55]. Our goal is
to express the Bessel functions j̃ṽ,N0

(ṁ) occurring in Corollary 1.2 of [55] in
terms of those we have defined here.

(i) Let Gn = SOm with m = 2n+1 or 2n. In Gn+1 consider the standard
(upper triangular) maximal parabolic subgroup Pn+1 = Mn+1Nn+1 with Levi
subgroup Mn+1 = M ≃ GL1 × Gn. In our geometric model, this would be
the stabilizer of the isotropic line through (0, . . . , 0, 1). The unipotent radical
then takes the form

Nn+1(k) =



n(t) =




1 t −1
2
〈t, t〉

Im −t∗

1


∣∣t ∈ km





where 〈t, t〉 = tΦm
tt and t∗ is the adjoint of t with respect to this form.

Let π be our generic representation of Gn(k). Then in the expression
for j̃ṽ,N0

(ṁ) from Corollary 1.2 of [55] we have that

ṁ =



h
Im−2

h−1


w = hw ∈ Gn ⊂ Mn+1

where w is as in our integral representation and ṽ ∈ W(π, ψ) with Wṽ(e) =
1. Here N0 ⊂ N(k) is a (suitable) open compact subgroup of the opposite
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unipotent subgroup N to N = Nn+1. In fact, the formulas hold for any such
choice of ṽ and sufficiently large N0 (see Theorem 6.2 of [55]).

We now turn to the Bessel function itself as given in Theorem 6.2
of [55]. First j̃ṽ,N0

(ṁ) = j̃ṽ,N0
(ṁ, y0) with y0 ∈ k× satisfying ordk(y0) =

−cond(ψ) − cond(η2). Then the Bessel function is given by (6.26) of [55],
which we can write as

j̃ṽ,N0
(ṁ, y0) =∫

UM,ṅ\UM

Wṽ(ṁu
−1)ϕ(uα∨(y0)

−1α∨(ẋα)ṅα∨(ẋα)−1α∨(y0)u
−1)ψ(u) du.

Here α∨ : k× → ZG\ZM, ẋα ∈ k× a specified choice, and ϕ is the characteristic
function of N0. Throughout, ṅ is a specific Z0

MUM-orbit representative in N
and ṁ and ṅ are related by w−1

0 ṅ = ṁṅ′ṅ ∈ Mn+1Nn+1Nn+1.

Let us first consider the domain of integration. By Proposition 4.4 or
Proposition 4.8 of [55] we have that

UM,ṅ = U′
M,ṁ = {u ∈ UM | ṁuṁ−1 ∈ UM and ψ(ṁuṁ−1) = ψ(u)}.

In our situation, UM = Un ⊂ Gn and ṁ = hw. Then ṁuṁ−1 ∈ Un iff wuw−1 ∈
h−1Unh = Un, that is, u ∈ U+

w−1 = U+
w . Since h acts trivially on U+

w we see
that UM,ṅ = U+

w so that we can take UM,ṅ\UM ≃ U+
w\Un to be U−

w , which
we note depends only upon w.

Next we turn to the effect of the cutoff characteristic function ϕ. Taking
u ∈ U−

w we see that the actual domain of integration is determined by the
condition

uα∨(y0)
−1α∨(ẋα)ṅα∨(ẋα)−1α∨(y0)u

−1 ∈ N0.

A priori, this condition depends on ṅ which is related to ṁ and hence h. In
fact, as we shall see, this is not the case. First note that this condition is
equivalent to

uα∨(ẋα)ṅα∨(ẋα)−1u−1 ∈ α∨(y0)N0α
∨(y0)

−1.

But α∨(y0)N0α
∨(y0)

−1 is another compact open subgroup of the same type,
so we may ignore this in our situation. As in (7.1) of [55] we write

w−1
0 ṅ(t) = ṁṅ′ṅ(y) where ṅ(y) =




1
y Im

−1
2
y∗y −y∗ 1



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with y ∈ km written as a column vector. Now according to section 7 of [55] in
our situation we have t = (1, 0, . . . , 0, h) and ẋα = h−1. Then y∗ = 2〈t, t〉−1t =
(h−1, 0, . . . , 0, 1) and

α∨(ẋα)ṅ(y)α∨(ẋα)−1 = α∨(h−1)ṅ(y)α∨(h) = ṅ(y′)

where y′ = t(−h, 0, . . . , 0,−1). So the condition on the cutoff of our domain
of integration is that

uṅ(t(−h, 0, . . . , 0,−1))u−1 ∈ N0.

For certitude, let us take N0 to be defined as

N0 =



n(y) =




1
y Im

−1
2
y∗y −y∗ 1


∣∣yi ∈ p

−Mi





for some sufficiently large integer vector M = (M1, . . . ,Mm). As M increases,
these exhaust N. Now recall that u ∈ U−

w and this means that we can write

u = u(x) =




1 x −1
2
x∗x

Im−2 −x∗

1


 with x ∈ km−2

which we view as embedded in M via u ∈ Un ≃ UM ⊂ M. Then in general
un(y)u−1 = n(uy) with uy ∈ km. In our situation y = t(−h, 0, . . . , 0,−1)
and so u(x)y = t(1

2
x∗x− h, tx∗,−1). Thus our domain of integration is over

Y ⊂ U−
w(k) defined by the conditions

Y =

{
u = u(x) | xi ∈ p

−Mm−iwith h ≡
1

2
x∗x (mod p

−M1)

}
.

To rid ourselves of the remaining dependence on h we enlarge N0, which we
are allowed to do. By choosing M1 sufficiently large, which may depend on
h and M2, . . . ,Mm−1, we obtain a domain of integration

Y =
{
u = u(x) | xi ∈ p

−Mm−i, 1 ≤ i ≤ m− 2
}

which is now independent of h and with this choice of Y and M1 we have

j̃ṽ,N0
(hw) = jπ,ṽ,w,Y(h) = jṽ,Y(h).
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(ii) In the symplectic case Gn = Sp2n we must use the Bessel function
j̃′
ṽ,N0

(ṁ) = j̃′
ṽ,N0

(ṁ, y0) = j̃ṽ,N0
(ṁH, y0) as in (7.24) and (7.25) of [55]. Here

H is the matrix

H =




1 0 h
I2n−2 0

1


 ∈ UM ≃ Un.

Its effect in computing the Bessel function is to replace ṅ by HṅH−1. But
by (7.27) of [55] this matrix is represented by

HṅH−1 =




1
y1 I2n

Y1 y
′
1 1




with y′1 = t(−h−1, 0, . . . , 0, 1). Comparing this with our formula for ṅ(y) above
in the orthogonal case we see that the same analysis will go through. So in
this case we also have j̃′

ṽ,N0
(hw) = jṽ,Y(h) for any sufficiently large open

compact Y ⊂ U−
w(k).

4.2.3. Proof of Proposition 4.1. — With the identifications above, the
fact that we have the integral representation of Proposition 4.1 is simply a
restatement of Corollary 1.2 of [55]. To have the Proposition as stated, we
must check that each Weyl element w that occurs both supports a Bessel
function and is minimal non-trivial with this property. This is easy enough
to check using the criterion in terms of parabolic subgroups from Proposition
3.2 of [8] mentioned above. �

Note that in the case of Gn = SO2n+1 this integral representation is
the same as that of Proposition 4.1 of [8] which was derived from Soudry’s
integral representation.

4.3. Asymptotics of Bessel functions. — In this section we investigate
the asymptotics of the Bessel functions jv,Y(a) defined above.

We will follow the development presented for SO2n+1 in [8]. The paper
[8] was written for SO2n+1 because that was the only case in which there was
an integral representation for the γ-factor in terms of Bessel functions. This
integral representation was presented in Section 2 of [8] and that section is
specific to SO2n+1. Section 3 and the first parts of Section 4 of [8] rely only
on results about Chevalley groups from, say, Steinberg’s notes on Chevalley
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groups [57] and hence remain valid for any of our groups Gn. The remainder
of Section 4 and Section 5 up through Proposition 5.1 of [8] are more or
less formal and rely only on standard facts about the Bruhat decomposition,
the Bruhat order, and the fact that the Weyl element w occurring in jv,Y(a)
has the property that w supports a Bessel function and that the only Weyl
elements w′ with w′ ≤ w which support a Bessel function are w itself and the
identity e. These facts remain true for our w as noted above, so the results
of these sections of [8] remain valid in all our present cases. In particular,
quoting Proposition 5.1 of [8] we have the following.

Proposition 4.2. — There exists a vector v′π ∈ Vπ and a compact neigh-
borhood BK1 of the identity e in B\Gn such that if χ1 is the character-
istic function of BK1, we have that for all sufficiently large compact open
Y ⊂ U−

w(k)

jv,Y(a) =

∫

Y

Wv(awy)χ1(awy)ψ
−1(y) dy +Wv′π(a).

From this point on the situation is slightly different from that in [8]
because in the cases Gn = SO2n and Gn = Sp2n the groups have non-trivial
finite centers. Still following [8], for each simple root α let t 7→ uα(t) be the
associated one parameter subgroup of U. For any positive integer M let

U(M) = 〈uα(t) | α ∈ ∆; |t| ≤ qM〉.

This is a compact open subgroup of U(k) and as M grows these exhaust U.
For any v ∈ Vπ let us set

vM =
1

V ol(U(M))

∫

U(M)

ψ−1(u)π(u)v du.

Since (π, Vπ) is smooth this is actually a finite sum and so vM ∈ Vπ.

Then as noted in [8] as long as Y is sufficiently large relative to M we
may choose v′π and K1 in Proposition 4.2 such that K1 ⊂ Stab(vM ) and we
have

∫

Y

Wv(awy)χ1(awy)ψ
−1(y) dy =

∫

Y

WvM
(awy)χ1(awy)ψ

−1(y) dy.

Consider this latter integral. If we write awy = utk1 with u ∈ U(k),
t ∈ T(k), and k1 ∈ K1, so that utk1 ∈ BK1, then since K1 ⊂ Stab(vM ) we
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have WvM
(awy) = ψ(u)WvM

(t). As shown in Lemma 4.1 of [8] the support of
WvM

on the torus T is contained in the set

TM = {t ∈ T(k) | α(t) ∈ 1 + p
M for all simple α}.

For M ′ a positive integer, let us set T1
M ′ = {t ∈ T(k) | t ≡ I (mod pM ′

)}.

Lemma 4.1. — For M sufficiently large, TM ⊂ Z · T1
M ′ where Z is the

center of Gn and M ′ = M − ord(2).

Proof: Let us consider the case of Gn = SO2n. The others are handled
accordingly. With our basis, we can write an element t of the torus as
t = diag(t1, . . . , tn, t

−1
n . . . , t−1

1 ). The simple roots are then αi(t) = ti/ti+1 for
i = 1, . . . , n − 1 and αn(t) = tn−1tn. If t ∈ TM then αn−1(t) ∈ 1 + pM and
αn(t) ∈ 1 + pM implies their ratio lies in there as well, that is, t2n ∈ 1 + pM .

In general, if t2 ∈ 1+pM then t is a unit satisfying t2−1 ≡ 0 (mod pM).
Letting P (X) = X2 − 1 we have that ord(P ′(t)) = ord(2) and the roots of
P (X) = 0 in O are ±1. Thus, say by Corollary 1 of Theorem 2 in ch.III,
§4, no.4 of [3], we know t ≡ ±1 (mod pM ′

) where M ′ = M − ord(2).

Thus tn ∈ ±1 + pM ′

. Then since αn−1(t) = tn−1/tn ∈ 1 + pM ⊂ 1 + pM ′

we have that tn−1 ∈ ±1 + pM ′

and that the sign of tn and tn−1 must be the
same. Continuing with the rest of the roots in this manner, we find that
±t ∈ T1

M ′ and we are done since Z = {±1}. �

Hence if t ∈ TM we can further write t = zt1 with z ∈ Z and t1 ∈ T1
M ′ .

It is easy to check that for t ∈ TM we have Wv(t) = WvM
(t), so that if we

choose M from the beginning so that T1
M ′ ⊂ T ∩ Stab(v) then we see that

WvM
(t) = Wv(t) = Wv(zt

1) = ωπ(z)Wv(t
1) = ωπ(z).

So, in our integral, we see that WvM
(awy)χ1(awy) 6= 0 iff awy ∈ UTMK1

or y ∈ (aw)−1UTMK1. If we write this decomposition as awy = utk1 =
u(awy)z(awy)t1k1, then we find

∫

Y

Wv(awy)χ1(awy)ψ
−1(y) dy =
∫

Y∩(aw)−1UTMK1

ψ(u(awy))ψ−1(y)ωπ(z(awy)) dy.

Then our previous proposition can now be written as follows.
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Proposition 4.3. — Fix v ∈ Vπ such that Wv(e) = 1 and choose M
sufficiently large so that T1

M ′ ⊂ T ∩ Stab(v). There exists a vector v′π ∈ Vπ

and a compact open subgroup K1 such that for Y ⊂ U−
w(k) sufficiently large

we have

jv,Y(a) =

∫

Y∩(aw)−1UTM K1

ψ(u(awy))ψ−1(y)ωπ(z(awy)) dy +Wv′π(a).

This proposition gives us the asymptotics of jv,Y(a) in the following
sense. The function Wv′π is a smooth Whittaker function and hence vanishes
for a large and exhibits the standard asymptotics of the Whittaker function
as a goes to zero. Thus the integral expression contains all asymptotics of the
Bessel function as a gets large. Even though this integral is a complicated
exponential sum, it only depends on π through its central character ωπ.

4.4. Stability of γ-functions depending on the central character. — As
an immediate consequence of Proposition 4.3 we obtain the following stability
result.

Proposition 4.4. — Let π1 and π2 be two irreducible admissible generic
representations of Gn(k) having the same central character. Then for every
sufficiently highly ramified character η of k× we have

γ(s, π1 × η, ψ) = γ(s, π2 × η, ψ).

Proof: Let vi ∈ Vπi
be chosen such that for each we have Wvi

(e) = 1. Choose
a large integer M such that T1

M ′ ⊂ T ∩ Stab(vi). Let K0 be a compact open
subgroup of Gn such that K0 ⊂ Stab(v1) ∩ Stab(v2). Then in Proposition 4.3
we may take

K1 =
⋂

u∈U(M)

u−1K0u

as in Section 6 of [8], that is, we can take K1 to be the same for π1 and
π2. Then by Proposition 4.3 there exist vectors v′πi

∈ Vπi
such that

jvi,Y(a) =

∫

Y∩(aw)−1UTMK1

ψ(u(awy))ψ−1(y)ωπi
(z(awy)) dy +Wv′πi

(a).

Since the central characters of π1 and π2 agree, we have

jv1,Y(a) − jv2,Y(a) = Wv′π1
(a) −Wv′π2

(a).
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If we now turn to Proposition 4.1 we find that as long as η2 is ramified
we have

γ(s, π1 × η, ψ)−1−γ(s, π2 × η, ψ)−1

= g(s, η)

∫

k×

(jv1,Y(a) − jv2,Y(a))η(a)|a|s−n+δ d×a

= g(s, η)

∫

k×

(Wv′π1
(a) −Wv′π2

(a))η(a)|a|s−n+δ d×a.

But the Whittaker functions are smooth. So for Re(s) >> 0 and η sufficiently
highly ramified we have

∫

k×

Wv′πi
(a)η(a)|a|s−n+δ d×a ≡ 0.

Thus for Re(s) >> 0 we have

γ(s, π1 × η, ψ)−1 − γ(s, π2 × η, ψ)−1 ≡ 0

and then by the principle of analytic continuation this must be true for all
s. Thus

γ(s, π1 × η, ψ) = γ(s, π2 × η, ψ)

and we are done. �

4.5. Computation of the stable forms. — To complete the proof of
Theorem 4.1, as well as for application in the proof of Theorem 1.1, we will
compute an explicit formula for the stable form of the γ-factor. In order to
do this, let π1 be any irreducible admissible generic representation of Gn(k)
with central character ω. Take µ1, . . . , µn to be n characters of k×. Then
µ1⊗· · ·⊗µn defines a character of Tn(k) and we assume that upon restriction
to the center Zn ⊂ Tn(k) this character agrees with the central character ω of

π1. Then if we let π2 = Ind
Gn(k)
Bn(k)(µ1⊗· · ·⊗µn) then for an appropriate choice of

the µi (in “general position”) this representation will be irreducible admissible
generic and have central character ω. Thus for all sufficiently highly ramified
η we have

γ(s, π1 × η, ψ) = γ(s, π2 × η, ψ).

We can explicitly compute the right hand side of this formula. By first using
the multiplicativity of the γ-factor [52] we obtain

γ(s, π2 × η, ψ) =
n∏

j=1

γ(s, µjη, ψ)γ(s, µ−1
j η, ψ).
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if Gn = SO2n+1 or Gn = SO2n, while if Gn = Sp2n we obtain

γ(s, π2 × η, ψ) = γ(s, η, ψ)

n∏

j=1

γ(s, µjη, ψ)γ(s, µ−1
j η, ψ).

This computes the stable form of γ-factor in terms of abelian γ-factors.

Proposition 4.5. — Let π be any irreducible admissible generic represen-
tation of Gn(k) with central character ω and let µ1, . . . , µn be any choice of
characters of k× in general position such that µ1⊗· · ·⊗µn agrees with ω upon
restriction to the center. Then for every sufficiently highly ramified character
η we have

γ(s, π × η, ψ) =





n∏

j=1

γ(s, µjη, ψ)γ(s, µ−1
j η, ψ) Gn = SO2n+1, SO2n

γ(s, η, ψ)
n∏

j=1

γ(s, µjη, ψ)γ(s, µ−1
j η, ψ) Gn = Sp2n

.

4.6. Proof of Theorem 4.1. — To complete the proof of Theorem 4.1 it
will suffice to show that the stable form of the γ-factor computed in Propo-
sition 4.5 is actually independent of the central character ω. There is an el-
ementary reason for this (see the comments at the end of this section), but
a reason which is particularly adapted to our application is the following.

First take Gn to be SO2n+1 or SO2n. Then in either case the standard
embedding of the L-groups predicts a functoriality to GLN with N = 2n. In
either of these cases, let Π be the induced representation of GLN(k) induced
from these same characters, that is,

Π = Ind
GLN (k)
BN (k) (µ1 ⊗ · · · ⊗ µn ⊗ µ−1

n ⊗ · · · ⊗ µ−1
1 ).

Then Π is a generic representation of GLN(k) having trivial central character
and by multiplicativity of the γ-factors for GLN [20] we also have

γ(s,Π × η, ψ) =

n∏

j=1

γ(s, µjη, ψ)γ(s, µ−1
j η, ψ).

Thus
γ(s, π × η, ψ) = γ(s,Π × η, ψ).
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On the other hand, by the stability of γ-factors for GLN [23] we know that
the stable form of the γ-factor on GLN depends only on the central charac-
ter. Since Π has trivial central character no matter the central character ω
of π, we see that the stable form of the γ-factor for Gn is independent of
the central character. This establishes Theorem 4.1 in these cases.

The case of Gn = Sp2n is similar. Take π an irreducible admissible
generic representation of Sp2n(k) and take characters µ1, . . . µn so that for
sufficiently ramified η we have

γ(s, π × η, ψ) = γ(s, η, ψ)
n∏

j=1

γ(s, µjη, ψ)γ(s, µ−1
j η, ψ).

Now the functorial lift should be to GL2n+1, so we take Π to be the generic
representation of GL2n+1(k) with trivial central character given by

Π = Ind
GL2n+1(k)
B2n+1(k) (µ1 ⊗ · · · ⊗ µn ⊗ 1 ⊗ µ−1

n ⊗ · · · ⊗ µ−1
1 ).

Then multiplicativity of γ-factors for GLN [20] gives

γ(s,Π × η, ψ) = γ(s, η, ψ)

n∏

j=1

γ(s, µjη, ψ)γ(s, µ−1
j η, ψ)

as well, so that

γ(s, π × η, ψ) = γ(s,Π × η, ψ)

for all sufficiently highly ramified η. But again the stable form of the γ factor
for GLN depends only on the central character of Π [23], which is trivial no
matter what the central character of π. Thus the stable form of γ(s, π×η, ψ)
is independent of the central character of π as well. This completes the proof
of Theorem 4.1 in this case as well. �

We end this section with two corollaries of our stability results. The
first is a corollary of Proposition 4.5 combined with Theorem 4.1 and the
following observations. In the notation of Proposition 4.5, for η sufficiently
highly ramified, each µiη will also be highly ramified, so that L(s, µjη) ≡ 1.
Then γ(s, µjη, ψ) = ε(s, µjη, ψ). Similarly, by [54] as soon as η is sufficiently
highly ramified we have L(s, π× η) ≡ 1, so that γ(s, π× η, ψ) = ε(s, π× η, ψ)
as well. Thus we obtain the stability of local ε-factors as well as their stable
form.
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Corollary 4.1. — Let π be an irreducible admissible generic representa-
tion of Gn(k) and let µ1, . . . , µn be characters of k× in general position. Then
for every sufficiently ramified character η we have

ε(s, π × η, ψ) =





n∏

j=1

ε(s, µjη, ψ)ε(s, µ−1
j η, ψ) Gn = SO2n+1, SO2n

ε(s, η, ψ)

n∏

j=1

ε(s, µjη, ψ)ε(s, µ−1
j η, ψ) Gn = Sp2n

.

Our second corollary combines the proof of Theorem 4.1 with the above
observations on the stability of the local L-factors, both for Gn and GLN .

Corollary 4.2. — Let π be an irreducible admissible generic representa-
tion of Gn(k). Let Π be any irreducible admissible representation of GLN(k)
with trivial central character (N as in Theorem 1.1). Then for all sufficiently
ramified characters η of k× we have

L(s, π × η) ≡ 1 ≡ L(s,Π × η) and ε(s, π × η, ψ) = ε(s,Π × η, ψ).

As was pointed out by the referee, the formulas in Proposition 4.5 and
Corollary 4.1 can be simplified as follows. As we noted above, for highly
ramified characters, there is no difference in the γ-factors and the ε-factors.
The ε-factors for characters of k× can then be computed via Gauss sums. As
long as η is sufficiently highly ramified with respect to µ we have that there
exists cη such that ε(s, µη, ψ) = µ(cη)ε(s, η, ψ). Thus under these conditions
we have

ε(s, µη, ψ)ε(s, µ−1η, ψ) = ε(s, η, ψ)2

which then leads to
γ(s, π × η, ψ) = γ(s, η, ψ)N

in Proposition 4.5 in all cases and

ε(s, π × η, ψ) = ε(s, η, ψ)N

in Corollary 4.1 in all cases, where the natural functoriality is from Gn to
GLN . In the case of Proposition 4.5 this formula provides the elementary
proof of the independence of the stable form from the central character of
π alluded to above. We chose to leave our original proof since it then leads
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naturally to Corollary 4.2. These formulas for the stable form can then be
obtained after the fact by using stability and then taking π to be induced
from trivial characters (again as was pointed out by the referee).

5. The candidate lift

We now return to k denoting a number field. Let π = ⊗′πv be a glob-
ally generic cuspidal representation of Gn(A). In this section we will con-
struct our candidate Π = ⊗′Πv for the functorial lift of π as an irreducible
admissible representation of GLN(A). We will construct Π by constructing
each local component, or local lift, Πv. There will be three cases: (i) the
archimedean lift, (ii) the non-archimedean unramified lift, and finally (iii)
the non-archimedean ramified lift.

5.1. The archimedean lift. — Let v be an archimedean place of k.
By the arithmetic Langlands classification [34,2], πv is parameterized by an
admissible homomorphism φv : Wkv

→ LG0
n where Wkv

is the Weil group
of kv. By composing with ι : LGn(C) →֒ GLN(C) we have an admissible
homomorphism Φv = ι ◦ φv : Wkv

−→ GLN(C) and this defines an irreducible
admissible representation Πv of GLN(kv).

LGn
ι

// LGLN

πv // // Πv.

Wkv

φv

YY3333333333333333

Φv

DD																

Then Πv is the local functorial lift of πv. We take Πv as our local lift
of πv.

The local archimedean L– and ε–factors defined via the theory of Eisen-
stein series that we are using are the same as the Artin factors defined
through the arithmetic Langlands classification [49]. Since the embedding ι :
LGn(C) →֒ GLN(C) is the standard representation of the L–group of Gn(kv)
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then by the definition of the local L- and ε–factors given in [2] we have

L(s, πv) = L(s, ι ◦ φv) = L(s,Πv)

and

ε(s, πv, ψv) = ε(s, ι ◦ φv, ψv) = ε(s,Πv, ψv)

where in both instances the middle factor is the local Artin-Weil L– and
ε–factor attached to representations of the Weil group as in [59].

If τv is an irreducible admissible representation of GLm(kv) then it is in
turn parameterized by an admissible homomorphism φ′

v : Wkv
−→ GLm(C).

Then the tensor product homomorphism (ι ◦ φv) ⊗ φ′
v : Wkv

−→ GLmN(C) is
admissible and again we have by definition

L(s, πv × τv) = L(s, (ι ◦ φv) ⊗ φ′
v) = L(s,Πv × τv)

and

ε(s, πv × τv, ψv) = ε(s, (ι ◦ φv) ⊗ φ′
v, ψv) = ε(s,Πv × τv, ψv).

This then gives the following matching of the twisted local L- and ε-factors.

Proposition 5.1. — Let v be an archimedean place of k and let πv be an
irreducible admissible generic representation of Gn(kv), Πv its local functorial
lift to GLN(kv), and τv an irreducible admissible generic representation of
GLm(kv). Then

L(s, πv × τv) = L(s,Πv × τv) and ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

5.2. The non-archimedean unramified lift. — Now let v be an non-
archimedean place of k and assume that πv is an unramified representation.
By the unramified arithmetic Langlands classification or the Satake classifica-
tion [2,47], πv is parameterized by an unramified admissible homomorphism
φv : Wkv

→ LG0
n where Wkv

is the Weil group of kv. By composing with
ι : LGn(C) →֒ GLN (C) we have an unramified admissible homomorphism
Φv = ι ◦ φv : Wkv

−→ GLN(C) and this defines an irreducible admissible
representation Πv of GLN(kv) [15,17].
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LGn
ι

// LGLN

πv // // Πv.

Wkv

φv

YY3333333333333333

Φv

DD																

Then Πv is again the local functorial lift of πv and we take it as our
local lift.

More specifically, any irreducible admissible generic unramified represen-
tation πv of Gn(kv) occurs as a subrepresentation of an induced representa-
tion from n unramified characters µ1,v, . . . , µn,v, that is

πv ⊂ Ind
Gn(kv)
Bn(kv)(µ1,v ⊗ · · · ⊗ µn,v).

If we normalize the local class field theory isomorphism so that a geometric
Frobenius Fv corresponds to the uniformizer ̟v of kv, then since πv is un-
ramified it is determined by and determines the semi-simple conjugacy class,
its Satake class, associated to the diagonal matrix

φv(Fv) = diag(µ1,v(̟), . . . , µn,v(̟v), µn,v(̟v)
−1, . . . , µ1,v(̟v)

−1)

in the cases Gn = SO2n+1, SO2n and to

φv(Fv) = diag(µ1,v(̟), . . . , µn,v(̟v), 1, µn,v(̟v)
−1, . . . , µ1,v(̟v)

−1)

in the case Gn = Sp2n.

Then the semi-simple conjugacy class in GLN(C) determining Πv is
Φv(Fv) = ι ◦ φv(Fv) whose Satake class is represented by the same diagonal
matrix viewed as an element of LGLN . Hence Πv is the unique unramified
constituent of the induced representation

Ξv = Ind
GL2n(k)
B2n(k) (µ1,v ⊗ · · · ⊗ µn,v ⊗ µ−1

n,v ⊗ · · · ⊗ µ−1
1,v)

in the cases Gn = SO2n+1, SO2n and of

Ξv = Ind
GL2n+1(k)
B2n+1(k) (µ1,v ⊗ · · · ⊗ µn,v ⊗ 1v ⊗ µ−1

n,v ⊗ · · · ⊗ µ−1
1,v)
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in the case Gn = Sp2n. In terms of Langlands’ local isobaric sums, we have

Πv =





µ1,v ⊞ · · · ⊞ µn,v ⊞ µ−1
n,v ⊞ · · ·⊞ µ−1

1, Gn = SO2n+1, SO2n

µ1,v ⊞ · · · ⊞ µn,v ⊞ 1v ⊞ µ−1
n,v ⊞ · · ·⊞ µ−1

1,v Gn = Sp2n

.

We will again need to know that the twisted L- and ε-factors agree for
πv and Πv.

Proposition 5.2. — Let v be a non-archimedean place of k and let πv be
an irreducible admissible generic unramified representation of Gn(kv). Let Πv

be its functorial local lift to GLN (kv), and τv an irreducible admissible generic
representation of GLm(kv). Then

L(s, πv × τv) = L(s,Πv × τv) and ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

Proof: We will prove this by explicitly computing both sides in terms of the
above data.

On the general linear group side, either utilizing the local Langlands
correspondence for GLN over a p-adic field [15,17], as we did in the case of
archimedean fields, or directly utilizing the results of [20], specifically Theo-
rem 3.1 and Theorem 9.5, it is routine to compute that

L(s,Πv × τv) =

n∏

j=1

L(s, τv × µj,v)L(s, τv × µ−1
j,v)

ε(s,Πv × τv, ψv) =

n∏

j=1

ε(s, τv × µj,v, ψv)ε(s, τv × µ−1
j,v , ψv)

in the cases Gn = SO2n+1, SO2n while

L(s,Πv × τv) = L(s, τv)

n∏

j=1

L(s, τv × µj,v)L(s, τv × µ−1
j,v)

ε(s,Πv × τv, ψv) = ε(s, τv, ψv)
n∏

j=1

ε(s, τv × µj,v, ψv)ε(s, τv × µ−1
j,v , ψv)

in the case of Gn = Sp2n.
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For the unramified representation πv of the classical group Gn(kv) the
argument is as in [6]. First, by the multiplicativity of γ-factors [51,52] we
have that

γ(s, πv × τv, ψv) =

n∏

j=1

γ(s, τv × µj,v, ψv)γ(s, τv × µ−1
j,v , ψv)

in the cases Gn = SO2n+1, SO2n and that

γ(s, πv × τv, ψv) = γ(s, τv, ψv)

n∏

j=1

γ(s, τv × µj,v, ψv)γ(s, τv × µ−1
j,v , ψv)

for Gn = Sp2n. Hence to obtain the factorization of the ε-factors it suffices
to combine this with the factorization of the L-factors.

To obtain the factorization of the L-functions we will use the definition
of the L-functions as in [51]. Since πv and τv are generic, then they are
both full induced from generic tempered representations in Langlands order.
For the classical groups this is Muić (see Theorem 5.1 of [43] or Theorem
1.1 of [44]) while for the linear groups it is Zelevinsky [61] or Jacquet and
Shalika [22]. Thus we may write

πv ≃ Ind
Gn(kv)
Q(kv) (π′

1,vν
a1 ⊗ · · · ⊗ π′

r,vν
ar ⊗ π′′

v )

with each π′
j,v tempered on some GLnj

(kv), ν the character ν(g) = | det(g)|v
for g ∈ GLnj

(kv), π
′′
v tempered on Gn0(kv), a1 > · · · > ar, and Q the standard

parabolic with Levi of the form GLn1 × · · · × GLnr
× Gn0 . Similarly

τv ≃ Ind
GLm(kv)

Q′(kv)
(τ ′1,vν

b1 ⊗ · · · ⊗ τ ′t,vν
bt)

with each τ ′i,v tempered on some GLmi
(kv), b1 > · · · > bt, and Q′ the standard

parabolic with Levi GLm1×· · ·×GLmt
. Note that under our assumptions, each

π′
j,v is full induced from unitary characters and π′′

v is the unique irreducible
generic unramified subrepresentation of such. Then by definition ([51], Section
7)

L(s, πv × τv) =
∏

i,j

L(s+ aj + bi, π
′
j,v × τ ′i,v)L(s− aj + bi, π̃

′
j,v × τ ′i,v)×

×
∏

i

L(s + bi, π
′′
v × τ ′i,v).

Now consider the factors on the right hand side. Begin with the GLnj
×

GLmi
factors. Since π′

j,v is a full induced from unitary characters, say π′
j,v ≃
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Ind(µj
1,v ⊗ · · · ⊗ µj

nj ,v), and the fact that τ ′i,v is tempered, then by either [20]

or [52] we have

L(s, π′
j,v × τ ′i,v) =

∏

ℓ

L(s, µj
ℓ,v × τ ′i,v).

The results of [52] apply equally well to Gn0 × GLmi
and if we write π′′

v ⊂
Ind(µ′′

1,v ⊗ · · · ⊗ µ′′
ℓ,v) with the µ′′

j,v unitary, then by Theorem 5.2 of [52] we
have

L(s, π′′
v × τ ′i,v) =

ℓ∏

j=1

L(s, τ ′i,v × µ′′
j,v)L(s, τ ′i,v × µ′′

j,v
−1

)

in the cases Gn = SO2n+1, SO2n and

L(s, π′′
v × τ ′i,v) = L(s, τ ′i,v)

ℓ∏

j=1

L(s, τ ′i,v × µ′′
j,v)L(s, τ ′i,v × µ′′

j,v
−1

)

for Gn = Sp2n. Note that Conjecture 5.1 of [52], which is a hypothesis of
Theorem 5.2 there, is known in our case by Theorem 4.1 of [4].

We have now factored the L-functions for πv all the way down to the
characters occurring in its Satake class φv(Fv). If we now reconstruct these
decompositions we find

L(s, πv × τv) =

n∏

j=1

L(s, τv × µj,v)L(s, τv × µ−1
j,v)

when Gn = SO2n+1, SO2n and

L(s, πv × τv) = L(s, τv)

n∏

j=1

L(s, τv × µj,v)L(s, τv × µ−1
j,v)

for Gn = Sp2n. If we combine this with our factorization of the γ-factor above
we obtain

ε(s, πv × τv, ψv) =

n∏

j=1

ε(s, τv × µj,v, ψv)ε(s, τv × µ−1
j,v , ψv)

for Gn = SO2n+1, SO2n and

ε(s, πv × τv, ψv) = ε(s, τv, ψv)
n∏

j=1

ε(s, τv × µj,v, ψv)ε(s, τv × µ−1
j,v , ψv)

when Gn = Sp2n.

Comparing our expressions for L(s,Πv × τv) and L(s, πv × τv) as well as
those for the ε-factors, we obtain our result. �
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5.3. The non-archimedean ramified lift. — We are left with the case
of a non-archimedean place v of k where the local component πv of π is
ramified. Now we do not have the local Langlands correspondence to give us
a natural local functorial lift. Instead we will use the results of Section 4.

In this case, that is when πv is ramified, we take for our local lift
any irreducible admissible representation Πv of GLN(kv) having trivial central
character. For simplicity we will take Πv to be self-contragredient as well, but
this is not essential. Given πv and this Πv then by the results of Section 4,
particularly Corollary 4.2, we know that for every sufficiently highly ramified
character ηv of GL1(kv) we have

L(s, πv × ηv) ≡ 1 ≡ L(s,Πv × ηv) and ε(s, πv × ηv, ψv) = ε(s,Πv × ηv, ψv).

Thus the L- and ε-factors for πv and Πv agree when twisted by sufficiently
ramified representations of GL1(kv). There is a natural extension of this to
GLm(kv) given in the following proposition.

Proposition 5.3. — Let v be an non-archimedean place of k. Let πv be
an irreducible admissible generic representation of Gn(kv) and let Πv be an
irreducible admissible representation of GLN(kv) having trivial central charac-
ter. Let τv be an irreducible admissible generic representation of GLm(kv) of
the form τv ≃ τ0,v ⊗ ηv with τ0,v unramified and ηv sufficiently ramified as
above. Then

L(s, πv × τv) = L(s,Πv × τv) and ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

Proof: The proof of this proposition is similar to that of Proposition 5.2.
Since τ0,v is unramified and generic we can write it as a full induced repre-
sentation from characters [22]

τ0,v ≃ Ind
GLm(kv)

B′
m(kv)

(χ1,v ⊗ · · · ⊗ χm,v)

with each χi,v unramified. If we let χi,v(x) = |x|bi
v and let ν(x) = |x|v, then

we may write τv as

τv ≃ Ind
GLm(kv)

B′
m(kv)

(ηvν
b1 ⊗ · · · ⊗ ηvν

bm).

Arguing as in the proof of Proposition 5.2, but now factoring τv ac-
cording to its characters, we find

L(s, πv × τv) =
m∏

i=1

L(s + bi, πv × ηv)
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and

ε(s, πv × τv, ψv) =

m∏

i=1

ε(s+ bi, πv × ηv, ψv).

On the other hand, by the same results of [20] we also have

L(s,Πv × τv) =

m∏

i=1

L(s + bi, Πv × ηv)

and

ε(s,Πv × τv, ψv) =
m∏

i=1

ε(s+ bi, Πv × ηv, ψv).

By Corollary 4.2 of Section 4 we see that after factoring the L- and
ε–factors for πv and Πv twisted by such τv the factors are term by term
equal for ηv sufficiently highly ramified. This establishes the proposition. �

5.4. The global candidate lift. — Return now to the global situation.
Let π ≃ ⊗′πv be a globally generic cuspidal representation of Gn(A). Let
S be a finite set of finite places such that for all non-archimedean places
v /∈ S we have πv is unramified. For each v /∈ S let Πv be the local func-
torial lift of πv as in Section 5.1 or 5.2. For the places v ∈ S we take Πv

to be any irreducible admissible self-contragredient representation of GLN(kv)
having trivial central character as in Section 5.3. Then the restricted tensor
product Π ≃ ⊗′Πv is an irreducible admissible self-contragredient representa-
tion of GLN(A) having trivial central character. This is our candidate lift.

For each place v ∈ S choose a sufficiently highly ramified character ηv

so that Proposition 5.3 is valid. Let η be any idele class character of GL1(A)
which has local component ηv at those v ∈ S. Then combining Propositions
5.1 – 5.3 we obtain the following result on our candidate lift.

Proposition 5.4. — Let π be a globally generic cuspidal representation of
Gn(A) and let Π be the candidate lift constructed above as a representation
of GLN(A). Then for every representation τ ∈ T (S; η) = T S(N − 1) ⊗ η we
have

L(s, π × τ) = L(s,Π × τ) and ε(s, π × τ) = ε(s,Π × τ).



FUNCTORIALITY FOR THE CLASSICAL GROUPS 37

6. Global functoriality

Let us now prove Theorem 1.1. We begin with our globally generic cus-
pidal representation of Gn(A). Decompose π ≃ ⊗′πv into its local components
and let S be a non-empty set of non-archimedean places such that for all
non-archimedean places v /∈ S we have that πv is unramified.

Let Π ≃ ⊗′Πv be the irreducible admissible representation of GLN(A)
constructed in Section 5 as our candidate lift. By construction Π is self-
contragredient, has trivial central character, and is the local functorial lift of
π at all places v /∈ S.

Choose η, an idele class character, such that its local components ηv are
sufficiently highly ramified at those v ∈ S so that Proposition 5.4 is valid.
Furthermore, since we have taken S non-empty, we may choose η so that for
at least one place v0 ∈ S we have that η2

v0
is also ramified. Then Theorem

3.1 is also valid. Fix this character.

We are now ready to apply the Converse Theorem to Π . Consider any
representation τ ∈ T (S; η). By Proposition 5.4 we have that

L(s, π × τ) = L(s,Π × τ) and ε(s, π × τ) = ε(s,Π × τ).

On the other hand, by Theorem 3.1 we know that each L(s, π×τ) and hence
L(s,Π×τ) is nice. Thus Π satisfies the hypotheses of the Converse Theorem,
Theorem 2.1. Hence there is an automorphic representation Π ′ ≃ ⊗′Π ′

v of
GLN(A) such that Π ′

v ≃ Πv for all v /∈ S. But for v /∈ S, by construction Πv

is the local functorial lift of πv. Hence Π ′ is a functorial lift of π as required
in the statement of Theorem 1.1. �

7. The image of functoriality

In this section we would like to investigate the image of functoriality.
Assuming the existence of global functoriality, the global image has been
analyzed in the papers of Ginzburg, Rallis, and Soudry using their method of
descent [13,56]. For completeness, we recall their global results below. Related
results in the case Gn = SO2n+1 can be found in [29,30].
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We then turn to what global functoriality implies about the local image
of functoriality at the non-archimedean places, including those where the rep-
resentation is ramified. In the case of Gn = SO2n+1 this has been carried out
by Jiang and Soudry using functoriality plus the local descent [26,27], with
related results obtained in [30] without using the descent. In this paper we
will follow the development of [30] since the local descent has not been com-
pleted in the other cases. These local results are needed for our applications
in Sections 8–11, particularly our results towards Ramanujan we present in
Section 10.

7.1. The global image of functoriality. — From their method of descent
of automorphic representations from GLN(A) to the classical groups Gn(A)
and its local analogues, Ginzburg, Rallis, and Soudry were able to charac-
terize the image of functoriality from generic representations before this was
known to exist, that is, before our result [13,56]. As the results are slightly
different for Gn = SO2n+1 and Gn = SO2n, Sp2n we will state them separately.

For the odd orthogonal group, the result takes the following form [13,
56].

Theorem 7.1. — Let π be a globally generic cuspidal representation of
Gn(A) = SO2n+1(A). Then any functorial lift of π to an automorphic repre-
sentation Π of GL2n(A) has trivial central character and is of the form

Π = Ind(Π1 ⊗ · · · ⊗Πd) = Π1 ⊞ · · · ⊞Πd,

where each Πi is a unitary self-dual cuspidal representation of GLNi
(A) such

that the partial L-function LT (s,Πi, Λ
2), for any sufficiently large finite set of

places T containing all archimedean places, has a pole at s = 1 and Πi 6≃ Πj

for i 6= j. Moreover, any such Π is the functorial lift of some π as above.

Note that the condition that LT (s,Πi, Λ
2) has a pole at s = 1 implies

that Ni = 2ni is even and each Πi has trivial central character. In particular,
the cuspidal image of functoriality consists of all self-dual cuspidal representa-
tions of GL2n(A) having trivial central character and whose (partial) exterior
square L-function has a pole at s = 1; the non-cuspidal part of the image
consists of all irreducible isobaric sums of such. As observed in [13], those
π which do not lift to cuspidal Π are in fact cuspidal endoscopic lifts from
products of smaller odd special orthogonal groups.
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For the cases of SO2n and Sp2n the result is similar with the exterior
square L-function replaced by the symmetric square L-function [56].

Theorem 7.2. — Let π be a globally generic cuspidal representation of
Gn(A) = SO2n(A), n ≥ 2, or Gn(A) = Sp2n(A). Then any functorial lift of π
to an automorphic representation Π of GLN(A) has trivial central character
and is of the form

Π = Ind(Π1 ⊗ · · · ⊗Πd) = Π1 ⊞ · · · ⊞Πd,

where each Πi is a unitary self-dual cuspidal representation of GLNi
(A) such

that the partial L-function LT (s,Πi, Sym
2), for any sufficiently large finite

set of places T containing all archimedean places, has a pole at s = 1 and
Πi 6≃ Πj for i 6= j. Moreover, any such Π is the functorial lift of some π as
above.

There are two remarks to be made on this result. First, the cuspidal
image of functoriality from SO2n(A) consists of all self-dual cuspidal repre-
sentations of GL2n(A) having trivial central character and whose (partial)
symmetric square L-function has a pole at s = 1 and the functorial im-
age from Sp2n(A) consists of the same type of representations of GL2n+1(A).
If the image is not cuspidal, then it consists of an isobaric sum of such
representations which are then the functorial lifts from products of smaller
symplectic groups or even special orthogonal groups. However, since we lose
the condition of trivial central character (except for the representation Π it-
self) the Πi could be functorial lifts from quasi-split even special orthogonal
groups.

Let us remark for future use that in cases where one might not have
the descent method it may still be possible to prove that the image of func-
toriality is an isobaric representation of GLN by using facts about the lo-
cal unitary dual and the Langlands-Shahidi method of analyzing L-functions.
This type of argument can be found in [29,30] where this method is used
for the case of Gn = SO2n+1. Similar arguments work for our other cases as
well and have the potential of working in more general situations. Note that
in all following applications, it is only the fact that the image is an isobaric
sum of unitary cuspidal representations that is necessary, so these results do
not rely on having a descent theory.

There are several facts about classical groups that can be deduced from
the existence of the functorial lift to GLN combined with the characterization
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of the image. One immediate consequence is that we have lost no information
at the places where we did not have a local functorial lift. This is possible
since we have a strong multiplicity one result for isobaric representations of
GLN(A) [21].

Corollary 7.1. — Let π be a globally generic cuspidal representation
of Gn and let Π be its functorial lift to GLN(A). Then Π is completely
determined by requiring that Πv be the local functorial lift of πv at almost all
places v of k, that is, no global information is lost from those local places
where local functoriality is not known.

7.2. The local image of functoriality. — One type of consequence of
global functoriality combined with the fact that the image is the isobaric sum
of unitary cuspidal representations is that we can fill in some facts about the
local components of the lift of globally generic cusp forms on classical groups.
Since the local functorial lifts are completely understood at the archimedean
places, in this section we will always take v to be a non-archimedean place
of k.

We begin with the unramified local lift.

Proposition 7.1. — Let π ≃ ⊗′πv be a globally generic cuspidal repre-
sentation of Gn(A). Let v be a non-archimedean place of k at which πv is
unramified. Then the unramified local functorial lift Πv, as defined in Section
5.2, is generic. In particular the induced representation Ξv introduced there is
irreducible and equal to Πv.

Proof: Since the global functorial lift Π of π is either cuspidal or a full
induced representation from cuspidals, Π is generic. Thus all of its local
components are as well. �

For the case of Gn = SO2n+1 this was proved by purely local methods
in [6]. However for the other two cases this is not a purely local fact, but
rather a consequence of πv being a component of a globally generic cuspidal
representation.
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At a general non-archimedean place v we have the following result to-
wards establishing generic local functoriality at all places. It encompasses the
above proposition as well.

Proposition 7.2. — Let v be a non-archimedean place of k and let πv be
an irreducible admissible generic representation of Gn(kv) which appears as a
local component of some globally generic cuspidal representation. Then there
exists a unique generic representation Πv of GLN(kv) such that for every
supercuspidal representation ρv of GLm(kv) we have

γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv).

In particular, this is true for any irreducible generic supercuspidal representa-
tion πv. Moreover, if πv is the component at v of a globally generic cuspidal
representation π and Π the functorial lift of π then, as the notation suggests,
this Πv is the local component of Π at the place v.

Proof: Take πv as the local component at v of the globally generic cuspidal
representation π. Let Π be the functorial lift of π to an automorphic repre-
sentation of GLN(A). Then Π , and hence each of its local components Πv,
is generic.

We first show the existence of one such Πv. If πv is unramified, then the
statement follows from Proposition 5.2. In general, let ρv be as in the state-
ment of the proposition. Then by Proposition 5.1 of [51] there is a cuspidal
representation ρ′ of GLm(A) such that at the place v the local component
of ρ′ is the given ρv and at all other finite places w 6= v we have ρ′w is
unramified. Let S be a finite set of finite places such that πw is unramified
for w /∈ S and let S ′ = S − {v}. Let η be an idele class character such that
ηv is trivial and ηw is sufficiently highly ramified at w ∈ S ′ so that

γ(s, πw × (ρ′w ⊗ ηw), ψw) = γ(s,Πw × (ρ′w ⊗ ηw), ψw) (7.1)

as in the proof of Proposition 5.3

Let ρ = ρ′ ⊗ η. Note that, since ηv is trivial, the local component of ρ
at v is still our given ρv. We have the global functional equations

L(s, π × ρ) = ε(s, π × ρ)L(1 − s, π̃ × ρ̃)

and
L(s,Π × ρ) = ε(s,Π × ρ)L(1 − s, Π̃ × ρ̃)
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which we can write in the form

γ(s, πv × ρv, ψv) =

(
∏

w∈S′

γ(s, πw × ρw, ψw)−1

)
LS(s, π × ρ)

εS(s, π × ρ, ψ)LS(1 − s, π̃ × ρ̃)

and

γ(s,Πv ×ρv, ψv) =

(
∏

w∈S′

γ(s,Πw × ρw, ψw)−1

)
LS(s,Π × ρ)

εS(s,Π × ρ, ψ)LS(1 − s, Π̃ × ρ̃)
.

By Propositions 5.1 and 5.2 we have that

LS(s, π × ρ)

εS(s, π × ρ, ψ)LS(1 − s, π̃ × ρ̃)
=

LS(s,Π × ρ)

εS(s,Π × ρ, ψ)LS(1 − s, Π̃ × ρ̃)
,

while for w ∈ S ′ we have γ(s, πw×ρw, ψw) = γ(s,Πw×ρw, ψw) by (7.1). Hence

γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv).

This shows the existence of such Πv. The uniqueness follows from the
“local converse theorem for GLN”, that is, a generic admissible irreducible
representation of GLN(kv) is uniquely determined by its γ–factor with twists
by supercuspidal representations of all smaller rank general linear groups, as
in the Remark after the Corollary of Theorem 1.1 of Henniart [16].

If πv is a generic supercuspidal representation of Gn(kv) then by Propo-
sition 5.1 of [51] it occurs as the local component of a globally generic cus-
pidal representation of Gn(A), hence the above reasoning applies.

The final statement of the proposition has in fact been shown in the
beginning part of the proof since we took for π an arbitrary global cuspidal
representation of Gn(A) with local component πv and arrived at the uniquely
defined local generic lift Πv. �

We will refer to Πv as the local functorial lift of πv. This terminology
agrees with the usual one at those places v /∈ S. As was shown in [27] this
is completely justifiable in the case of SO2n+1.

This result for Gn = SO2n+1 was one of the ingredients of Jiang and
Soudry’s proof of a “local converse theorem” for SO2n+1 which in turn was a
key ingredient in their analysis of local functoriality and the local Langlands
correspondence for generic representations of SO2n+1(kv) for a p-adic place
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v [26,27]. Hopefully, once the details of the local descent theory are worked
out for SO2n and Sp2n this proposition will play a similarly useful role.

However, even without the full strength of the descent, we can still say
much about the local image of our functorial lift. We will follow the method
of [30] where similar results were proved for Gn = SO2n+1. We begin with
the following lemma.

Lemma 7.1. — Let πv be a local component of the globally generic cus-
pidal representation π. Assume that πv is tempered. Then the local functorial
lift Πv is also tempered.

Proof: We are assuming that

γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv)

for every supercuspidal representation ρv of GLm(kv).

We first extend this to twisting by discrete series representations of
GLm(kv). If σv is a discrete series, then σv can be realized as the irreducible
quotient δ(ρv, t) of the induced representation

Ξv = Ind(ρvν
− t−1

2 ⊗ · · · ⊗ ρvν
t−1
2 )

associated to the segment

∆ = [ρvν
− t−1

2 , ρvν
t−1
2 ] = {ρvν

− t−1
2 , ρvν

− t−1
2

+1, . . . , ρvν
t−1
2 }

as in [61] where ρv is a supercuspidal representation of an appropriate general
linear group and t is a positive integer. Then using the multiplicativity of
γ-factors on both sides [52,20] we have

γ(s, πv × σv, ψv) =

t−1∏

j=0

γ(s+
t− 1

2
− j, πv × ρv, ψv)

=

t−1∏

j=0

γ(s+
t− 1

2
− j,Πv × ρv, ψv)

= γ(s,Πv × σv, ψv).

We next claim that for any discrete series representation σv of GLm(kv)
we have

L(s, πv × σv) = L(s,Πv × σv).
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Since πv and σv are both tempered, then by definition [51] L(s, πv ×σv)
−1 is

the normalized polynomial part of the numerator of γ(s, πv × σv, ψv). Since
we have equality of the twisted γ-factors, our equality would follow from the
similar statement for L(s,Πv × σv).

Since Πv is generic and unitary then by the classification of unitary
generic representations of GLN(kv) [58] we can write

Πv = Ind(δ1,vν
r1 ⊗ · · · δk,vν

rk ⊗ δk+1,v ⊗ · · · ⊗ δk+ℓ,v ⊗ δk,vν
−rk ⊗ · · · ⊗ δ1,vν

−r1)

with each δi,v a discrete series representation and 0 < rk ≤ · · · ≤ r1 <
1
2
.

Again using the multiplicativity of the γ-factors from [20] we have

γ(s,Πv × σv, ψv) =

k∏

j=1

γ(s+ rj, δi,v × σv, ψv)γ(s− rj , δi,v × σv, ψv)×

×

ℓ∏

i=1

γ(s, δk+i,v × σv, ψv).

By definition [20]

γ(s, δi,v × σv, ψv) =
ε(s, δi,v × σv, ψv)L(1 − s, δ̃i,v × σ̃v)

L(s, δi,v × σv)
.

Hence we see that the numerator of γ(s,Πv × σv, ψv) in the factorization is
given, up to a monomial factor coming from the ε-factors, by

(
k∏

j=1

L(s + rj, δj,v × σv, )L(s− rj, δj,v × σv)
ℓ∏

i=1

L(s, δk+i,v × σv)

)−1

.

Since δi,v and σv are both unitary discrete series, L(s, δi,v × σv) has no poles
in Re(s) > 0 [20] and so this numerator can have zeros only in Re(s) < 1

2

since 0 < rj <
1
2
.

Similarly the denominator of γ(s,Πv ×σv, ψv) in the factorization is the
polynomial

(
k∏

j=1

L(1 − s− rj, δ̃j,v × σ̃v, )L(1 − s+ rj, δ̃j,v × σ̃v)

ℓ∏

i=1

L(1 − s, δ̃k+i,v × σ̃v)

)−1

and this can have zeros only in the region Re(1− s) < 1
2
, that is, Re(s) > 1

2
.
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Hence the numerator and denominator coming from the factorization of
the γ-factor are relatively prime. Consequently, from the equality of γ-factors
we can conclude that

L(s, πv × σv) =

k∏

j=1

L(s + rj, δj,v × σv, )L(s− rj, δj,v × σv)

ℓ∏

i=1

L(s, δk+i,v × σv).

On the other hand, by [20] we can compute that

L(s,Πv × σv) =

k∏

j=1

L(s+ rj , δj,v × σv, )L(s− rj , δj,v × σv)

ℓ∏

i=1

L(s, δk+i,v × σv)

and hence
L(s, πv × σv) = L(s,Πv × σv)

as desired.

We can now prove that Πv is tempered. We write Πv as above and
consider the equality of twisted L-factors with σv = δ̃i,v with 1 ≤ i ≤ k.
By Theorem 4.1 of [4], since δi,v and πv are both tempered we know that

L(s, πv × δ̃i,v) is holomorphic for Re(s) > 0. On the other hand, as noted
above we have the factorization

L(s,Πv × δ̃i,v) =
k∏

j=1

L(s+ rj , δj,v × δ̃i,v, )L(s− rj , δj,v × δ̃i,v)
ℓ∏

j=1

L(s, δk+j,v × δ̃i,v).

The term L(s− ri, δi,v × δ̃i,v) produces a pole at s = ri and since the local L-

factors are never zero, this persists to a pole of L(s,Πv × δ̃i,v) at s = ri > 0.
This is a contradiction unless no non-zero exponents occur in Πv, that is,
k = 0 and

Πv = Ind(δ1,v ⊗ · · · ⊗ δℓ,v)

is a full induced representation from unitary discrete series, that is, is tem-
pered. �

With this lemma in hand, it is easy to determine the structure of the
local functorial lift of any supercuspidal representation of Gn(kv).

Theorem 7.3. — (a) Let πv be a supercuspidal representation of the
group SO2n+1(kv) and let Πv be its local functorial lift in the sense of Propo-
sition 7.2. Then Πv is of the form

Πv ≃ Ind(Π1,v ⊗ · · · ⊗Πd,v)
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where each Πi,v is an irreducible supercuspidal self-dual representation of some
GL2ni

(kv) such that L(s,Πi,v,∧
2) has a pole at s = 0 and Πi,v 6≃ Πj,v for

i 6= j.

(b) Let πv be a supercuspidal representation of SO2n(kv), n ≥ 2, or
Sp2n(kv) and let Πv be its local functorial lift in the sense of Proposition 7.2.
Then Πv is of the form

Πv ≃ Ind(Π1,v ⊗ · · · ⊗Πd,v)

where each Πi,v is an irreducible supercuspidal self-dual representation of some
GLNi

(kv) such that L(s,Πi,v, Sym
2) has a pole at s = 0 and Πi,v 6≃ Πj,v for

i 6= j.

Proof: As part (a) of this theorem was established in both [26] and [30], by
essentially the same method, we will restrict ourselves to part (b). The proof
is essentially the same as that of part (a).

Recall from the proof of Lemma 7.1 that we know the local functorial
lift Πv is tempered and of the form

Πv = Ind(δ1,v ⊗ · · · ⊗ δd,v)

with each δi,v discrete series. Furthermore, for any discrete series representa-
tion σv of GLm(kv) we know that

L(s, πv × σv) = L(s,Πv × σv).

We now claim that each δi,v is in fact supercuspidal. We can realize δi,v as
the irreducible quotient δ(ρi,v, ti) of the induced representation

Ξi,v = Ind(ρi,vν
−

ti−1

2 ⊗ · · · ⊗ ρi,vν
ti−1

2 )

associated to the segment [ρi,vν
−

ti−1

2 , ρi,vν
ti−1

2 ] as in [61] where ρi,v is a su-
percuspidal representation of an appropriate general linear group and ti is a
positive integer. We can then apply our equality of twisted L-factors with
σv = δ̃i,v as follows.

From the general linear group side we know by [20] or [51] that

L(s,Πv × δ̃i,v) =
d∏

j=1

L(s, δj,v × δ̃i,v)
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and that

L(s, δi,v × δ̃i,v) =

ti−1∏

k=0

L(s+ k, ρi,v × ρ̃i,v).

Now L(s, ρi,v × ρ̃i,v) has a pole at s = 0 so that L(s+ ti − 1, ρi,v × ρ̃i,v) has a
pole at s = −(ti − 1). Since local L-functions are never zero, this persists to

give a pole of L(s,Πv × δ̃i,v) at s = 1 − ti.

On the classical group side, from either [51] or the explicit computations
in [31] we have that

L(s, πv × δ̃i,v) = L(s + ti−1
2
, πv × ρ̃i,v)

since πv is supercuspidal. Since L(s, πv×ρ̃i,v) can have poles only for Re(s) =

0, we see that L(s, πv × δ̃i,v) can only have poles on the line Re(s) = − ti−1
2

.

These locations of poles are inconsistent unless ti = 1, that is δi,v = ρi,v

is supercuspidal. So now let us write

Πv = Ind(ρ1,v ⊗ · · · ⊗ ρd,v)

with each ρi,v supercuspidal.

To see that each ρi,v is self-dual, we consider the equality

L(s, πv × ρ̃i,v) = L(s,Πv × ρ̃i,v).

Then the right hand side has a pole at s = 0 as above. For the left hand
side to have a pole at s = 0 we must have that ρi,v is self-dual by [53].
Moreover, in this case, the order of the pole on the left hand side is one
while the order of the pole on the right hand side is the number of j such
that ρi,v ≃ ρj,v. Hence we see that each ρi,v is self dual and ρi,v 6≃ ρj,v if
i 6= j.

We finally come to the L-function condition. Recall we are in the case
that Gn = SO2n, n ≥ 2, or Sp2n. By the previous analysis, L(s, πv × ρi,v) has
a pole at s = 0. On the other hand in these situations [51] implies that the
product

L(s, πv × ρi,v)L(2s, ρi,v,∧
2)

has a simple pole at s = 0. Since this pole is accounted for by L(s, πv × ρi,v)
we can conclude that L(s, ρi,v,∧

2) has no pole at s = 0. On the other hand,
from [53] we know that

L(s, ρi,v × ρi,v) = L(s, ρi,v, Sym
2)L(s, ρi,v,∧

2).
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Since the left hand side always has a pole at s = 0, in our cases this must
come from the symmetric square term, that is, L(s, ρi,v, Sym

2) has a pole at
s = 0. This completes the proof of the theorem. �

In [26] Jiang and Soudry were able to then use the descent method
to show that in part (a) of the theorem the local functoriality taking πv to
Πv is bijective and that the description of Πv given determines the image
completely, that is, the lift is onto the set of Πv with these properties. We
expect a similar result in part (b) when the descent theory is completed.

To continue with our analysis of the local image of functoriality, we will
need to deal with generic representations πv of Gn(kv) which may or may not
occur as components of globally generic cusp forms. To this end, we make
the following definition independent of whether πv occurs as a component of
a cuspidal representation.

Definition 7.1. — Let πv be an irreducible admissible generic represen-
tation of Gn(kv). We will say that an irreducible admissible representation Πv

of GLN (kv) is a local functorial lift of πv if for every supercuspidal represen-
tation ρv of GLm(kv) we have

L(s, πv × ρv) = L(s,Πv × ρv) and ε(s, πv × ρv, ψv) = ε(s,Πv × ρv, ψv).

Note that given the interrelations among L, γ, and ε, this definition
could equivalently be stated as

L(s, πv × ρv) = L(s,Πv × ρv) and γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv)

and this is the formulation that is easiest to work with. This definition is
consistent with the previous definitions given at the places where we can
define a local functorial lift via the local Langlands correspondence and is
consistent with that given by the image of global functoriality for components
of globally generic cuspidal representations.

We would next like to compute the local functorial lift of a generic
discrete series representation πv of Gn(kv). We first recall some facts and no-
tation from the representation theory of general linear groups [61], some of
which we have used before. If ρ is a supercuspidal representation of some
GLd(kv) and a and b are in 1

2
Z with a ≥ b and a − b ∈ Z, then ∆ =

[νbρ, νaρ] = {νbρ, νb+1ρ, . . . , νaρ} is referred to as a segment and δ(∆) =
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δ([νbρ, νaρ]) denotes the unique irreducible quotient of the induced represen-
tation

Ind(νbρ⊗ · · · ⊗ νaρ).

Then δ([νbρ, νaρ]) is an essentially square integrable representation of the
group GLd(a−b+1)(kv). If a ∈ Z, a ≥ 1, and ρ is unitary supercuspidal we

will let δ(ρ, a) = δ([ν−
(a−1)

2 ρ, ν
(a−1)

2 ρ]). Then δ(ρ, a) is a unitary discrete series
representation of GLda(kv). If ρ is self-dual then so is δ(ρ, a).

Now recall from the classification of generic discrete series representa-
tions πv of classical groups [24,25,39,40,42] that such πv can be realized as
a subrepresentation of an induced representation of the form

ξv = Ind(δ1 ⊗ · · · δr ⊗ δ′1 ⊗ · · · ⊗ δ′ℓ ⊗ π0,v) (7.2)

where π0,v is a generic supercuspidal representation of a smaller classical
group Gn0(kv) of the same type (possibly the trivial representation of G0(kv)),

δi = δ([ν−
(bi−1)

2 ρi, ν
(ai−1)

2 ρi])

with ρi a self-dual supercuspidal representation of an appropriate GLdi
(kv)

and ai > bi > 0 integers of the same parity and

δ′j = δ([νǫjρ′j , ν
(a′j−1)

2 ρ′j])

with ρ′j a self-dual supercuspidal representation of an appropriate GLd′
j
(kv)

, a′j > 0 an integer and ǫj = 1
2

if a′j is even and ǫj = 1 if a′j is odd. The
representations ρ′1, . . . , ρ

′
ℓ are all distinct and we have that ρ′j can occur only

if the induced representation Ind(ρ′jν
s ⊗ π0,v) is reducible at s = 1

2
or s = 1

(but these conditions are not sufficient). These reducibilities are discussed
in [51]. The integer a′j determining the exponents will then be even if the

reducibility point is s = 1
2

and it will be odd if the reducibility point is
s = 1. This last reducibility is equivalent to L(s, ρ′j × π0,v) having a pole at
s = 0 [51].

Let us briefly indicate how we derive this from the work of Mœglin and
Tadić [39,40]. More details can be found in Section 8 below. We will use
freely the terminology from these papers. Note that while the body of these
papers deal with the cases Gn = SO2n+1 and Gn = Sp2n, Section 16 of [40]
discusses the extension of these results to Gn = SO2n, with the convention
that SO2(kv) does not have supercuspidal or discrete series representations.
First we consider the Jordan blocks associated to a generic supercuspidal
representation π0,v of Gn(kv). We will let ρ denote a self dual supercuspidal
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representation of an appropriate GLdρ
(kv). Combining Theorem 8.1 of [51]

and the definition of Jord(π0,v) [39,40] we can easily see that

Jord(π0,v) = {(ρ, 1) | Ind(ρνs ⊗ π0,v) is reducible at s = 1}

and the set of extended Jordan blocks Jord′(π0,v) is then

Jord′(π0,v) = Jord(π0,v) ∪ {(ρ, 0) | Ind(ρνs ⊗ π0,v) is reducible at s = 1
2
}.

Note that once one assumes that Ind(ρνs ⊗ π0,v) reduces somewhere, then
reduction at s = 1/2 is equivalent to the L-function L(s, ρ, R) having a pole
at s = 0, where we have let R = Sym2 if Gn = SO2n+1 and R = ∧2 if
Gn = SO2n or Sp2n [51,53]. Let us write Jord′(π0,v) = {(ρ′j, aj)}. If π+

v is a
strongly positive generic discrete series representation [39,40] and π0,v = π+

cusp

is its partial cuspidal support, then π0,v must be generic. Then by Proposition
4.1 of [39] or Section 7 of [40] we know that for each (ρ′j , aj) ∈ Jord′(π0,v)
there exist integers a′j ≥ aj and of the same parity such that if we let δ′j =

δ([ρ′jν
(aj+1)

2 , ρ′jν
(a′j−1)

2 ]), with δ′j associated to empty segments omitted, then
π+

v is the unique irreducible subrepresentation of

ξ+
v = Ind(δ′1 ⊗ · · · ⊗ δ′ℓ ⊗ π0,v).

This is in agreement with our characterization. Our characterization of a
general generic discrete series representation πv then follows inductively from
Lemma 3.1 and Section 4.2 of [39]. From there we see that there is a strongly
positive discrete series representation π+

v of a smaller classical group of the
same type and a sequence of self-dual supercuspidal representations ρi of
GLdρi

(kv) and integers ai > bi > 0 of the same parity such that if we let

δi = δ([ν−
(bi−1)

2 ρi, ν
(ai−1)

2 ρi])

then πv will occur as a subrepresentation of

ξ′v = Ind(δ1 ⊗ · · · ⊗ δr ⊗ π+
v ).

If πv is generic, then so must π+
v be and if we combine this with the charac-

terization above of generic strongly positive discrete series and use the tran-
sitivity of induction we obtain our characterization. For Gn = SO2n+1 or Sp2n

the characterization can also be derived from Jantzen’s work [24,25].

Returning to our generic discrete series representation πv realized as
a subrepresentation of (7.2), let Π0,v be the local functorial lift of π0,v as
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constructed in Theorem 7.3. Then if we consider the induced representation
of GLN(kv) defined by

Ξv = Ind(δ1 ⊗ · · · ⊗ δr ⊗ δ′1 ⊗ · · · ⊗ δ′ℓ ⊗Π0,v ⊗ δ̃′ℓ ⊗ · · · δ̃′1 ⊗ δ̃r ⊗ · · · ⊗ δ̃1) (7.3)

then this induced representation has a unique generic constituent Πv [61].

Proposition 7.3. — Let πv be a generic discrete series representation of
Gn(kv) realized as a subrepresentation of (7.2). Then πv has a local functorial
lift Πv to GLN(kv), given by the generic constituent of (7.3), which is self-
dual, generic, and tempered.

Proof: For simplicity, let us rearrange the inducing data for ξv to write it in
the form

ξ′v = Ind(τ1,vν
r1 ⊗ · · · ⊗ τm,vν

rm ⊗ π0,v)

where each τi,v is a self-dual discrete series representation of an appropriate
GLni

(kv), rm ≤ · · · ≤ r1, and π0,v is our generic supercuspidal representation
of an appropriate smaller classical group Gn0(kv) of the same type. Then if
we consider the induced representation of GLN (kv) defined by

Ξ ′
v = Ind(τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗Π0,v ⊗ τm,vν

−rm ⊗ · · · ⊗ τ1,vν
−r1),

which is a rearrangement of the inducing data for Ξv, then this induced
representation has a unique generic subrepresentation which is Πv [61].

We claim that Πv is a local functorial lift of πv, that is, we have

L(s, πv × ρv) = L(s,Πv × ρv) and γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv).

As we have used several times, from the multiplicativity of γ-factors as in
[52] for the classical group side and, for example [20], for the general linear
group side, we have

γ(s, πv ×ρv, ψv) = γ(s,Πv ×ρv, ψv) = γ(s,Π0,v ×ρv, ψv)
m∏

i=1

γ(s± ri, τi,v ×ρv, ψv).

To obtain the equality of L-functions, we will directly prove that Πv is tem-
pered. Once πv and Πv are both tempered, then the equality of the L-factors
follows from the equality of γ-factors by [51].

If we now return to Ξv as given by (7.3),

Ξv = Ind(δ1 ⊗ · · · ⊗ δr ⊗ δ′1 ⊗ · · · ⊗ δ′ℓ ⊗Π0,v ⊗ δ̃′ℓ ⊗ · · · δ̃′1 ⊗ δ̃r ⊗ · · · ⊗ δ̃1),
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then Πv is the unique generic constituent of Ξv and we can explicitly com-
pute this constituent using induction in stages.

First, consider the contribution of δi⊗ δ̃i for indices 1 ≤ i ≤ r. Replacing
δi by its inducing data and then rearranging, we find that the induced rep-

resentation of GLdi(ai+bi)(kv) given by Ind(δi ⊗ δ̃i) is a quotient of the larger
induced representation

Ξi,v = Ind((ρiν
−(bi−1)

2 ⊗ · · · ⊗ ρiν
(ai−1)

2 ) ⊗ (ρiν
−(ai−1)

2 ⊗ · · · ⊗ ρiν
(bi−1)

2 ))

and hence a constituent of

Ind((ρiν
−(ai−1)

2 ⊗ · · · ⊗ ρiν
(ai−1)

2 ) ⊗ (ρiν
−(bi−1)

2 ⊗ · · · ⊗ ρiν
(bi−1)

2 )).

The generic constituent of this induced representation is visibly the self-
dual tempered representation Ind(δ(ρi, ai)⊗ δ(ρi, bi)). Hence in computing the

generic constituent of Ξv we may replace each δi ⊗ δ̃i by δ(ρi, ai)⊗ δ(ρi, bi) in
the inducing data.

Next consider the contribution of δ′j ⊗ δ̃′j when the associated integer
a′j determining the exponents is even. In this case, replacing δ′j by its in-

ducing data we see that Ind(δ′j ⊗ δ̃′j) is a constituent of the larger induced
representation

Ξ ′
j,v = Ind(ρ′jν

−
(a′j−1)

2 ⊗ · · ·ρ′jν
− 1

2 ⊗ ρ′jν
1
2 ⊗ · · · ⊗ ρ′jν

(a′j−1)

2 )

which has as its unique generic constituent the self-dual discrete series rep-
resentation given by δ(ρ′j , a

′
j). So for the purpose of computing the generic

constituent of Ξv we may replace δ′j ⊗ δ̃′j by δ(ρ′j , a
′
j) in the inducing data.

Finally let us consider the contribution of the δ′j when the exponent a′j
is odd. Recall that this is possible only if L(s, π0,v × ρ′j) = L(s,Π0,v × ρ′j) has
a pole at s = 0. By Theorem 7.3 we know that we can write

Π0,v ≃ Ind(Π1,v ⊗ · · · ⊗Πd,v)

with each Πi,v a self-dual supercuspidal representation of an appropriate gen-
eral linear group GLdi

(kv) with the Πi,v distinct. But these Πi,v are then
precisely the supercuspidal representations ρ′′ for which L(s,Π0,v × ρ′′) has a
pole at s = 0. Hence if we let ρ′′j with j = 1, . . . , ℓ′′ denote those ρ′j with a′j
odd, then {ρ′′1, . . . , ρ

′′
ℓ′′} ⊂ {Π1,v, . . .Πd,v} and we can write

Π0,v = Ind(ρ′′1 ⊗ · · · ⊗ ρ′′ℓ′′ ⊗Π ′
0,v)
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with Π ′
0,v the tensor product of the Πi,v which were not among the ρ′′j . Now,

for each ρ′′j , consider the contribution δ′′j ⊗ ρ′′j ⊗ δ̃′′j to our generic constituent.

If we replace δ′′j by its inducing data, we see that Ind(δ′′j ⊗ ρ′′j ⊗ δ̃′′j ) is a
constituent of the larger induced representation

Ξ ′′
j,v = Ind(ρ′′jν

−
(a′′j −1)

2 ⊗ ρ′′jν
−1 ⊗ ρ′′j ⊗ ρ′′jν ⊗ · · · ⊗ ρ′′jν

(a′′j −1)

2 )

and this representation has as its unique generic constituent the self dual
discrete series representation δ(ρ′′j , a

′′
j ) So in the inducing data for Ξv we

may replace δ′′j ⊗ ρ′′j ⊗ δ̃′′j by δ(ρ′′j , a
′′
j ) and not effect the generic constituent.

If we put these all back together, we find that our Πv is now the unique
generic constituent of the induced representation

Ind(δ(ρ1, a1)⊗δ(ρ1, b1)⊗· · ·⊗δ(ρr, ar)⊗δ(ρr, br)⊗δ(ρ
′
1, a

′
1)⊗· · ·⊗δ(ρ′ℓ, a

′
ℓ)⊗Π

′
0,v).

But this representation is induced from self-dual unitary discrete series and
is hence generic, tempered, self-dual, and irreducible. Thus this irreducible
induced representation is precisely our local lift. It is a self-dual, generic,
tempered representation of GLN(kv). �

We would like to point out that the proof given for Proposition 2.6 of
[30] is incorrect and should be replaced by the preceding proof.

As a corollary, let us give the more precise form of the lift we obtained.

Corollary 7.2. — Let πv be a generic discrete series representation of
Gn(kv) realized as a subrepresentation of (7.2). Then πv has a local functorial
lift Πv to GLN(kv) given by the irreducible induced representation

Ind(δ(ρ1, a1)⊗δ(ρ1, b1) · · ·⊗δ(ρr, ar)⊗δ(ρr, br)⊗δ(ρ
′
1, a

′
1)⊗· · ·⊗δ(ρ′ℓ, a

′
ℓ)⊗Π

′
0,v).

We next consider a general generic tempered representation πv of the
group Gn(kv). Since πv is generic and tempered it is a direct summand of
an induced representation of the form

Ind(δ1,v ⊗ · · · ⊗ δm,v ⊗ σ0,v) (7.4)

where the δi,v are discrete series representations of appropriate GLni
(kv) for

i = 1 . . . , m and σ0,v is a generic discrete series of Gn0(kv) for a smaller clas-
sical group of the same type. Now set Πv to be the induced representation
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of GLN(kv) given by

Πv = Ind(δ1,v ⊗ · · · ⊗ δm,v ⊗Π0,v ⊗ δ̃m,v ⊗ · · · ⊗ δ̃1,v)

where Π0,v is the local functorial lift of σ0,v defined in Proposition 7.3. This
representation is then irreducible, self-dual, generic, and tempered. Then ar-
guing by the multiplicativity of the local γ- and L-factors as before we have
that

L(s, πv × ρv) = L(s,Πv × ρv) and γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv)

for all requisite supercuspidal ρv. Hence Πv is a local functorial lift of πv.
Thus we have established the following proposition.

Proposition 7.4. — Let πv be a generic tempered representation of the
group Gn(kv) given as a summand of (7.4). Then πv has a local functorial
lift to a representation Πv of GLn(kv) given by

Πv = Ind(δ1,v ⊗ · · · ⊗ δm,v ⊗Π0,v ⊗ δ̃m,v ⊗ · · · ⊗ δ̃1,v),

where Π0,v is the generic local functorial lift of σ0,v. The lift Πv is self-dual,
generic, and tempered.

Finally, let πv be an arbitrary irreducible admissible generic representa-
tion of Gn(kv). By the work of Muić [44] on the standard module conjecture
we know that πv is a full induced representation of the form

πv ≃ Ind(τ1,vν
r1 ⊗ · · · ⊗ τm,vν

rm ⊗ τ0,v) (7.5)

where each τi,v is a tempered representation of an appropriate GLni
(kv), the

exponents can be taken so that 0 < rm < · · · < r1, and τ0,v is a generic
tempered representation of a smaller classical group Gn0(kv) of the same type,
except in the case where Gn = SO2n, τ0,v is the trivial representation of
G0(kv) and nm = 1, in which case we must allow

πv ≃ Ind(τ1,vν
r1 ⊗ · · · ⊗ τm,vν

rm) (7.6)

with 0 ≤ |rm| < rm−1 < · · · < r1. (In particular, see Section 4 of [44] for the
elaboration of these cases.) Then on GLN (kv) we can either form the induced
representation

Ξv = Ind(τ1,vν
r1 ⊗ · · · ⊗ τm,vν

rm ⊗Π0,v ⊗ τ̃m,vν
−rm ⊗ · · · ⊗ τ̃1,vν

−r1) (7.7)
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where Π0,v is the local functorial lift of τ0,v as constructed in Proposition 7.4
if we are in the situation (7.5) or

Ξv =

{
Ind(τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ τ̃m,vν

−rm ⊗ · · · ⊗ τ̃1,vν
−r1) if rm ≥ 0

Ind(τ1,vν
r1 ⊗ · · · ⊗ τ̃m,vν

−rm ⊗ τm,vν
rm ⊗ · · · ⊗ τ̃1,vν

−r1) if rm < 0

(7.8)
in case (7.6). There is no reason for Ξv to be irreducible any more. However,
with the exponents arranged in the Langlands ordering, Ξv has a unique
irreducible quotient, which we denote by Πv.

Proposition 7.5. — If πv is an irreducible admissible generic representa-
tion of Gn(kv) given by (7.5) (respectively (7.6)), then it has a local functorial
lift Πv given by the unique irreducible quotient of (7.7) (respectively (7.8)).

Proof: Once again, we must show the equality of the twisted γ- and L-
factors. We will do this in the general case (7.5), the exceptional case (7.6)
being handled in the same manner. Hence assume πv is of the form (7.5).

By the multiplicativity of γ factors and L-factors for general linear
groups (Theorem 3.1 and Proposition 9.4 of [20]) we know that even for
any tempered representation τ ′v of GLm(kv) we have

γ(s,Πv×τ
′
v, ψv) = γ(s,Π0,v×τ

′
v, ψv)

m∏

j=1

γ(s+rj, τj,v×τ
′
v, ψv)γ(s−rj , τ̃j,v×τ

′
v, ψv)

and

L(s,Πv × τ ′v) = L(s,Π0,v × τ ′v)
m∏

j=1

L(s + rj, τj,v × τ ′v)L(s− rj , τ̃j,v × τ ′v).

On the classical group side, we still retain multiplicativity by Theorem
5.2 of [52] (see also the discussion in Section 5 of [32] where the condition
of being a subrepresentation is removed) so that

γ(s, πv × τ
′
v, ψv) = γ(s, τ0,v × τ

′
v, ψv)

m∏

j=1

γ(s+ rj , τj,v × τ
′
v, ψv)γ(s− rj , τ̃j,v × τ

′
v, ψv).
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Since the representation πv is no longer tempered, its L-function is defined
through the Langlands classification in [51] and so by definition

L(s, πv × τ ′v) = L(s, τ0,v × τ ′v)

m∏

j=1

L(s + rj, τj,v × τ ′v)L(s− rj , τ̃j,v × τ ′v).

If we take τ ′v = ρv to be supercuspidal, then by the previous proposition
(or the definition of being a local functorial lift) we have

L(s, τ0,v × ρv) = L(s,Π0,v × ρv) and γ(s, τ0,v × ρv, ψv) = γ(s,Π0,v × ρv, ψv).

Hence indeed Πv is a local functorial lift of πv. �

To proceed we will next show that control of supercuspidal twists as in
the definition of local functorial lift is sufficient to control all generic twists.

Lemma 7.2. — Let πv be an irreducible admissible generic representation
of Gn(kv) and let Πv be the local functorial lift constructed in the previous
proposition. Then for any irreducible admissible generic representation π′

v of
GLm(kv) we have

L(s, πv × π′
v) = L(s,Πv × π′

v) and γ(s, πv × π′
v, ψv) = γ(s,Πv × π′

v, ψv).

Proof: The argument is as before, now using multiplicativity in the other
variable. Once again, we will present the argument in the general case where
πv is given by (7.5) and its lift Πv by (7.7). The exceptional case of (7.6) is
handled accordingly.

Since π′
v is generic, we can write πv as a full induced representation

from either tempered or discrete series [61]. We take

π′
v ≃ Ind(τ ′1,vν

b1 ⊗ · · · ⊗ τ ′k,vν
bk)

with each τ ′j,v tempered and b1 > · · · > bk.

Again by Theorem 3.1 and Proposition 9.4 of [20] on the general linear
side we have

γ(s,Πv × π′
v, ψv) =

k∏

i=1

[
γ(s+ bi, Π0,v × τ ′i,v, ψv)×

m∏

j=1

γ(s+ bi + rj, τj,v × τ ′i,v, ψv)γ(s+ bi − rj , τ̃j,v × τ ′i,v, ψv)
]
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and

L(s,Πv × π′
v) =

k∏

i=1

[
L(s + bi, Π0,v × τ ′i,v)×

m∏

j=1

L(s + bi + rj , τj,v × τ ′i,v)L(s + bi − rj , τ̃j,v × τ ′i,v)
]
.

On the classical group side we obtain the similar factorizations for the
same reasons as in the previous proposition. This reduces us to showing that

γ(s, τ0,v × τ ′v, ψv) = γ(s,Π0,v × τ ′v, ψv) and L(s, τ0,v × τ ′v) = L(s,Π0,v × τ ′v)

for τ ′v a tempered representation of GLm(kv) when Π0,v is the local functorial
lift of τ0,v as above. But now both τ0,v and Π0,v are tempered and we know
the equality of the twisted γ- and L-factors when τ ′v = ρv is supercuspidal.
We then first write our general tempered τ ′v as

τ ′v = Ind(δ1,v ⊗ · · · ⊗ δk,v)

with each δi,v discrete series and use multiplicativity once again to reduce to
τ ′v = δv discrete series. Then for the discrete series we realize δv as δ(ρv, t),
the generic quotient of the induced representation

Ind(ρvν
− t−1

2 ⊗ · · · ⊗ ρvν
t−1
2 )

with ρv supercuspidal and t a positive integer as before. Using multiplicativity
of γ-factors as always gives

γ(s, τ0,v × δv, ψv) = γ(s,Π0,v × δv, ψv)

and by direct calculation as in [20] and [31] we have

L(s, τ0,v × δv) =

t−1∏

j=0

L(s +
t− 1

2
− j, τ0,v × ρv)

=
t−1∏

j=0

L(s +
t− 1

2
− j,Π0,v × ρv)

= L(s,Π0,v × δv).

This completes the proof of the lemma. �

We are now able to determine the image of local functoriality in general
for components of globally generic cuspidal representations.
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Theorem 7.4. — Let

πv ≃ Ind(τ1,vν
r1 ⊗ · · · ⊗ τm,vν

rm ⊗ τ0,v)

be an irreducible generic representation of Gn(kv) as in (7.5) or (7.6). Sup-
pose that πv is a local component of a globally generic cuspidal representation
π of Gn(A). Then its local functorial lift Πv is self-dual, generic and has the
form

Πv = Ind(τ1,vν
r1 ⊗ · · · ⊗ τm,vν

rm ⊗Π0,v ⊗ τ̃m,vν
−rm ⊗ · · · ⊗ τ̃1,vν

−r1)

with Π0,v the local functorial lift of τ0,v defined above if π is as in (7.5) and
by

Πv =

{
Ind(τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ τ̃m,vν

−rm ⊗ · · · ⊗ τ̃1,vν
−r1) if rm ≥ 0

Ind(τ1,vν
r1 ⊗ · · · ⊗ τ̃m,vν

−rm ⊗ τm,vν
rm ⊗ · · · ⊗ τ̃1,vν

−r1) if rm < 0

if π is as in (7.6).

Proof: By definition, we know that Πv is the Langlands quotient of this
induced representation. Hence once we show that Πv is generic the induced
representation will be irreducible and thus equal to Πv.

We will establish this by using the Converse Theorem once again. Let
π = ⊗′πw. Let S be the set of finite places where π is ramified. For the w /∈ S
we have constructed a local functorial lift in Propositions 5.1 and 5.2. For the
places w ∈ S, which include v, we will take Πw to be the local functorial
lift defined in Proposition 7.5. Then let Π = ⊗′Πw. This is an irreducible
admissible representation of GLN(A) with trivial central character and is our
candidate lift. Moreover, by Propositions 5.1 and 5.2 combined with Lemma
7.2 for the places in S we have that for all cuspidal representations τ ∈
T (N − 1)

L(s, π × τ) = L(s,Π × τ) and ε(s, π × τ) = ε(s,Π × τ).

Now let T = {w0} be a singleton set containing one non-archimedean
place, say where πw0 is unramified. In particular, w0 6= v for our fixed place
v. Let η any idele class character which is sufficiently ramified at w0 so that
Theorem 3.1 is true for all τ ∈ T (T ; η). Then L(s,Π × τ) is also nice for all
τ ∈ T (T ; η). Now applying the Converse Theorem we find a global functorial
lift Π ′ of π such that Π ′

w ≃ Πw for all w 6= w0, so that in particular Πv = Π ′
v.

By Theorem 7.1 or Theorem 7.2 we know that Π ′ and hence Π ′
v is generic.

Hence Πv is generic. �
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8. A conjecture of Mœglin

Let kv be a non-archimedean local field of characteristic 0, which we
take to be a local component of our number field k.

In the recent work on the characterization of discrete series represen-
tations of the p-adic classical groups by Mœglin and Tadić [39,40], to each
discrete series representation πv of Gn(kv) they have attached a triple

πv 7→ (Jord(πv), πcusp, ǫπv
)

where Jord(πv) is the set of Jordan blocks attached to πv, πcusp is the par-
tial cuspidal support of πv, a supercuspidal representation of a smaller clas-
sical group Gn0(kv) of the same type, and ǫπv

is a partially defined function
ǫπv

: Jord(πv) → {±1}. We will be most interested in the Jordan blocks. The
set Jord(πv) consists of pairs (ρ, a) where ρ is a self dual supercuspidal rep-
resentation of some GLdρ

(kv) and a is a natural number. By definition [39]
a pair (ρ, a) ∈ Jord(πv) iff

1. ρ is self-dual,
2. the induced representation Ind(δ(ρ, a) ⊗ πv) of the group Gn+adρ

(kv)
is irreducible, and

3. a is even if L(s, ρ, R) has a pole at s = 0 and odd otherwise.

As in [39,40], we have let R denote Sym2 if Gn = SO2n+1 and R = ∧2

if Gn = SO2n or Sp2n and the L-functions L(s, ρ, R) are as in [53]. The
partial cuspidal support πcusp is the unique supercuspidal representation of a
smaller classical group Gn0(kv) such that πv occurs as a subrepresentation of
Ind(τv⊗πcusp) for some convenient irreducible representation τv of GLn−n0(kv).
The function ǫπv

will play no role for us so we will not describe it.

Let N denote the rank of the general linear group to which the discrete
series representation πv of Gn(kv) should functorially lift. Motivated by the
conjectural Langlands correspondence and conjectures of Arthur, Mœglin has
conjectured [38–40] that one should have the dimension relation

∑

(ρ,a)∈Jord(πv)

adρ = N

relating the size of the Jordan blocks and the dimension of the natural rep-
resentation of the dual group LGn, which is N . One can find a discussion of
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this relation and its motivation in the Introductions to [38] and [40], where
it is noted that this equality would follow from Arthur’s conjectures. In [38]
Mœglin has established the inequality

∑

(ρ,a)∈Jord(πv)

adρ ≤ N

in general.

Given its relation with the local Langlands correspondence, and hence
functoriality, it should not be surprising that as a first local consequence of
the existence of global functoriality for the classical groups Gn, particularly
the construction of the local lift of a generic discrete series representation πv

in Proposition 7.3, we can establish this conjecture for the case of generic
discrete series representations of split classical groups.

Theorem 8.1. — Let πv be a generic discrete series representation of
some Gn(kv). Let N be the rank of the general linear group to which πv

functorially lifts. Then ∑

(ρ,a)∈Jord(πv)

adρ = N.

Proof: Let us first suppose that πv = π0,v is generic supercuspidal. Then, as
we have noted in Section 7.2, in this case the Jordan blocks Jord(π0,v) can
be characterized as [39,40]

Jord(π0,v) = {(ρ, 1) | Ind(ρνs ⊗ π0,v) is reducible at s = 1}.

On the other hand, by Theorem 7.3 we know that π0,v lifts functorially to

Π0,v ≃ Ind(Π1,v ⊗ · · · ⊗Πd,v)

where each Πi,v is an irreducible supercuspidal self-dual representation of
some GLNi

(kv) and Πi,v 6≃ Πj,v for i 6= j. By Theorem 8.1 of [51] we know
that Ind(ρνs ⊗π0,v) is reducible at s = 1 iff L(s, ρ×π0,v) has a pole at s = 0.
But this last is equivalent to

L(s, ρ× π0,v) = L(s, ρ×Π0,v) =
d∏

i=1

L(s, ρ×Πi,v)
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having a pole at s = 0. Since local L-functions are never zero, this is the
case iff ρ = Πi,v for some i = 1, . . . , d. Hence we see that

Jord(π0,v) = {(Πi,v, 1) | i = 1, . . . , d}

so that
∑

(ρ,a)∈Jord(πv)

adρ =
d∑

i=1

Ni = N.

This establishes the theorem for generic supercuspidal representations.

Next we let πv = π+
v be a generic strongly positive discrete series rep-

resentation as in [39,40]. Then by Section 5.3 of [39] (see also Section 5 of
[40]) we know that the associated triple (Jord(π+

v ), π+
cusp, ǫπ+

v
) is admissible of

alternated type. Let π+
cusp = π0,v, which must be generic if π+

v is. As in [39,
40] and Section 7.2 above, the set of extended Jordan blocks Jord′(π0,v) is
then

Jord′(π0,v) = Jord(π0,v) ∪ {(ρ, 0) | Ind(ρνs ⊗ π0,v) is reducible at s = 1
2
}

and once one assumes that Ind(ρνs⊗π0,v) reduces somewhere, then reduction
at s = 1/2 is equivalent to the L-function L(s, ρ, R) having a pole at s = 0
[51]. Let us enumerate this set as Jord′(π0,v) = {(ρ′j, aj)}. Then by Section
2 of [40], particularly formula (2-7), we know that Jord(π+

v ) is in bijection
with Jord′(π0,v), this bijection preserves the supercuspidal representations ρ′j
occurring, and if we enumerate Jord(π+

v ) in accordance with Jord′(π0,v) then
Jord(π+

v ) = {(ρ′j, a
′
j)} where a′j ≥ aj and of the same parity. Then, as we

observed in Section 7.2, Proposition 4.1 of [39] or Section 7 of [40] give that
π+

v is the unique subrepresentation of

ξ+
v = Ind(δ′1 ⊗ · · · ⊗ δ′ℓ ⊗ π0,v)

where δ′j = δ([ρ′jν
(aj+1)

2 , ρ′jν
(a′j−1)

2 ]), with δ′j associated to empty segments omit-

ted. Note that the only way a segment [ρ′jν
(aj+1)

2 , ρ′jν
(a′j−1)

2 ] can be empty is
if a′j = aj = 1, since by definition each a′j ≥ 1 and aj ∈ {0, 1}. The local
functorial lift Π+

v of this representation is then given in Proposition 7.3 or
Corollary 7.2. From the statement of Proposition 7.3 we know that Π+

v is
the generic constituent of

Ξ+
v = Ind(δ′1 ⊗ · · · ⊗ δ′ℓ ⊗Π0,v ⊗ δ̃′ℓ ⊗ · · · δ̃′1).

In the course of the proof of that proposition and the derivation of the form
of Π+

v given in Corollary 7.2 we successively replaced parts of the induction
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data for Ξv by associated discrete series representations. We now interpret
these replacements in terms of the Jordan blocks of π+

v . For the δ′j associ-
ated to (ρ′j , a

′
j) with a′j even, so that part of Jord(π+

v ) corresponding to a

pair (ρ′j, 0) in Jord′(π0,v), the factor δ′j⊗δ̃
′
j was replaced by δ(ρ′j , a

′
j) in the in-

ducing data for Ξv. For the remaining δ′j , namely those associated to (ρ′j, a
′
j)

with a′j odd and greater than one, then ρ′j = Πi,v for one of the factors Πi,v

of the lift Π0,v of π0,v and then δ′j ⊗Πi,v ⊗ δ̃
′
j was replaced by δ(ρ′j , a

′
j) in the

inducing data. Finally, we were left with those factors Πi,v = ρ′j of Π0,v for
which the associated a′j = 1 and these remain. Then as in Corollary 7.2 we
have

Π+
v = Ind(δ(ρ′1, a

′
1) ⊗ · · · ⊗ δ(ρ′ℓ, a

′
ℓ) ⊗Π ′

0,v)

where Π ′
0,v is the tensor product of the Πi,v = ρ′j with a′j = 1, that is,

corresponding to the empty segments above. Thus

N =

ℓ∑

j=1

a′jdρ′j
+

∑

(ρ′j ,1)∈Jord(πv)

dρ′j

=
∑

(ρ′
j
,a′

j
)∈Jord(πv)

aj=0

a′jdρ′j
+

∑

(ρ′
j
,a′

j
)∈Jord(πv)

aj=1,a′

j>1

a′jdρ′j
+

∑

(ρ′j ,1)∈Jord(πv)

dρ′j

=
∑

(ρ′j ,a′

j)∈Jord(πv)

a′jdρ′j

and the theorem is true for strongly positive generic discrete series.

Finally, we take πv to be an arbitrary generic discrete series represen-
tation of Gn(kv). Then, as in Section 7.2, using inductively Lemma 3.1 and
Section 4.2 of [39] we may realize πv as a subrepresentation of

ξv = Ind(δ1 ⊗ · · · ⊗ δr ⊗ π+
v )

with π+
v a generic strongly positive discrete series and

δi = δ([ν−
(bi−1)

2 ρi, ν
(ai−1)

2 ρi])

for self-dual supercuspidal representations ρi of GLdρi
(kv) and integers ai >

bi > 0 of the same parity. Then by Proposition 4.2 of [39] we know that
Jord(πv) is the union of Jord(π+

v ) and the set {(ρi, ai), (ρi, bi)} and that
these sets are disjoint. If we let Π+

v be the local functorial lift of π+
v discussed

in the previous paragraph, then we can interpret Corollary 7.2 as saying that
the functorial lift of πv is given by

Πv = Ind(δ(ρ1, a1) ⊗ δ(ρ1, b1) ⊗ · · · ⊗ δ(ρr, ar) ⊗ δ(ρr, br) ⊗Π+
v ).
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If Π+
v is a representation of GLN+(kv) then we see that

N = N+ +
r∑

i=1

(ai + bi)dρi
= N+ +

∑

(ρ,a)∈Jord(πv)−Jord(π+
v )

adρ

and if we combine this with the result for generic strongly positive discrete
series above we obtain our statement in this case as well. �

9. The conductor of a generic representation

Let v be a non-archimedean place of k and let πv be a generic repre-
sentation of Gn(kv) for one of our classical groups. Let qv be the order of
the residue field of kv. We will assume that our local additive character ψv

is normalized to have conductor zero, that is, ψv is trivial on the integers
Ov and non-trivial on ̟−1

v Ov.

Let us recall the basic structure of the local ε-factor of πv. In Section
3 of [51] the basic local γ-factor

γ(s, πv, ψv) = γ(s, πv × 1v, ψv)

is defined (with 1v the trivial representation of GL1(kv)) and it is shown
that

γ(s, πv, ψv)γ(1 − s, π̃v, ψ
−1
v ) = 1.

The γ-factor and ε-factor are related by

γ(s, πv, ψv) =
ε(s, πv, ψv)L(1 − s, π̃v)

L(s, πv)

with ε(s, πv, ψv) a monomial in qs
v, as in Section 7 of [51], and we will also

have that
ε(s, πv, ψv)ε(1 − s, π̃v, ψ

−1
v ) = 1.

Thus we may write

ε(s, πv, ψv) = ε(1
2
, πv, ψv)q

−f(πv)(s−
1
2
)

v

with f(πv) ∈ Z. The number ε(1
2
, πv, ψv) is then called the local root number

attached to πv (and ψv) and either the exponent f(πv) or the exponential

q
f(πv)
v is called the (arithmetic) conductor of πv. For our purposes, we will
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take the exponent f(πv) as the conductor. If πv is unitary, then π̃v = πv and
we have that the local root number satisfies |ε(1

2
, πv, ψv)| = 1. We could make

similar definitions for the ε-factors of pairs ε(s, πv ×π′
v, ψv) with π′

v a generic
representation of GLm(kv).

Of course, for representations of GLN(kv) there is an analogous defini-
tion of root number and conductor [14,19]. One of the principle results of
[19] is the following (see Theorem 5.1 and Remark 5.4).

Theorem 9.1. — Let Πv be an irreducible admissible representation of
GLN(kv). Then f(Πv) is a non-negative integer, i.e., f(Πv) ≥ 0, and f(Πv) =
0 iff Πv is unramified.

For the case of generic Πv, in [19] they then go on to give a structural
interpretation of the integer f(Πv) in terms of the existence of vectors stable
under appropriate open compact subgroups of Hecke type. We will not pursue
this finer result here, but we will establish the following analogue of the basic
facts on the conductor for the classical groups Gn.

Theorem 9.2. — Let πv be an irreducible admissible generic representa-
tion of Gn(kv). Then f(πv) ≥ 0 and f(πv) = 0 iff πv is unramified.

Proof: In Section 7 we have attached to πv an irreducible admissible repre-
sentation Πv of GLN (kv) such that

ε(s, πv × ρv, ψv) = ε(s,Πv × ρv, ψv)

for all supercuspidal representations ρv of GLm(kv). In particular, for m = 1
and ρv = 1v we have

ε(s, πv, ψv) = ε(s,Πv, ψv).

Thus for our local functorial lift Πv of πv we have the matching of both the
conductors f(πv) = f(Πv) and the root numbers ε(1

2
, πv, ψv) = ε(1

2
, Πv, ψv). In

particular this implies that f(πv) ≥ 0. Furthermore, by construction, if πv is
unramified then so is Πv, so that if πv is unramified we have f(πv) = 0.

We are left with showing that if πv is irreducible, admissible, generic
and f(πv) = 0, then πv is unramified. If f(πv) = 0 and Πv is the local
functorial lift of πv then f(Πv) = 0 and Πv must be unramified.
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First, suppose that πv is supercuspidal. In the low dimensional cases of
SO3 ≃ PGL2 or Sp2 ≃ SL2 one can check directly using the description of the
lift given in Section 1 that the local functorial lifts can never be unramified.
Thus we may assume n ≥ 2. Then, by Theorem 7.3, Πv is of the form

Πv ≃ Ind(Π1,v ⊗ · · · ⊗Πd,v)

with each Πi,v a supercuspidal representation of some GLNi
. The only way

this could be unramified is if d = N and each Πi,v were an unramified self-
dual character. But the πi,v are distinct and there are only two unramified
self-dual characters. So this would be possible only if N = 2. But since we
are taking n ≥ 2 we always have N ≥ 4. So the lift of a supercuspidal
representation cannot be unramified.

Next, suppose that πv is a generic discrete series. Again, the low dimen-
sional cases can be handled individually given their description in Section 1,
so we may assume n ≥ 2. Then as in Proposition 7.3 we realize πv as a
subrepresentation of an induced representation of the form

ξv = Ind(τ1,vν
r1 ⊗ · · · ⊗ τm,vν

rm ⊗ π0,v)

where each τi,v is a self-dual discrete series representation of an appropriate
GLni

(kv), rm ≤ · · · ≤ r1, and π0,v is our generic supercuspidal representation
of an appropriate smaller classical group Gn0(kv) of the same type. The local
functorial lift Πv is then the generic constituent of

Ξv = Ind(τ1,vν
r1 ⊗ · · · ⊗ τm,vν

rm ⊗Π0,v ⊗ τm,vν
−rm ⊗ · · · ⊗ τ1,vν

−r1)

where Π0,v is the local functorial lift of π0,v. For Πv to be unramified, all
of the inducing data in Ξv must be unramified. By the above, Π0,v is never
unramified. Hence π0,v cannot be present and πv is a subrepresentation of

ξv = Ind(τ1,vν
r1 ⊗ · · · ⊗ τm,vν

rm).

Then by Corollary 7.2 we know that Πv is a full induced of the form

Πv = Ind(δ(ρ1, t1) ⊗ · · · ⊗ δ(ρm, tm))

with each ρi a self-dual supercuspidal representations of appropriate GLdi
(kv).

Again, for this to be unramified, we must have each δ(ρi, ti) unramified. But
this is possible only if each ρi is a self-dual unramified character, that is
ρi = 1 or ρi = νiπ/ log(qv), and ti = 1. Irreducibility then forces Πv to be a
representation of GL1(kv) or GL2(kv), which as we have seen is impossible if
n ≥ 2. Hence the local functorial lift of a generic discrete series representation
is never unramified.
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Now suppose that πv is a tempered generic representation of Gn(kv).
Then as in Proposition 7.4 we have that πv is the direct summand of an
induced representation of the form

Ind(δ1,v ⊗ · · · ⊗ δm,v ⊗ σ0,v)

where the δi,v are discrete series representations of appropriate GLni
(kv) for

i = 1 . . . , m and σ0,v is a generic discrete series of Gn0(kv) for a smaller clas-
sical group of the same type. Then, as in that proposition, its local functorial
lift is

Πv = Ind(δ1,v ⊗ · · · ⊗ δm,v ⊗Π0,v ⊗ δ̃m,v ⊗ · · · ⊗ δ̃1,v)

where Π0,v is the local functorial lift of σ0,v. If this is to be unramified, then
all of its inducing data must be unramified. In particular, by the previous
analysis Π0,v cannot be present since it is never unramified. Hence πv is a
direct summand of

Ind(δ1,v ⊗ · · · ⊗ δm,v)

with the δi,v unramified. But again, the only unramified discrete series repre-
sentations of GLd(kv) are the unramified unitary characters of GL1(kv). Hence
πv is unramified and our theorem is true in this case.

In general, as in Proposition 7.5, we write an arbitrary irreducible ad-
missible generic representation of Gn(kv) in the form

πv ≃ Ind(τ1,vν
r1 ⊗ · · · ⊗ τm,vν

rm ⊗ τ0,v)

where each τi,v is a tempered representation of an appropriate GLni
(kv) and

τ0,v is a tempered representation of a smaller classical group Gn0(kv) of the
same type as in (7.5) or (7.6). Then Πv is taken to be the unique irreducible
quotient of

Ξv = Ind(τ1,vν
r1 ⊗ · · · ⊗ τm,vν

rm ⊗Π0,v ⊗ τ̃m,vν
−rm ⊗ · · · ⊗ τ̃1,vν

−r1)

where Π0,v is the local functorial lift of τ0,v if we are in the situation of (7.5)
or

Ξv =

{
Ind(τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ τ̃m,vν

−rm ⊗ · · · ⊗ τ̃1,vν
−r1) if rm ≥ 0

Ind(τ1,vν
r1 ⊗ · · · ⊗ τ̃m,vν

−rm ⊗ τm,vν
rm ⊗ · · · ⊗ τ̃1,vν

−r1) if rm < 0

in case (7.6). Πv can be unramified only if Π0,v is unramified and all the
τi,v are unramified. But as we have shown above, if Π0,v is unramified, so
is τ0,v, each tempered representation τi,v with i ≥ 1 is a full induced from
unitary discrete series, and for τi,v to be unramified, each discrete series must
also be unramified. But the only unramified unitary discrete series are the
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unitary characters of GL1(kv). So for Πv to be unramified, each τi,v must be
induced from unramified unitary characters of GL1(kv). Then πv will a full
induced representation from unramified representations, that is, πv must be
unramified.

Thus, in all cases, we have shown that if f(πv) = 0, then πv is unram-
ified. This completes the proof of the theorem. �

This result is expected to have applications to the relative trace formula
(communications with E. Lapid) among others.

10. The Ramanujan conjecture

We first recall the current formulation of the Ramanujan conjecture for
generic cuspidal representations of quasi-split groups as in [18], [45], or [50].
This conjecture was made after the counter-examples to the more general
conjecture were found [18]. We reiterate this conjecture formally here.

Conjecture 10.1. — Let G be a quasi-split reductive group over k. Then
every globally generic cuspidal representation π = ⊗′πv of G(A) satisfies the
Ramanujan conjecture, that is, each local component πv is tempered.

As a global consequence of functoriality, we obtain bounds towards Ra-
manujan for globally generic cuspidal representations of our classical groups
Gn by pulling back the known bounds for GLN .

Let us formulate estimates towards Ramanujan in the following terms
[46]. Let Π = ⊗′Πv be a unitary cuspidal representation of GLm(A). If v is
any place of k then Πv is a unitary generic representation of GLm(kv) and
hence by [60,61] can be written as a full induced

Πv ≃ Ind(Π1,vν
a1,v ⊗ · · · ⊗Πt,vν

at,v)

with a1,v > · · · > at,v and each Πi,v tempered. We will say that Π satisfies
condition H(θm) with θm ≥ 0 (allowing for the possibility that the bound is
dependent on the rank of the group) if for all places v the exponents in Πv

satisfy
−θm ≤ ai,v ≤ θm.
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By the classification of the unitary generic dual for GLm(kv) we have that
trivially every cuspidal Π satisfies H(1

2
). The best result known for a general

number field is that of Luo, Rudnick, and Sarnak which states that any
cuspidal representation Π of GLm(A) satisfies H(1

2
− 1

m2+1
). The Ramanujan

conjecture is that all cuspidal Π satisfy condition H(0).

Similarly, if Gn is any of our classical groups and π = ⊗′πv is a generic
cuspidal representation of Gn(A) then by [44] or [60] we know that at every
place we have that πv is also a full induced

πv ≃ Ind(τ1,vν
b1,v ⊗ · · · ⊗ τt,vν

bt,v ⊗ τ0,v)

where each τi,v is a tempered representation of an appropriate GLni
(kv), and

τ0,v is a generic tempered representation of a smaller classical group Gn0(kv)
of the same type as in (7.5) or (7.6). We will similarly say that π satisfies
H(θn) if for all places we have

−θn ≤ bi,v ≤ θn.

For these groups, the classification of the generic unitary dual gives the trivial
estimate of H(1).

Theorem 10.1. — Let π be a globally generic cuspidal representation of
Gn(A) and let N be the rank of the general linear group to which π functo-
rially lifts. Suppose that for all m ≤ N we know that cuspidal representations
of GLm(A) satisfy condition H(θm) with θr ≥ θm for r > m. Then π satisfies
H(θN).

Proof: Let Π be the functorial lift of π to GLN(A).

At the archimedean places, this follows from local functoriality since
that is completely understood in terms of the arithmetic Langlands parame-
terization.

Let v be a non-archimedean place of k at which πv is unramified. Let
us give the argument in terms of Satake parameters at these places since this
is more elementary and does not depend on the bulk of the work in Section
7.2. In the notation of Section 5.2 the Satake class of πv is represented by

φv(Fv) = diag(µ1,v(̟), . . . , µn,v(̟v), µn,v(̟v)
−1, . . . , µ1,v(̟v)

−1)
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in the cases Gn = SO2n+1, SO2n or

φv(Fv) = diag(µ1,v(̟), . . . , µn,v(̟v), 1, µn,v(̟v)
−1, . . . , µ1,v(̟v)

−1)

when Gn = Sp2n. Its Satake parameters are then the complex numbers αj,v =
µi,v(̟v)

±1. As noted in Section 5.3, the local component Πv of the functorial
lift is represented by the same class, viewed as a diagonal matrix in GLN(C)
and hence has the same Satake parameters.

If Π is unitary cuspidal, then by hypothesis the Satake parameters will
satisfy the bounds

q−θN
v ≤ |αj,v| ≤ qθN

v .

If Π is not cuspidal, but rather induced from unitary cuspidal representations
Πi of GLNi

(A) with Ni < N as in Theorems 7.1 or 7.2 then the Satake pa-
rameters of πv will be distributed among those of the Πi,v and hence satisfy
the possibly better estimates

q−θN
v ≤ q

−θNi
v ≤ |αj,v| ≤ q

θNi
v ≤ qθN

v .

Hence πv satisfies H(θN).

In general, a local component πv will be of the form

πv ≃ Ind(τ1,vν
b1,v ⊗ · · · ⊗ τt,vν

bt,v ⊗ τ0,v)

where each τi,v is a tempered representation of an appropriate GLni
(kv) and

τ0,v is a generic tempered representation of a smaller classical group Gn0(kv)
of the same type as in (7.5) or (7.6). Then as we have seen in Theorem 7.4

Πv = Ind(τ1,vν
b1,v ⊗ · · · ⊗ τt,vν

bt,v ⊗Π0,v ⊗ τ̃t,vν
−bt,v ⊗ · · · ⊗ τ̃1,vν

−b1,v)

with Π0,v the local functorial lift of τ0,v if π is as in (7.5) and by

Πv =

{
Ind(τ1,vν

b1,v ⊗ · · · ⊗ τt,vν
bt,v ⊗ τ̃t,vν

−bt,v ⊗ · · · ⊗ τ̃1,vν
−b1,v ) if bt,v ≥ 0

Ind(τ1,vν
b1,v ⊗ · · · ⊗ τ̃t,vν

−bt,v ⊗ τt,vν
bt,v ⊗ · · · ⊗ τ̃1,vν

−b1,v ) if bt,v < 0

if π is as in (7.6). By Proposition 7.4 we know Π0,v is tempered. If our
global lift Π is cuspidal, then by condition H(θN) we have

−θN ≤ bi,v ≤ θN

and hence πv satisfies H(θN ) at this place. If instead Π is of the form
Π = Π1 ⊞ · · · ⊞ Πd as in Theorem 7.1 or 7.2 with Πi a unitary cuspidal
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representation of GLNi
(A) with Ni < N then as the exponents distribute out

they will each satisfy a possibly better bound

−θN ≤ −θNi
≤ bj,v ≤ θNi

≤ θN .

Hence we have that πv satisfies H(θN) at these places as well. �

If we combine this result with the Ramanujan bounds of Luo, Rudnick,
and Sarnak for the general linear groups mentioned above, we obtain non-
trivial Ramanujan bounds for generic cuspidal representations of the classical
groups.

Corollary 10.1. — Let π be a globally generic cuspidal representation of
Gn(A) and let N be the rank of the general linear group to which π functo-
rially lifts. Then π satisfies condition H(1

2
− 1

N2+1
).

For the case of Gn = SO2n+1 bounds just better than H(1
2
), having ex-

ponents strictly less than 1
2
, were established in the course of proving Propo-

sition 4.1 of [29].

Of a general nature, we can now state, for the first time, that the Ra-
manujan conjecture for generic cuspidal representations of the classical groups
follows from the Ramanujan conjecture for general linear groups, which is
widely held to be true.

Corollary 10.2. — If the Ramanujan conjecture holds for all cuspidal
representations of GLm(A) for all m, that is, every cuspidal representation of
GLm(A) satisfies condition H(0), then it holds for all globally generic cuspidal
representations of the classical groups Gn(A).

Of course, from our proof it is clear that to have Ramanujan for Gn it
suffices to know it for GLm with all m ≤ N .

Remark. Our work seems to shed light on what form a general Ra-
manujan conjecture for these groups should take in terms of functoriality. As
suggested by Langlands [35], those cuspidal representations of Gn(A) which
defy Ramanujan should not functorially lift to any isobaric representation of
GLN(A) and in particular not lift to any unitary isobaric one, by which is
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meant an isobaric sum of unitary cuspidal representations. If the lift is uni-
tary isobaric, then by the Ramanujan conjecture for GLN (A) the lift would
be tempered. Since conjecturally the tempered representations should be char-
acterized, locally and globally, by the boundedness of the image of the as-
sociated arithmetic Langlands parameters, then the temperedness of the lift
would imply the temperedness of the original representation. One could also
give an argument of this type using Arthur’s parameters and their connec-
tion with temperedness. This would then verify Langlands suggestion. On
the other hand, assuming the conjecture on global genericity of tempered
L-packets and the Ramanujan conjecture for GLN , then, from the fact that
generic cuspidal lifts are unitary isobaric (our Theorem 1.1 and Theorems 7.1
and 7.2), one can easily verify the converse. Note that in these arguments
it is crucial that the map of L-groups under consideration is an embedding;
more pathological L-homomorphisms could easily allow more pathological be-
havior under functoriality. Consequently, it seems reasonable to conjecture
that a cuspidal representation of Gn(A) is tempered if and only if its con-
jectural lift to GLN(A), associated to the natural embedding of the L-groups,
is unitary isobaric. We would like to emphasize that the condition for cus-
pidal temperedness is that the lift is unitary isobaric, rather than tempered
isobaric; so, for example, if one replaced Gn by GLN and used the identity
L-homomorphism then this would become the standard Ramanujan conjec-
ture for GLN itself. On the other hand, the residual representations of the
classical groups Gn(A) should lift to residual representations on GLN(A) and
these should then account for those isobaric images that are not unitary iso-
baric.

11. Normalized local intertwining operators

We finish with one local result that follows from our bounds towards
Ramanujan. We expect this result to have many applications, particularly in
the study of the residual spectrum of classical groups.

Once again, let v be a non-archimedean place of k. Let πv be an irre-
ducible admissible unitary generic representation of Gn(kv) and let π′

v be an
irreducible admissible unitary generic representation of GLm(kv). As in Sec-
tion 3, let Gm+n be the classical group of the same type as Gn but of rank
m + n and let P be the standard parabolic subgroup with Levi subgroup
M = GLm × Gn. Then σv = π′

v ⊗ πv is a unitary generic representation of
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M(kv) and we may form the induced representation

I(s, σv) = I(s, π′
v ⊗ πv) = Ind

Gm+n(kv)
P(kv) (| det |sπ′

v ⊗ πv).

Associated to this induced representation is a normalized intertwining oper-
ator N(s, σv, w) = N(s, π′

v ⊗ πv, w) as in [51]. (For the case of Gn = SO2n+1

see [6] or [29].)

Theorem 11.1. — Suppose that πv is a local component of a globally
generic cuspidal representation π of Gn(A). Then for any irreducible admis-
sible unitary generic representation π′

v of GLm(kv) the normalized intertwining
operator N(s, π′

v × πv, w) is holomorphic and non-zero for Re(s) ≥ 0.

For the case of Gn = SO2n+1 this result is Proposition 4.1 of [29]. How-
ever, for the argument there to be complete, the lemma below is also needed.
It should be pointed out that the lemma is independent of whether the rep-
resentations involved occur as components of generic cuspidal representations
or not.

Lemma 11.1. — Let τ ′v and τv be irreducible generic tempered repre-
sentations of GLm(kv) and Gn(kv), respectively. Then the normalized inter-
twining operator N(s, τ ′v ⊗ τv, w) is holomorphic and non-zero in the region
Re(s) > −1/2.

Proof: We follow the method of Lemma 4.3 of [31]. For simplicity we will
drop the dependence of the normalized intertwining operators on the Weyl
elements w since these elements play no role in the argument.

In general it is known that for tempered representations N(s, τ ′v ⊗ τv)
is holomorphic and non-zero for Re(s) ≥ 0 in all our cases (see Lemma
4.2 in [31] for example). To extend this holomorphy and non-vanishing to
Re(s) > −1/2, we first reduce to discrete series representations by writing

τ ′v = Ind(δ′1,v ⊗ · · · ⊗ δ′k,v)

with each δ′i,v a unitary discrete series of appropriate smaller general linear
groups and realizing τv as a direct summand of an induced representation of
the form

Ind(δ1,v ⊗ · · · ⊗ δr,v ⊗ σ0,v)
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with each δi,v a unitary discrete series representation of a general linear group
for i = 1, . . . , r and σ0,v a generic unitary discrete series representation of a
smaller classical group of the same type. Then the normalized intertwining
operator N(s, τ ′v⊗τv) will factor into a product of rank one normalized inter-
twining operators of the form N(s, δ′i,v ⊗ δj,v) and N(s, δ′i,v ⊗σ0,v) [48]. Again,
by [41] each N(s, δ′i,v ⊗ δj,v) with j ≥ 1 is holomorphic and non-vanishing for
Re(s) > −1. This reduces us to controlling normalized intertwining operators
of the form N(s, δ′v ⊗ σv) for δ′v a unitary discrete series representation of
some GLm(kv) and σv a unitary generic discrete series of a classical group
Gn(kv). Again, we know holomorphy and non-vanishing for Re(s) ≥ 0 and
we are interested in pushing this to Re(s) > −1/2.

For normalized intertwining operators associated to generic unitary dis-
crete series we use the classification of these representations to reduce to su-
percuspidal representations. To this end, we again realize δ′v as δ′v = δ(ρ′v, t),
now realized as the generic subrepresentation of the induced representation
of the form

Ξ ′
v = Ind(ρ′vν

t−1
2 ⊗ · · · ⊗ ρ′vν

− t−1
2 )

with ρ′v a unitary supercuspidal representation of a smaller general linear
group and t a positive integer [61]. Similarly, by [40] we can realize σv as a
subrepresentation of

Ξv = Ind(ρ1,vν
a1
2 ⊗ · · · ⊗ ρr,vν

ar
2 ⊗ ρ0,v)

where each ρi,v with i ≥ 1 is a supercuspidal representation of a general linear
group, the ai are positive integers, and ρ0,v is a generic supercuspidal repre-
sentation of a smaller classical group of the same type. Then by transitivity
of induction, the induced representation I(s, δ′v ⊗σv) is a subrepresentation of
I(s, Ξ ′

v ⊗Ξv) and N(s, δ′v ⊗σv) is obtained as the restriction of N(s, Ξ ′
v ⊗Ξv)

to I(s, δ′v ⊗ σv). So it suffices to understand N(s, Ξ ′
v ⊗ Ξv). The normalized

intertwining operator N(s, Ξ ′
v ⊗ Ξv) may have poles or zeros in Re(s) ≥ 0,

but by the above result these will not occur when we restrict to I(s, δ′v⊗σv).
What we will be interested in is whether N(s, Ξ ′

v ⊗ Ξv) can have any poles
or zeros in the region −1/2 < Re(s) < 0.

This normalized intertwining operator once again factors into rank one
normalized intertwining operators of the form N(2s+ t− 1 − j, ρ′v ⊗ ρ′v) with
j = 1, . . . , 2t−3, of the form N(s+ t−1

2
± ai

2
−j, ρ′v⊗ρi,v) with 0 ≤ j ≤ t−1 and

i = 1, . . . , r, or of the form N(s+ t−1
2
−j, ρ′v⊗ρ0,v) with j = 0, . . . , t−1. For the

supercuspidal normalized intertwining operators we know that each N(s, ρ′v ⊗
ρi,v), 0 ≤ i ≤ r, is holomorphic except possibly on the lines Re(s) = −1 and
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Re(s) = −1/2 by Lemma 4.1 of [31]. Since all of our normalized intertwining
operators are evaluated at either s + b

2
with integer b or 2s+ c with integer

c, we see that none of these has a pole in the region −1/2 < Re(s) < 0.

Reconstructing our representations, we see that each N(s, δ′v ⊗ σv) with
δ′v and σv unitary generic discrete series have no poles in the region Re(s) >
−1/2 and then the same is true for our N(s, τ ′v ⊗ τv) with τv and τ ′v unitary
tempered representations.

Once we have holomorphy, non-vanishing follows from Zhang’s Lemma
(Theorem 3 of [62], see also Lemma 4.7 of [31]). This then completes the
lemma. �

We now turn to the proof of our theorem.

Proof: Since πv is a unitary generic representation then, as we have done
several times, we can write it as

πv ≃ Ind(τ1,vν
a1 ⊗ · · · ⊗ τm,vν

am ⊗ τ0,v)

where each τi,v is a tempered representation of an appropriate GLni
(kv) and

τ0,v is a generic tempered representation of a smaller classical group Gn0(kv)
of the same type as in (7.5) or (7.6). Since πv is a local component of a
globally generic cuspidal representation we know from Corollary 10.1 that
the exponents satisfy the bounds

0 ≤ |am| < am−1 < · · · < a1 ≤
1

2
−

1

N2 + 1
<

1

2
.

Similarly for π′
v we have from the classification of unitary generic rep-

resentation of GLm(kv) [58] that

π′
v = Ind(τ ′1,vν

b1 ⊗ · · · ⊗ τ ′d,vν
bd ⊗ τ ′0,v ⊗ τ ′d,vν

−bd ⊗ · · · ⊗ τ ′1,vν
−b1)

with each τ ′i,v a tempered representation of an appropriate smaller general
linear group and such that the exponents satisfy

0 < bd < · · · < b1 <
1

2
.

The induced representation to which N(s, π′
v ⊗ πv, w) is associated is

I(s, π′
v ⊗ πv) and if we replace π′

v and πv by their realizations as induced
representations and use transitivity of induction we see that the normalized
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intertwining operator N(s, π′
v⊗πv, w) = N(s, π′

v⊗πv) will factor into a product
of rank one normalized intertwining operators of one of the forms N(s±ai ±
bj , τ

′
j,v ⊗ τ ′i,v), N(2s± bi ± bj , τ

′
i,v ⊗ τj,v) or N(s± bj , τ

′
j,v ⊗ τ0,v) [48]. Again we

have dropped the dependence on the Weyl elements since they do not effect
the argument.

The rank one normalized intertwining operators of the form N(s, τ ′j,v ⊗
πi,v) with i > 0 are holomorphic for Re(s) > −1 [41]. With our bounds
on the exponents this implies that each operator N(s ± ai ± bj , τ

′
j,v ⊗ τi,v) is

holomorphic for Re(s) ≥ 0. Similarly, each operator N(2s± bi ± bj , τ
′
i,v ⊗ τ ′j,v)

is holomorphic for Re(2s) ≥ 0, i.e., Re(s) ≥ 0. Since we now know from our
lemma that each N(s, τ ′j,v⊗τ0,v) is holomorphic for Re(s) > −1/2 we see that
each N(s± bj , τ

′
j,v ⊗ τ0,v) is holomorphic for Re(s) ≥ 0 as desired.

Thus N(s, π′ ⊗ π, w) is holomorphic for Re(s) ≥ 0 and so by Zhang’s
Lemma again (Theorem 3 of [62]) it is non-vanishing there as well. �

A. Appendix

The following appendix addresses the issue of non-degeneracy of cuspi-
dal representations with respect to different characters. This is relevant here
since neither SO2n nor Sp2n is of adjoint type. For future use, we will present
the argument in a more general context than the rest of the current paper.

We let k be a number field as before, A its ring of adeles, and ψ =
⊗vψv be a non-trivial character of k\A. Let Γ = Gal(k/k).

Let G be a quasisplit connected reductive algebraic group over k. We
fix a k-Borel subgroup B = TU with T a maximal torus and U its unipotent
radical. Let P = MN be a maximal parabolic subgroup of G with the Levi
decomposition satisfying N ⊂ U and T ⊂ M.

If ∆′ denotes the set of (non–restricted) simple roots of T in U, let
{Xα′}α′∈∆′ be a Γ -invariant set of root vectors, giving what we will call in
short a k–splitting. Then {Xα′}α′∈∆′ is a kv–splitting for each completion kv

of k. It then defines a character χv of U(kv) by

χv(
∏

α∈∆′

exp(xα′,vXα′)) = ψv(
∑

α′∈∆′

xα′,v). (A.1)
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We understand that if Xβ′ = σ(Xα′), α′, β ′ ∈ ∆, then xβ′,v = σ(xα′,v), σ ∈ Γ .
Let χ = ⊗vχv be the corresponding non–degenerate character of U(k)\U(A).
We use χ to also denote its restriction to UM(A) = U(A) ∩ M(A).

Denote by r =
m⊕

i=1

ri, as usual (cf. [51]), the adjoint action of LM on

Ln, the Lie algebra of LN.

Let π = ⊗vπv be a globally χ–generic cuspidal representation of M(A).
The machinery of our method [51] then defines a global L–function L(s, π, ri)
and a global ε-factor ε(s, π, ri) for each i, 1 ≤ i ≤ m, such that

L(s, π, ri) = ε(s, π, ri)L(1 − s, π̃, ri). (A.2)

The purpose of this appendix is to show that the choice of the k–
splitting has no effect on ε(s, π, ri) and L(s, π, ri). More precisely, we will
show that if one changes the splitting and accordingly π, the same ε(s, π, ri)
and L(s, π, ri) are obtained.

We start with the following well–known lemma.

Lemma A.1. — Let ZG be the center of G. Assume H1(ZG) = {1}.
Then T(k) acts transitively on the set of generic characters of U(k)\U(A).

Proof: Assume χ is defined by

χ(
∏

α′∈∆′

exp(xα′Xα′)) = ψ(
∑

α′∈∆′

κα′xα′), (A.3)

where κα′ = κσ(α′) ∈ k× for all α′ ∈ ∆′ and σ ∈ Γ , since χ is a generic
character of U(k)\U(A).

Choose t ∈ T(k) such that α′(t) = κα′ for all α′ ∈ ∆′. Then σ(α′(t)) =
α′(t). Moreover κσ−1(α′) = σ−1(α′(σ(t))) implies α′(σ(t)) = α′(t). Thus

α′(t−1σ(t)) = α′(t)−1α′(σ(t)) = 1

for all α′ ∈ ∆′ and therefore σ 7→ t−1σ(t) defines a class in H1(ZG) = {1}.
Choose z ∈ ZG such that t−1σ(t) = zσ(z)−1. Then α′(tz) = κα′ for all α′ ∈ ∆′

and tz ∈ T(k). The lemma is now complete. �

By Proposition 5.4 of [55], we embed G into G̃ sharing the same derived
group as G and satisfying H1(ZG̃) = {1}. Let B̃ = T̃U be a k–Borel subgroup
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of G̃ containing B and moreover assume T̃ ⊃ T. Observe that T = B ∩ T̃.
Then T̃(k) acts transitively on generic characters of U(k)\U(A). Observe that
T̃(k) normalizes M and M(k) as well as M(A), since as k–groups, T̃ = TZG̃.

Given a cusp form φ ∈ Vπ in the space of π and t ∈ T̃(k), define φt by
φt(m) = φ(t−1mt), m ∈ M(A). Then φt is a cusp form which is χt–generic
(globally), where χt(u) = χ(t−1ut), u ∈ U(A). Let πt(m) = π(t−1mt). Then
the representation πt on the space Vπ = {φ} of π is equivalent to the right
regular action of M(A) on the space

{φt|φ ∈ Vπ}.

Moreover, if πt = ⊗vπt,v, then πt,v = πv,t for each v, where πv,t = πv(t
−1mt).

Given f in the space of

I(s, π) = Ind
G(A)
P(A) (π ⊗ exp〈sα̃, HM( )〉),

define ft(g) = f(t−1gt). The set of all such ft comprises the space of I(s, πt).
Finally

I(s, πt) = ⊗vI(s, πv,t).

The general machinery of our method then leads to the functional equa-
tion

L(s, πt, ri) = ε(s, πt, ri)L(1 − s, π̃t, ri) (A.4)

for each i, 1 ≤ i ≤ m.

The local L–functions L(s, πt,v, ri,v) are defined by means of intertwining
operators and local coefficients [51,49]. In fact, if σ is an irreducible super-
cuspidal χv–generic representation of M(kv), then L(s, σ, ri,v) and L(s, σt, ri,v)
are determined inductively precisely by poles of local standard intertwining
operators such as A(s, σ) and A(s, σt) acting on I(s, σ) and I(s, σt), respec-
tively. Moreover, if we use the definition

A(s, σ)f(g) =

∫

N(Fv)

f(ng)dn, (A.5)

where N = w−1
0 Nw0, then

A(s, σt)ft = (dn/d(t−1nt))(A(s, σ)f)t. (A.6)

Thus
L(s, σ, ri,v) = L(s, σt, ri,v). (A.7)
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The equality (A.7) of L–functions for a general σ follows from the in-
ductive definition of L–functions by means of local coefficients and Langlands
classification (cf. [51]).

Comparing functional equations (A.2) and (A.4) one gets

ε(s, πt, ri) = ε(s, π, ri) (A.8)

for every i, 1 ≤ i ≤ m.

From this discussion it now follows that to define and study global ε-
factors, for example their stability, it is enough to take π which is generic
with respect to the most convenient splitting.
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