
ON SUMS OF THREE SQUARESJ.W. COGDELLThe question of when an integer is representable as a sum of squares has a long venerablehistory. More generally, Hilbert's eleventh problem asks (among other things) whih integersare integrally represented by a given quadrati form over a number �eld. The ase of binaryquadrati forms is equivalent to the theory of relative quadrati extensions and their lassgroups and lass �elds as developed by Hilbert. For forms in four or more variables thesituation is quite di�erent and has been understood for some time. The ase of three variableshas remained open.The problem of whih integers in a number �eld k are represented by the genus of aquadrati form q(x) is ompletely answered by Siegel's mass formula, whih gives the numberof solutions in terms of produts of loal densities [23℄. If there is only one lass in the genusof q(x), then this answers the question of representability for q. If n � 4 and q is inde�niteat some arhimedean plae of k then Siegel showed by analyti methods that a numberis represented by one form in a genus i� it is represented by all forms in the genus, thusreduing the global representability question to loal ones [24℄. These results were reoveredand extended to inde�nite ternary forms via algebrai tehniques by Kneser [12℄ and Hsia [7℄utilizing spinor genera. So we will restrit ourselves to the ase of positive de�nite integralforms over a totally real �eld k. If the number of variables is at least �ve, one an proeedeither by analyti methods, using bounds towards Ramanujan for Hilbert modular forms, oralgebrai methods [8℄ to prove that there is an e�etive onstant Cq suh that if � 2 O, thering of integers of k, is totally positive and its norm N(�) > Cq then � is represented by qi� it is represented by q for every ompletion kv of k. When the number of variables is fourone must add a primitivity ondition on the representations, both loally and globally [8℄.Reently, in ollaboration with I.I. Piatetski-Shapiro and P. Sarnak, we have established ananalogue of this result in the ase of positive de�nite integral ternary quadrati forms viaanalyti methods [3℄.Theorem . Let k be a totally real number �eld and let q(x) be a positive de�nite integralternary quadrati form over k. Then there is an ine�etive onstant Cq suh that if � is atotally positive square free integer of k with N(�) > Cq then � is represented integrally by qi� it is loally integrally represented over every ompletion kv of k.The result was previously known for k = Q by Duke and Shulze{Pillot [6, 18℄.Of speial interest is the ase of the ternary form q(x) = x21 + x22 + x23 giving the result onsums of squares in a number �eld alluded to in the title.The author was supported in part by the NSA. While at the Institute for Advaned Study, where theoriginal stages of the work was performed, the author was supported in part by a grant from the EllentukFund and in part the researh was onduted for the Clay Mathematis Institute.1



2 J.W. COGDELLCorollary . Let k be a totally real number �eld. Then there is an ine�etive onstant Cksuh that every totally positive square free integer � with N(�) > Ck is the sum of threeintegral squares i� it is the sum of three integral squares loally for eah plae v of k.Of ourse over Q Legendre has given us the preise answer: a 2 Z is the sum of threesquares i� a is not of the form 4n(8m + 7). Over a number �eld, partial results have beenobtained by algebrai methods by Donkar [4℄. His methods, when appliable, give formulasfor the number of ways suh � an be represented but do not give the loal to global resultwe present here.In this note I would like to desribe our proof of this theorem in the simpli�ed ase of ktotally real of lass number one.This paper is an expanded version of the leture I presented at the XXII Journ�eesArithm�etiques 2001 in Lille. I would like to thank the organizers of JA 2001 for the opportu-nity to speak on this topi. I would also like to thank my ollaborators, I.I. Piatetski-Shapiroand P. Sarnak, for allowing me to present this summary of our work here. In partiular, Ithank P. Sarnak for reading and providing ritial omments on an earlier version of thisnote. 1. Theta seriesWe take k to be a totally real number �eld having lass number one. Let d = (k : Q ) bethe degree of k over Q . We let O be the ring of integers of k. Let V be a vetor spae ofdimension three over k equipped with a positive de�nite integral quadrati form q(x). Wewill let L = O3 denote the integral lattie in V . So q(x) 2 O for every x 2 L.The proof we will give is analyti in nature. Hene we begin with the theta series assoiatedto q(x) and L, Siegel's analyti lass invariant [23℄,#q(�; L) =Xx2L e2�i tr(q(x)�)where � 2 Hd. This is a Hilbert modular form of weight 3=2 for an appropriate ongruenesubgroup � � SL2(O). Its Fourier expansion is given by#q(�; L) = 1 + X�>>0 rq(�; L)e2�i tr(��)where rq(�; L) = jfx 2 Ljq(x) = �gj is the representation number of � by L.There are two related theta series. Let Spn(L) denote the spinor genus of L and Gen(L)the genus of L [18, 19℄. (Whether we �x the lattie and work with the genus of the form or�x the form and work with the genus of the lattie is all the same. Here we �x the form q



ON SUMS OF THREE SQUARES 3and vary the lattie in its genus to onform to the work of Shulze{Pillot.) We set#q(�; Gen(L)) = PM2Gen(L) o(M)�1#q(�;M)PM o(M)�1= 1 + X�>>0 rq(�;Gen(L))e2�itr(��)to be the weighted average over the genus of L, Siegel's analyti genus invariant [23℄, whereo(M) is the order of the group of units of M , and similarly for #q(�; Spn(L)).By the work of Siegel [23℄ we know that the oeÆients rq(�; Gen(L)) are given by aprodut of loal densities and is non-zero i� � is loally represented integrally by (q; Lv) forall ompletions. So we need to be able to relate rq(�; L) and rq(�;Gen(L)).By lassial results of Siegel, an algebrai proof of whih an be found in Walling [27℄, weknow that both #q(�; L)� #q(�; Spn(L))and #q(�; Spn(L))� #q(�; Gen(L))are usp forms of weight 3=2. Now there are two types of usp forms of weight 3=2. Reall thatwe have the Shimura orrespondene between usp forms of weight 3=2 for � and modularforms of weight 2 for an appropriate subgroup �0 � PGL2(O). If we denote by S13=2(�)the usp forms assoiated to theta series attahed to one dimensional quadrati forms andS03=2(�) its orthogonal omplement with respet to the Petersson inner produt then S03=2(�)onsists of preisely those usp forms that lift to usp forms in S2(�0) [25℄.Following the work of Shulze{Pillot (see [19, 20℄ for related results) we an onlude that#q(�; L)� #q(�; Spn(L)) 2 S03=2(�)and #q(�; Spn(L))� #q(�; Gen(L)) 2 S13=2(�):Fortunately the Fourier oeÆients of the forms in S13=2(�) are quite sparse. In fat, itis known (see [7, 12℄) that outside of an expliitly omputable �nite number of \genusexeptional" square lasses we haverq(�; Spn(L)) = rq(�;Gen(L)):So for square free � there are only a �nite number of suh genus exeptions whih we anavoid by taking � suÆiently large. Hene for all but �nitely many square free � we haverq(�; L)� rq(�;Gen(L)) = ~a(�)where ~a(�) is the �{Fourier oeÆient of a usp form ~f 2 S03=2(�).From the omputation of the loal densities (see [19℄) one an onlude that for a loallyrepresented � one has an ine�etive lower boundrq(�;Gen(L)) >> N(�)12��



4 J.W. COGDELLwith the implied onstant independent of �. The ine�etivity omes from an appliation ofthe Brauer{Siegel theorem and is the soure of the ine�etivity of our theorem. Thus ourresult will follow if we an produe an estimate for the Fourier oeÆients ~a(�) of half-integralweight forms in S03=2(�) of the form j~a(�)j << N(�)12�Æfor some �xed Æ > 0. This program was arried out in the ase of k = Q by Duke andShulze{Pillot [6℄ with a key ingredient being estimates on the Fourier oeÆients of half-integral weight forms due to Iwanie [9℄ and Duke [5℄.2. Fourier oeffiients and L-funtionsBy now, a ommon way to estimate Fourier oeÆients of modular forms of half integralweight is to appeal to Waldspurger's formula [26℄ relating these oeÆients to entral valuesof the L-funtions of the Shimura lift. Waldspurger established this relation only for k = Qbut reently his result has been generalized to totally real �elds by Shimura [22℄ using theShimura orrespondene and by Baruh and Mao using Jaquet's relative trae formula [1℄.We will use Baruh and Mao's version of this relation.Note that it suÆes to prove our estimate for Heke eigenforms sine there is always abasis oming from suh. Let ~� denote the uspidal representation of fSL2(A ) generated byour ~f 2 S03=2(�). Fix an additive harater  of knA suh that � = �(~�;  ) is the Shimuralift of ~� to a uspidal representation of PGL2(A ). If � is a square free integer of O and welet  �(x) =  (�x) then we know [25℄�(~�;  �) = � 
 ��(det)where �� is the quadrati harater assoiated to the extension k(p�)=k. Classially �� isa ray lass harater mod (�). Let ' be the new form on Hd assoiated to the new vetor inthe spae of � and let a(�) denote its �-Fourier oeÆient.Let S denote the �nite set of plaes of k where �, ~�, or  is rami�ed. Let S1 denote thearhimedean plaes of k and let S� denote the set of �nite plaes v where ordv(�) 6= 0. LetL(s; �) = Yv=2S1 L(s; �v)be the �nite (or lassial) L-funtion of �. Then the formula of Baruh and Mao [1℄ an bestated as: j~a(�)j2 = ja(1)j2 jj ~f jj2jj'jj2L(12 ; � 
 ��) Yv2S[S�[S1 v(�)where the v(�) are ertain loal onstants given as ratios involving loal norms, loal FourieroeÆients, and loal L-values. Similar formulas had been given earlier by Shimura [22℄. Forv =2 S Baruh and Mao an expliitly ompute the v(�) and for v 2 S, a �nite set of plaes,they an estimate them as � varies. As a onsequene one gets an estimatej~a(�)j2 << N(�)1=2L(12 ; � 
 ��)



ON SUMS OF THREE SQUARES 5with the implied onstant independent of �.Note that the onvexity bound on L(12 ; � 
 ��) as � varies (see [10℄) isL(12 ; � 
 ��) << N(�)12+�whih would give j~a(�)j << N(�)12+�:This is better than the Heke bound, but not suÆient for our purposes. We must beat theonvexity bound to obtain a �rst non-trivial estimate towards Ramanujan for the FourieroeÆients of half-integral weight forms over a totally real number �eld.3. SubonvexityLet � be a uspidal automorphi representation of PGL2(A ) orresponding to a holomor-phi Hilbert modular form of even weight k = (k; : : : ; k). Let '(�) be the assoiated newform. Let �1 be any ray lass harater modulo an ideal a. We will let �1 also denote itsassoiated idele lass harater. The key to our proof of the stated theorem, and a resultof interest in its own right, is the following breaking of onvexity for L(12 ; � 
 �1) in theondutor aspet as �1 varies.Theorem . We have L(12 ; � 
 �1) << N(a)12� 7130+�with the implied onstant depending on � but independent of a.Here again by L(s; � 
 �1) we mean the lassial (or �nite) L-funtionL(s; � 
 �1) = Yv<1L(s; �v 
 �1;v):If we apply this result to our previous situation with �1 = �� then this will omplete theproof of our �rst Theorem.We would now like to desribe the proof of this Theorem, still in the ase of lass numberone. We will work with the L-funtion in its additive form. To this end, we writeL(s; � 
 �1) = L(s; '; �1) = X�>>0mod U+ �(�)�1(�)N(�)�swhere U+ is the group of totally positive units in U = O�. This is related to the Fourierexpansion of ' '(�) = X�>>0 a(�)e2�i tr(d�1K ��);where dK is the di�erent of K, by �(�) = a(�)N(�)�(k�1)=2.



6 J.W. COGDELLWe �rst use the approximate funtional equation for L(s; �
�1) (see for example [13, 17℄).This gives an expression of the formL(12 ; � 
 �1) = X�>>0mod U+ �(�)�1(�)pN(�) V1�N(�)X � + �(� 
 �1) X�>>0mod U+ �(�)��11 (�)pN(�) V2�N(�)X �as two sums of length essentially X, where we have taken X = N(a). Here V1 and V2 arefuntions having Vi(0) = 1, smooth, and rapidly deaying at in�nity. By using a smoothdyadi subdivision it suÆes to estimate sums of the shapeJ(�1) = X�>>0mod U+ �(�)�1(�)pN(�) fW �N(�)X �where now fW is smooth of ompat support say in the interval (12 ; 2), so onentrated near1. There are approximately log(N(a)) suh sums up to N(a). The ruial ontribution forus will be again when X is of size N(a). Note that the presene of the uto� funtion fW inJ(�1) fores pN(�) � pX so that if we set fW (x) = px W (x) we have W is still smoothwith ompat support in (12 ; 2) and J(�1) = X�1=2S(�1)where S(�1) = X�>>0mod U+ �(�)�1(�)W �N(�)X � :The sum S(�1) is the ruial sum we will have to estimate.Our estimate will proeed by plaing S(�1) into a family and then using arithmeti ampli-�ation. For a general exposition of these tehniques one an refer to the talk of P. Mihel atthe XXII Journ�ees Arithm�etiques 2001 [13℄. To get an appropriate family we need to workwith a sum over the full set of totally positive integers. To this end we let F be a smoothedharateristi funtion of a fundamental domain for the ation of the totally positive unitsU+ on the hyperboloid de�ned by N(x) = 1 in k+1 = Rd+ whih satis�esX�2U+ F (�x) = 1for every x 2 k+1 with N(x) = 1. We extend this to all totally positive u by settingF (u) = F � uN(u)�. Then we an writeS(�1) = X�>>0�(�)�1(�)F (�)W �N(�)X � :Note that both W and F at as uto� funtions { W utting o� in N(�) and F utting o�in the \argument" of �.We now plae S(�1) in a family. We do not use the family of all S(�) where � runs overall ray lass haraters mod a, whih might seem more natural but ould be too sparse.Indeed, the image of U+ in (O=a)� an be large [15℄. Instead we use the family of all S(�)



ON SUMS OF THREE SQUARES 7as � runs over all haraters of the group (O=a)�. Let C(a) denote this group of haraters.Then we will onsider the average value of jS(�)j2 in this familyXC(a) jS(�)j2: Note that thelength of the sum is jC(a)j whih is given by the generalized Euler totient funtion �(a) andis trivially bounded by N(a) and is at least of size N(a)1��, unlike the group of ray lassharaters.In addition to averaging over this family, we will utilize the tehnique of arithmeti ampli-�ation. To this end we will take an auxiliary parameter M whih will be of size XÆ with Æsmall. Its preise value will be determined in the ourse of the argument. We take a set f�gof totally positive integers whih should be relatively prime to a and all have norm boundedby M . There should be roughly M of them and they should be balaned, in that for thearhimedean embeddings v eah �v should be roughly of the same size. For eah � we takea oeÆient (�) suh that j(�)j = 1. We then onsider the ampli�ed sumA =XC(a) jS(�)j2jX� (�)�(�)j2:To obtain an estimate on our original S(�1) we will take arithmetially de�ned oeÆients(�) = ��11 (�) thus amplifying the term jS(�1)j2 by a fator of M2.To utilize A, we expand the norm squares, interhange the order of summation, andperform the harater sum over C(a). This yieldsA = �(a)X�1;�2 (�1)(�2) X�1;�2�1�1��2�2 (mod a) �(�1)�(�2)F (�1)F (�2)W �N(�1)X �W �N(�2)X �:We split this sum into two terms, the diagonal D and the o� diagonal OD, whereD = �(a)X�1;�2 (�1)(�2) X�1�1=�2�2 �(�1)�(�2)F (�1)F (�2)W �N(�1)X �W �N(�2)X �andOD = �(a)X�1;�2 (�1)(�2) X�1�1��2�2=h2ah6=0 �(�1)�(�2)F (�1)F (�2)W �N(�1)X �W �N(�2)X �:The diagonal term is estimated simply using the Ramanujan bounds for the �(�), knownin this ase by Brylinski and Labesse [2℄, namely j�(�)j << N(�)�, and then analysing thesize of the sums determined by the uto� funtions. These yieldD << N(a)X1+�M1+�:The o� diagonal term is more interesting. Let us write it asOD = �(a)X�1;�2 (�1)(�2) X06=h2ah mod U+ B(�1; �2; h)



8 J.W. COGDELLwhere in B(�1; �2; h) we have resummed over U+ whih only has an e�et on the uto�funtions F . The terms B(�1; �2; h) are estimated using several variable Mellin inversion.We an write B(�1; �2; h) = 1(2�i)d ZRe(s)=aD(s; �1; �2; h)H(s) dsfor suitably large a where s = (s1; : : : ; sd) 2 C d . D(s; �1; �2; h) is a type of Dirihlet seriesD(s; �1; �2; h) = X`>>0 X�1�1+�2�2=`�1�1��2�2=h �(�1)�(�2) pN(�1�1�2�2)N(`) !k�1 `�swhere we have used a multi-index notation, so `�s = `�s11 � � � `�sdd where `1; : : : ; `d are theimages of ` under the d embeddings of k into R. This Dirihlet series arries the arithmetiinformation in B(�1; �2; h). The funtion H(s) is essentially the Mellin transform of theuto� funtions.H(s) is relatively simple to handle. It is entire, rapidly dereasing in Im(s), and an beestimated by jH(s)j << (MX)1d P�j+� dYj=1(1 + jtjj)�5where as is ommon we have written sj = �j + itj.The interesting bit of the estimate is in the Dirihlet series D(s; �1; �2; h). It is essentiallya Dirihlet series formed with produts of shifted Fourier oeÆients. Selberg has shownhow to approah suh Dirihlet series via Poinar�e series [21℄. To this end, let us set g(�) =yk'(�1�)'(�2�). Then there is a Poinar�e series Ph(�; s) suh that when we ompute thePetersson inner produt of g with Ph(s) we �ndhg; Ph(s)i = N(�1�2)(1�k)=2 dYj=1 �(sj + k � 1)D(s; �1; �2; h):One now expands this inner produt spetrally via Parseval's formula. If we let f�jg be asuitable orthonormal basis of Maass usp forms thenhg; Ph(s)i =Xj hg; �jih�j; Ph(s)i+ (s)where (s) is a similar expression involving the ontinuous spetrum and is estimated ina similar manner. Sarnak has developed a general method for estimating hg; �ji (see forexample [16℄) whih in this ase yieldshg; �ji << N(�1�2)(1�k)=2 dYi=1(1 + jrj;ij)k+1e��2 jrj;ijwhere rj = (rj;1; : : : ; rj;d) is the spetral parameter of �j. The term h�j; Ph(s)i is expressedin terms of the h-Fourier oeÆient �j(h) of �j and the assoiated arhimedean �{fatorsinvolving the spetral parameters rj. We then estimate these using the bounds towardsRamanujan in both the arhimedean and non-arhimedean aspets due to Kim and Shahidi



ON SUMS OF THREE SQUARES 9[11℄. The sum is then ontrolled using Weyl's law. A similar type of estimate an be found[14℄ and in the appendix of [17℄.In the �nal analysis, these estimates give that the Dirihlet series D(s; �1; �2; h) has ananalyti ontinuation to the domain Re(sj) > 12 + 19 and in this region satis�esjD(s; �1; �2; h)j << N(�1�2)12N(h)19+� dYj=1 jhjj12��i(1 + jtjj)3+�where the hj are the images of h under the d embeddings of k into R. Note that the 19 inthe boundary of the domain of ontinuation omes from the arhimedean estimates towardsRamanujan while the 19 in the exponent of N(h) is from the non-arhimedean bound towardsRamanujan of Kim and Shahidi.Returning now to our expression of B(�1; �2; h) in terms of the inverse Mellin transform,we an now shift the lines of integration to Re(sj) = 12 + 19 + � = 1118 + � to obtainjB(�1; �2; h)j << M1+�(MX)1118+�whih in turn results in OD << N(a)M4+1118+�X 1118+�:When we ombine D and OD and hoose M = XÆ to give them the same order of growthin X we �nd that M = X7=65. Now taking X = N(a) to get the dominant term from ourpartition we get an estimate of our ampli�ed sumA =XC(a) jS(�)j2jX� (�)�(�)j2 << N(a)2+ 765+�:We now take (�) = ��11 (�) to amplify the term we are interested in. Then estimatingthis one term by the entire sum we �ndM2jS(�1)j2 << N(a)2+ 765+�or jS(�1)j << N(a)1� 7130+�whih �nally gives L(12 ; � 
 �1) << N(a)12� 7130+�as desired.Note that to our knowledge this estimate is better than the urrent best bounds even inthe ase k = Q .
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