ON SUMS OF THREE SQUARES

J.W. COGDELL

The question of when an integer is representable as a sum of squares has a long venerable
history. More generally, Hilbert’s eleventh problem asks (among other things) which integers
are integrally represented by a given quadratic form over a number field. The case of binary
quadratic forms is equivalent to the theory of relative quadratic extensions and their class
groups and class fields as developed by Hilbert. For forms in four or more variables the
situation is quite different and has been understood for some time. The case of three variables
has remained open.

The problem of which integers in a number field k£ are represented by the genus of a
quadratic form ¢(x) is completely answered by Siegel’s mass formula, which gives the number
of solutions in terms of products of local densities [23]. If there is only one class in the genus
of q(z), then this answers the question of representability for ¢. If n > 4 and ¢ is indefinite
at some archimedean place of k£ then Siegel showed by analytic methods that a number
is represented by one form in a genus iff it is represented by all forms in the genus, thus
reducing the global representability question to local ones [24]. These results were recovered
and extended to indefinite ternary forms via algebraic techniques by Kneser [12] and Hsia [7]
utilizing spinor genera. So we will restrict ourselves to the case of positive definite integral
forms over a totally real field k. If the number of variables is at least five, one can proceed
either by analytic methods, using bounds towards Ramanujan for Hilbert modular forms, or
algebraic methods [8] to prove that there is an effective constant C, such that if & € O, the
ring of integers of k, is totally positive and its norm N(«) > C, then « is represented by ¢
iff it is represented by ¢ for every completion k, of k. When the number of variables is four
one must add a primitivity condition on the representations, both locally and globally [8].
Recently, in collaboration with [.I. Piatetski-Shapiro and P. Sarnak, we have established an
analogue of this result in the case of positive definite integral ternary quadratic forms via
analytic methods [3].

Theorem . Let k be a totally real number field and let q(x) be a positive definite integral
ternary quadratic form over k. Then there is an ineffective constant C, such that if a is a
totally positive square free integer of k with N(a) > C, then « is represented integrally by g
off it is locally integrally represented over every completion k, of k.

The result was previously known for £ = Q by Duke and Schulze-Pillot [6, 18].

Of special interest is the case of the ternary form q(x) = x3 + x2 + 22 giving the result on
sums of squares in a number field alluded to in the title.
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Corollary . Let k be a totally real number field. Then there is an ineffective constant Cy
such that every totally positive square free integer o with N(«) > Cy is the sum of three
integral squares iff it is the sum of three integral squares locally for each place v of k.

Of course over Q Legendre has given us the precise answer: a € Z is the sum of three
squares iff a is not of the form 4”(8m + 7). Over a number field, partial results have been
obtained by algebraic methods by Donkar [4]. His methods, when applicable, give formulas
for the number of ways such « can be represented but do not give the local to global result
we present here.

In this note I would like to describe our proof of this theorem in the simplified case of k
totally real of class number one.

This paper is an expanded version of the lecture I presented at the XXII Journées
Arithmétiques 2001 in Lille. T would like to thank the organizers of JA 2001 for the opportu-
nity to speak on this topic. I would also like to thank my collaborators, [.I. Piatetski-Shapiro
and P. Sarnak, for allowing me to present this summary of our work here. In particular, I
thank P. Sarnak for reading and providing critical comments on an earlier version of this
note.

1. THETA SERIES

We take k to be a totally real number field having class number one. Let d = (k : Q) be
the degree of k£ over Q. We let O be the ring of integers of k. Let V' be a vector space of
dimension three over k equipped with a positive definite integral quadratic form ¢(z). We
will let L = O? denote the integral lattice in V. So ¢(z) € O for every x € L.

The proof we will give is analytic in nature. Hence we begin with the theta series associated
to ¢(x) and L, Siegel’s analytic class invariant [23],

19‘1(7_’ L) _ Z€2m tr(g(z)T)

zel

where 7 € $¢. This is a Hilbert modular form of weight 3/2 for an appropriate congruence
subgroup I' C SLy(O). Its Fourier expansion is given by

Og(r, L) =1+ Y rylar, L)e™ 7

a>>0
where 7,(a, L) = [{z € L|g(z) = a}| is the representation number of o by L.

There are two related theta series. Let Spn(L) denote the spinor genus of L and Gen(L)
the genus of L [18, 19]. (Whether we fix the lattice and work with the genus of the form or
fix the form and work with the genus of the lattice is all the same. Here we fix the form ¢
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and vary the lattice in its genus to conform to the work of Schulze Pillot.) We set

. EZAIEGQNL)O(Ai)ilﬁq(T’AI)
2o o(M)
=1+ Z ro(a, Gen(L))eritr@r)

a>>0

Y,(7,Gen(L))

to be the weighted average over the genus of L, Siegel’s analytic genus invariant [23], where
o(M) is the order of the group of units of M, and similarly for J,(r, Spn(L)).

By the work of Siegel [23] we know that the coefficients r,(7, Gen(L)) are given by a
product of local densities and is non-zero iff « is locally represented integrally by (¢, L,,) for
all completions. So we need to be able to relate r,(«, L) and r,(c, Gen(L)).

By classical results of Siegel, an algebraic proof of which can be found in Walling [27], we
know that both

y(7, L) — Jy(1, Spn(L))
and
o (7, Spn(L)) — Uq(7, Gen(L))

are cusp forms of weight 3/2. Now there are two types of cusp forms of weight 3/2. Recall that
we have the Shimura correspondence between cusp forms of weight 3/2 for I' and modular
forms of weight 2 for an appropriate subgroup I C PGLy(O). If we denote by Sg/Q(F)
the cusp forms associated to theta series attached to one dimensional quadratic forms and
SQ/Q(F) its orthogonal complement with respect to the Petersson inner product then Sg/Q(F)

consists of precisely those cusp forms that lift to cusp forms in Sy(I') [25].
Following the work of Schulze Pillot (see [19, 20] for related results) we can conclude that
Oq(7, L) = (7, Spn(L)) € S5)(T')

and
D,(7, Spn(L)) — d,(r, Gen(L)) € Si,(T).

Fortunately the Fourier coefficients of the forms in S§/2(F) are quite sparse. In fact, it
is known (see [7, 12]) that outside of an explicitly computable finite number of “genus
exceptional” square classes we have

rq(a, Spn(L)) = ry(a, Gen(L)).

So for square free v there are only a finite number of such genus exceptions which we can
avoid by taking « sufficiently large. Hence for all but finitely many square free o we have

rq(a, L) — ry(a,Gen(L)) = a(a)

where @(a) is the o Fourier coefficient of a cusp form f € Sg/Q(F).

From the computation of the local densities (see [19]) one can conclude that for a locally
represented « one has an ineffective lower bound

ro(a, Gen(L)) >> N(a)7*
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with the implied constant independent of .. The ineffectivity comes from an application of
the Brauer Siegel theorem and is the source of the ineffectivity of our theorem. Thus our
result will follow if we can produce an estimate for the Fourier coefficients a(«) of half-integral
weight forms in Sg/Q(F) of the form

a(a)] << N(a)2

for some fixed 4 > 0. This program was carried out in the case of £ = Q by Duke and
Schulze—Pillot [6] with a key ingredient being estimates on the Fourier coefficients of half-
integral weight forms due to Iwaniec [9] and Duke [5].

2. FOURIER COEFFICIENTS AND L-FUNCTIONS

By now, a common way to estimate Fourier coefficients of modular forms of half integral
weight is to appeal to Waldspurger’s formula [26] relating these coefficients to central values
of the L-functions of the Shimura lift. Waldspurger established this relation only for £ = Q
but recently his result has been generalized to totally real fields by Shimura [22] using the
Shimura correspondence and by Baruch and Mao using Jacquet’s relative trace formula [1].
We will use Baruch and Mao’s version of this relation.

Note that it suffices to prove our estimate for Hecke eigenforms since there is always a
basis coming from such. Let 7 denote the cuspidal representation of SLy(A) generated by
our f € Sy,(T"). Fix an additive character ¢ of £\A such that 7 = ©(#, ) is the Shimura

lift of 7 to a cuspidal representation of PG Ly(A). If a is a square free integer of O and we
let *(z) = ¥(ax) then we know [25]

O(7, ¥*) = 7 ® Xa(det)

where Y, is the quadratic character associated to the extension k(y/«)/k. Classically x, is
a ray class character mod (a). Let ¢ be the new form on $? associated to the new vector in
the space of m and let a(a) denote its a-Fourier coefficient.

Let S denote the finite set of places of £ where 7, 7, or v is ramified. Let S, denote the
archimedean places of k and let S, denote the set of finite places v where ord,(a) # 0. Let

L(s,m) = H L(s,m,)
¢ Soo
be the finite (or classical) L-function of 7. Then the formula of Baruch and Mao [1] can be
stated as:

£112
@ = oo rG rex) T el
el veS0aUSc
where the ¢, () are certain local constants given as ratios involving local norms, local Fourier
coefficients, and local L-values. Similar formulas had been given earlier by Shimura [22]. For

v ¢ S Baruch and Mao can explicitly compute the ¢,(«) and for v € S, a finite set of places,
they can estimate them as « varies. As a consequence one gets an estimate

a(@) > << N(a)2L(L, 7 ® xa)
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with the implied constant independent of «.

Note that the convexity bound on L(,7 ® Xa) as « varies (see [10]) is

1
L(3,7® xa) << N(a)2*
which would give
1
a(a)| << N(a)2™,

This is better than the Hecke bound, but not sufficient for our purposes. We must beat the
convexity bound to obtain a first non-trivial estimate towards Ramanujan for the Fourier
coefficients of half-integral weight forms over a totally real number field.

3. SUBCONVEXITY

Let 7 be a cuspidal automorphic representation of PG Ly(A) corresponding to a holomor-
phic Hilbert modular form of even weight £ = (k,... k). Let ¢(7) be the associated new
form. Let y; be any ray class character modulo an ideal a. We will let x; also denote its
associated idele class character. The key to our proof of the stated theorem, and a result
of interest in its own right, is the following breaking of convexity for L(%,W ® x1) in the
conductor aspect as y; varies.

Theorem . We have
17
Lt m@x1) << N(a)2 1307

with the implied constant depending on € but independent of a.

Here again by L(s, 7 ® x1) we mean the classical (or finite) L-function

Lis,t@x1) = [ [ L(s,m ® x1.).

<00

If we apply this result to our previous situation with y; = x, then this will complete the
proof of our first Theorem.

We would now like to describe the proof of this Theorem, still in the case of class number
one. We will work with the L-function in its additive form. To this end, we write

Lis,m@x1) =Lis,oox) = Y, AMwxa()N(p) ™

n>>0
mod Uy

where U, is the group of totally positive units in U = O*. This is related to the Fourier
expansion of ¢

P(r) = 3 a(u)erm ),

u>>0

where df is the different of K, by A(u) = a(u)N(u)*(k*I)/Q.
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We first use the approximate functional equation for L(s, 7® x;) (see for example [13, 17]).
This gives an expression of the form

1 M) N A)x N
LEm®x) = g %)V&< )((M)>+6(W®X1) Z (M);\([(M()M)VQ( )((H)>

n>>0
mod U+ mod U+

as two sums of length essentially X, where we have taken X = N(a). Here V; and V; are
functions having V;(0) = 1, smooth, and rapidly decaying at infinity. By using a smooth
dyadic subdivision it suffices to estimate sums of the shape

Aw)xi ()~ (N
i) = ;0 (uk;(i;t)w< )((u))

where now W is smooth of compact support say in the interval (%, 2), so concentrated near
1. There are approximately log(N(a)) such sums up to N(a). The crucial contribution for
us will be again when X is of size N(a). Note that the presence of the cutoff function W in
J(x1) forces \/N(u) ~ v/X so that if we set W(r) = /& W(zx) we have W is still smooth
with compact support in (3,2) and

J(x1) =X 28 (x1)

where

Sha)= Y. A(u)m(u)‘”(%)-

n>>0
mod U+

The sum S(x1) is the crucial sum we will have to estimate.

Our estimate will proceed by placing S(x1) into a family and then using arithmetic ampli-
fication. For a general exposition of these techniques one can refer to the talk of P. Michel at
the XXII Journées Arithmétiques 2001 [13]. To get an appropriate family we need to work
with a sum over the full set of totally positive integers. To this end we let F' be a smoothed

characteristic function of a fundamental domain for the action of the totally positive units
U, on the hyperboloid defined by N(z) =1 in kX, = RY which satisfies

ZF(ex)zl

for every x € kI with N(z) = 1. We extend this to all totally positive u by setting

F(u)=F (ﬁ) Then we can write

S0) = Y Mhamrw (5.

u>>0

Note that both W and F act as cutoff functions W cutting off in N(u) and F' cutting off
in the “argument” of pu.

We now place S(x1) in a family. We do not use the family of all S(x) where y runs over
all ray class characters mod a, which might seem more natural but could be too sparse.
Indeed, the image of U, in (O/a)* can be large [15]. Instead we use the family of all S(x)
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as x runs over all characters of the group (O/a)*. Let C(a) denote this group of characters.

Then we will consider the average value of |S(x)|? in this family Z |S(x)]?. Note that the
C(a)

length of the sum is |C'(a)| which is given by the generalized Euler totient function ®(a) and

is trivially bounded by N(a) and is at least of size N(a)'~¢, unlike the group of ray class

characters.

In addition to averaging over this family, we will utilize the technique of arithmetic ampli-
fication. To this end we will take an auxiliary parameter M which will be of size X° with §
small. Its precise value will be determined in the course of the argument. We take a set {v}
of totally positive integers which should be relatively prime to a and all have norm bounded
by M. There should be roughly M of them and they should be balanced, in that for the
archimedean embeddings v each v, should be roughly of the same size. For each v we take
a coefficient ¢(v) such that |c¢(v)| = 1. We then consider the amplified sum

A= 1S cw)x(w)
C(a) v

To obtain an estimate on our original S(x;) we will take arithmetically defined coefficients
c(v) = x; ' (v) thus amplifying the term |S(x;)|? by a factor of M?2.

To utilize A, we expand the norm squares, interchange the order of summation, and
perform the character sum over C'(a). This yields

A=o(a) ) c(m)c(n) 3 M) NG F (1) F (i)W <Ng?1)> W <Ng?2)>_

v1,va B 12
pivi=pgvy  (mod a)

We split this sum into two terms, the diagonal D and the off diagonal O D, where

D=a(a) Y c(m)e(va) Y M)A 2) () F () W <N§?1)> v <N§?2)>

and
OD=(a) 3_clm)eva) D, A(m)Amg)le)F(m)W(Ngﬁh))W<N§?2))_

The diagonal term is estimated simply using the Ramanujan bounds for the A(x), known
in this case by Brylinski and Labesse [2], namely |A(u)]| << N(p)¢, and then analysing the
size of the sums determined by the cutoff functions. These yield

D << N(a)X'teptte,

The off diagonal term is more interesting. Let us write it as

OD=(a) Y c(n)c(ra) > Blvi,w,h)

V1,U2 0#£h€a
h  mod U+
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where in B(vq, vy, h) we have resummed over U, which only has an effect on the cutoff
functions F. The terms B(vy, s, h) are estimated using several variable Mellin inversion.

We can write .
— D(s,vy,v9,h)H(s) ds
(2mi) /Re( )=

for suitably large a where s = (s1,...,54) € C?. D(s,v1,v5,h) is a type of Dirichlet series

D)= 3 i (V)

£>>0 vipnytvoug=_t
viky—vapa=h

B(Vla vy, h‘) =

where we have used a multi-index notation, so £~° = ¢;*'--- £ where {;,...,{; are the
images of ¢ under the d embeddings of k£ into R. This Dirichlet series carries the arithmetic
information in B(vy, 15, h). The function H(s) is essentially the Mellin transform of the
cutoff functions.

H(s) is relatively simple to handle. It is entire, rapidly decreasing in Im(s), and can be
estimated by
d
1
[H(s)] << (MX)a =+ [T+ [450)7°
j=1
where as is common we have written s; = o; + it;.

The interesting bit of the estimate is in the Dirichlet series D(s, vy, v, h). Tt is essentially
a Dirichlet series formed with products of shifted Fourier coefficients. Selberg has shown
how to approach such Dirichlet series via Poincaré series [21]. To this end, let us set g(7) =
y*o(117)p(ra7). Then there is a Poincaré series Py (7,s) such that when we compute the
Petersson inner product of g with P,(s) we find

d
(9. Pu(s)) = N(vamn)" PP T[T (s; + k — 1)D(s. 1,0, h).
j=1
One now expands this inner product spectrally via Parseval’s formula. If we let {¢;} be a
suitable orthonormal basis of Maass cusp forms then

(9, Pa(3)) = Y (9, 3) (s Pals)) + e(s)

J

where ¢(s) is a similar expression involving the continuous spectrum and is estimated in
a similar manner. Sarnak has developed a general method for estimating (g, ¢;) (see for
example [16]) which in this case yields

d
(9,850 << N(wrwa) T+ fryal)He2lme
i=1
where r; = (7;1,...,7;4) is the spectral parameter of ¢;. The term (¢;, Py(s)) is expressed

in terms of the h-Fourier coefficient p;(h) of ¢; and the associated archimedean ['-factors
involving the spectral parameters r;. We then estimate these using the bounds towards
Ramanujan in both the archimedean and non-archimedean aspects due to Kim and Shahidi
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[11]. The sum is then controlled using Weyl’s law. A similar type of estimate can be found
[14] and in the appendix of [17].

In the final analysis, these estimates give that the Dirichlet series D(s, vy, 15, h) has an
analytic continuation to the domain Re(s;) > 1 + & and in this region satisfies

1 1 d 1
D(s,v7, 0, h)| << N(eave) IN(h)5 [ ] 1y 37 (1 + 1))

=1

where the h; are the images of h under the d embeddings of k£ into R. Note that the 1 in
the boundary of the domaln of continuation comes from the archimedean estimates towards
Ramanujan while the § in the exponent of N (k) is from the non-archimedean bound towards
Ramanujan of Kim and Shahidi.

Returning now to our expression of B(vy, 19, h) in terms of the inverse Mellin transform,
we can now shift the lines of integration to Re(s;) = 5 + 5 + € = 1¢ + € to obtain

11
|B(vy,va, h)| << M (MX)1ste
which in turn results in

11 11
OD << N(a)M*" Tt X1ste

When we combine D and OD and choose M = X° to give them the same order of growth
in X we find that M = X7/%_ Now taking X = N(a) to get the dominant term from our
partition we get an estimate of our amplified sum

7
A=>"1S(x \\}j 2 << N(a)*o5 .
C(a)

We now take c(v) = x;'(v) to amplify the term we are interested in. Then estimating
this one term by the entire sum we find

7
M?|S(x1)[? << N(a)*"&5"
or
lfi+e
1S(x1)| << N(a)™ 130
which finally gives
130 7€

L3, m®x1) << N(a)2 I

as desired.

Note that to our knowledge this estimate is better than the current best bounds even in
the case k£ = Q.
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