
ON SUMS OF THREE SQUARESJ.W. COGDELLThe question of when an integer is representable as a sum of squares has a long venerablehistory. More generally, Hilbert's eleventh problem asks (among other things) whi
h integersare integrally represented by a given quadrati
 form over a number �eld. The 
ase of binaryquadrati
 forms is equivalent to the theory of relative quadrati
 extensions and their 
lassgroups and 
lass �elds as developed by Hilbert. For forms in four or more variables thesituation is quite di�erent and has been understood for some time. The 
ase of three variableshas remained open.The problem of whi
h integers in a number �eld k are represented by the genus of aquadrati
 form q(x) is 
ompletely answered by Siegel's mass formula, whi
h gives the numberof solutions in terms of produ
ts of lo
al densities [23℄. If there is only one 
lass in the genusof q(x), then this answers the question of representability for q. If n � 4 and q is inde�niteat some ar
himedean pla
e of k then Siegel showed by analyti
 methods that a numberis represented by one form in a genus i� it is represented by all forms in the genus, thusredu
ing the global representability question to lo
al ones [24℄. These results were re
overedand extended to inde�nite ternary forms via algebrai
 te
hniques by Kneser [12℄ and Hsia [7℄utilizing spinor genera. So we will restri
t ourselves to the 
ase of positive de�nite integralforms over a totally real �eld k. If the number of variables is at least �ve, one 
an pro
eedeither by analyti
 methods, using bounds towards Ramanujan for Hilbert modular forms, oralgebrai
 methods [8℄ to prove that there is an e�e
tive 
onstant Cq su
h that if � 2 O, thering of integers of k, is totally positive and its norm N(�) > Cq then � is represented by qi� it is represented by q for every 
ompletion kv of k. When the number of variables is fourone must add a primitivity 
ondition on the representations, both lo
ally and globally [8℄.Re
ently, in 
ollaboration with I.I. Piatetski-Shapiro and P. Sarnak, we have established ananalogue of this result in the 
ase of positive de�nite integral ternary quadrati
 forms viaanalyti
 methods [3℄.Theorem . Let k be a totally real number �eld and let q(x) be a positive de�nite integralternary quadrati
 form over k. Then there is an ine�e
tive 
onstant Cq su
h that if � is atotally positive square free integer of k with N(�) > Cq then � is represented integrally by qi� it is lo
ally integrally represented over every 
ompletion kv of k.The result was previously known for k = Q by Duke and S
hulze{Pillot [6, 18℄.Of spe
ial interest is the 
ase of the ternary form q(x) = x21 + x22 + x23 giving the result onsums of squares in a number �eld alluded to in the title.The author was supported in part by the NSA. While at the Institute for Advan
ed Study, where theoriginal stages of the work was performed, the author was supported in part by a grant from the Ellentu
kFund and in part the resear
h was 
ondu
ted for the Clay Mathemati
s Institute.1



2 J.W. COGDELLCorollary . Let k be a totally real number �eld. Then there is an ine�e
tive 
onstant Cksu
h that every totally positive square free integer � with N(�) > Ck is the sum of threeintegral squares i� it is the sum of three integral squares lo
ally for ea
h pla
e v of k.Of 
ourse over Q Legendre has given us the pre
ise answer: a 2 Z is the sum of threesquares i� a is not of the form 4n(8m + 7). Over a number �eld, partial results have beenobtained by algebrai
 methods by Donkar [4℄. His methods, when appli
able, give formulasfor the number of ways su
h � 
an be represented but do not give the lo
al to global resultwe present here.In this note I would like to des
ribe our proof of this theorem in the simpli�ed 
ase of ktotally real of 
lass number one.This paper is an expanded version of the le
ture I presented at the XXII Journ�eesArithm�etiques 2001 in Lille. I would like to thank the organizers of JA 2001 for the opportu-nity to speak on this topi
. I would also like to thank my 
ollaborators, I.I. Piatetski-Shapiroand P. Sarnak, for allowing me to present this summary of our work here. In parti
ular, Ithank P. Sarnak for reading and providing 
riti
al 
omments on an earlier version of thisnote. 1. Theta seriesWe take k to be a totally real number �eld having 
lass number one. Let d = (k : Q ) bethe degree of k over Q . We let O be the ring of integers of k. Let V be a ve
tor spa
e ofdimension three over k equipped with a positive de�nite integral quadrati
 form q(x). Wewill let L = O3 denote the integral latti
e in V . So q(x) 2 O for every x 2 L.The proof we will give is analyti
 in nature. Hen
e we begin with the theta series asso
iatedto q(x) and L, Siegel's analyti
 
lass invariant [23℄,#q(�; L) =Xx2L e2�i tr(q(x)�)where � 2 Hd. This is a Hilbert modular form of weight 3=2 for an appropriate 
ongruen
esubgroup � � SL2(O). Its Fourier expansion is given by#q(�; L) = 1 + X�>>0 rq(�; L)e2�i tr(��)where rq(�; L) = jfx 2 Ljq(x) = �gj is the representation number of � by L.There are two related theta series. Let Spn(L) denote the spinor genus of L and Gen(L)the genus of L [18, 19℄. (Whether we �x the latti
e and work with the genus of the form or�x the form and work with the genus of the latti
e is all the same. Here we �x the form q



ON SUMS OF THREE SQUARES 3and vary the latti
e in its genus to 
onform to the work of S
hulze{Pillot.) We set#q(�; Gen(L)) = PM2Gen(L) o(M)�1#q(�;M)PM o(M)�1= 1 + X�>>0 rq(�;Gen(L))e2�itr(��)to be the weighted average over the genus of L, Siegel's analyti
 genus invariant [23℄, whereo(M) is the order of the group of units of M , and similarly for #q(�; Spn(L)).By the work of Siegel [23℄ we know that the 
oeÆ
ients rq(�; Gen(L)) are given by aprodu
t of lo
al densities and is non-zero i� � is lo
ally represented integrally by (q; Lv) forall 
ompletions. So we need to be able to relate rq(�; L) and rq(�;Gen(L)).By 
lassi
al results of Siegel, an algebrai
 proof of whi
h 
an be found in Walling [27℄, weknow that both #q(�; L)� #q(�; Spn(L))and #q(�; Spn(L))� #q(�; Gen(L))are 
usp forms of weight 3=2. Now there are two types of 
usp forms of weight 3=2. Re
all thatwe have the Shimura 
orresponden
e between 
usp forms of weight 3=2 for � and modularforms of weight 2 for an appropriate subgroup �0 � PGL2(O). If we denote by S13=2(�)the 
usp forms asso
iated to theta series atta
hed to one dimensional quadrati
 forms andS03=2(�) its orthogonal 
omplement with respe
t to the Petersson inner produ
t then S03=2(�)
onsists of pre
isely those 
usp forms that lift to 
usp forms in S2(�0) [25℄.Following the work of S
hulze{Pillot (see [19, 20℄ for related results) we 
an 
on
lude that#q(�; L)� #q(�; Spn(L)) 2 S03=2(�)and #q(�; Spn(L))� #q(�; Gen(L)) 2 S13=2(�):Fortunately the Fourier 
oeÆ
ients of the forms in S13=2(�) are quite sparse. In fa
t, itis known (see [7, 12℄) that outside of an expli
itly 
omputable �nite number of \genusex
eptional" square 
lasses we haverq(�; Spn(L)) = rq(�;Gen(L)):So for square free � there are only a �nite number of su
h genus ex
eptions whi
h we 
anavoid by taking � suÆ
iently large. Hen
e for all but �nitely many square free � we haverq(�; L)� rq(�;Gen(L)) = ~a(�)where ~a(�) is the �{Fourier 
oeÆ
ient of a 
usp form ~f 2 S03=2(�).From the 
omputation of the lo
al densities (see [19℄) one 
an 
on
lude that for a lo
allyrepresented � one has an ine�e
tive lower boundrq(�;Gen(L)) >> N(�)12��



4 J.W. COGDELLwith the implied 
onstant independent of �. The ine�e
tivity 
omes from an appli
ation ofthe Brauer{Siegel theorem and is the sour
e of the ine�e
tivity of our theorem. Thus ourresult will follow if we 
an produ
e an estimate for the Fourier 
oeÆ
ients ~a(�) of half-integralweight forms in S03=2(�) of the form j~a(�)j << N(�)12�Æfor some �xed Æ > 0. This program was 
arried out in the 
ase of k = Q by Duke andS
hulze{Pillot [6℄ with a key ingredient being estimates on the Fourier 
oeÆ
ients of half-integral weight forms due to Iwanie
 [9℄ and Duke [5℄.2. Fourier 
oeffi
ients and L-fun
tionsBy now, a 
ommon way to estimate Fourier 
oeÆ
ients of modular forms of half integralweight is to appeal to Waldspurger's formula [26℄ relating these 
oeÆ
ients to 
entral valuesof the L-fun
tions of the Shimura lift. Waldspurger established this relation only for k = Qbut re
ently his result has been generalized to totally real �elds by Shimura [22℄ using theShimura 
orresponden
e and by Baru
h and Mao using Ja
quet's relative tra
e formula [1℄.We will use Baru
h and Mao's version of this relation.Note that it suÆ
es to prove our estimate for He
ke eigenforms sin
e there is always abasis 
oming from su
h. Let ~� denote the 
uspidal representation of fSL2(A ) generated byour ~f 2 S03=2(�). Fix an additive 
hara
ter  of knA su
h that � = �(~�;  ) is the Shimuralift of ~� to a 
uspidal representation of PGL2(A ). If � is a square free integer of O and welet  �(x) =  (�x) then we know [25℄�(~�;  �) = � 
 ��(det)where �� is the quadrati
 
hara
ter asso
iated to the extension k(p�)=k. Classi
ally �� isa ray 
lass 
hara
ter mod (�). Let ' be the new form on Hd asso
iated to the new ve
tor inthe spa
e of � and let a(�) denote its �-Fourier 
oeÆ
ient.Let S denote the �nite set of pla
es of k where �, ~�, or  is rami�ed. Let S1 denote thear
himedean pla
es of k and let S� denote the set of �nite pla
es v where ordv(�) 6= 0. LetL(s; �) = Yv=2S1 L(s; �v)be the �nite (or 
lassi
al) L-fun
tion of �. Then the formula of Baru
h and Mao [1℄ 
an bestated as: j~a(�)j2 = ja(1)j2 jj ~f jj2jj'jj2L(12 ; � 
 ��) Yv2S[S�[S1 
v(�)where the 
v(�) are 
ertain lo
al 
onstants given as ratios involving lo
al norms, lo
al Fourier
oeÆ
ients, and lo
al L-values. Similar formulas had been given earlier by Shimura [22℄. Forv =2 S Baru
h and Mao 
an expli
itly 
ompute the 
v(�) and for v 2 S, a �nite set of pla
es,they 
an estimate them as � varies. As a 
onsequen
e one gets an estimatej~a(�)j2 << N(�)1=2L(12 ; � 
 ��)



ON SUMS OF THREE SQUARES 5with the implied 
onstant independent of �.Note that the 
onvexity bound on L(12 ; � 
 ��) as � varies (see [10℄) isL(12 ; � 
 ��) << N(�)12+�whi
h would give j~a(�)j << N(�)12+�:This is better than the He
ke bound, but not suÆ
ient for our purposes. We must beat the
onvexity bound to obtain a �rst non-trivial estimate towards Ramanujan for the Fourier
oeÆ
ients of half-integral weight forms over a totally real number �eld.3. Sub
onvexityLet � be a 
uspidal automorphi
 representation of PGL2(A ) 
orresponding to a holomor-phi
 Hilbert modular form of even weight k = (k; : : : ; k). Let '(�) be the asso
iated newform. Let �1 be any ray 
lass 
hara
ter modulo an ideal a. We will let �1 also denote itsasso
iated idele 
lass 
hara
ter. The key to our proof of the stated theorem, and a resultof interest in its own right, is the following breaking of 
onvexity for L(12 ; � 
 �1) in the
ondu
tor aspe
t as �1 varies.Theorem . We have L(12 ; � 
 �1) << N(a)12� 7130+�with the implied 
onstant depending on � but independent of a.Here again by L(s; � 
 �1) we mean the 
lassi
al (or �nite) L-fun
tionL(s; � 
 �1) = Yv<1L(s; �v 
 �1;v):If we apply this result to our previous situation with �1 = �� then this will 
omplete theproof of our �rst Theorem.We would now like to des
ribe the proof of this Theorem, still in the 
ase of 
lass numberone. We will work with the L-fun
tion in its additive form. To this end, we writeL(s; � 
 �1) = L(s; '; �1) = X�>>0mod U+ �(�)�1(�)N(�)�swhere U+ is the group of totally positive units in U = O�. This is related to the Fourierexpansion of ' '(�) = X�>>0 a(�)e2�i tr(d�1K ��);where dK is the di�erent of K, by �(�) = a(�)N(�)�(k�1)=2.



6 J.W. COGDELLWe �rst use the approximate fun
tional equation for L(s; �
�1) (see for example [13, 17℄).This gives an expression of the formL(12 ; � 
 �1) = X�>>0mod U+ �(�)�1(�)pN(�) V1�N(�)X � + �(� 
 �1) X�>>0mod U+ �(�)��11 (�)pN(�) V2�N(�)X �as two sums of length essentially X, where we have taken X = N(a). Here V1 and V2 arefun
tions having Vi(0) = 1, smooth, and rapidly de
aying at in�nity. By using a smoothdyadi
 subdivision it suÆ
es to estimate sums of the shapeJ(�1) = X�>>0mod U+ �(�)�1(�)pN(�) fW �N(�)X �where now fW is smooth of 
ompa
t support say in the interval (12 ; 2), so 
on
entrated near1. There are approximately log(N(a)) su
h sums up to N(a). The 
ru
ial 
ontribution forus will be again when X is of size N(a). Note that the presen
e of the 
uto� fun
tion fW inJ(�1) for
es pN(�) � pX so that if we set fW (x) = px W (x) we have W is still smoothwith 
ompa
t support in (12 ; 2) and J(�1) = X�1=2S(�1)where S(�1) = X�>>0mod U+ �(�)�1(�)W �N(�)X � :The sum S(�1) is the 
ru
ial sum we will have to estimate.Our estimate will pro
eed by pla
ing S(�1) into a family and then using arithmeti
 ampli-�
ation. For a general exposition of these te
hniques one 
an refer to the talk of P. Mi
hel atthe XXII Journ�ees Arithm�etiques 2001 [13℄. To get an appropriate family we need to workwith a sum over the full set of totally positive integers. To this end we let F be a smoothed
hara
teristi
 fun
tion of a fundamental domain for the a
tion of the totally positive unitsU+ on the hyperboloid de�ned by N(x) = 1 in k+1 = Rd+ whi
h satis�esX�2U+ F (�x) = 1for every x 2 k+1 with N(x) = 1. We extend this to all totally positive u by settingF (u) = F � uN(u)�. Then we 
an writeS(�1) = X�>>0�(�)�1(�)F (�)W �N(�)X � :Note that both W and F a
t as 
uto� fun
tions { W 
utting o� in N(�) and F 
utting o�in the \argument" of �.We now pla
e S(�1) in a family. We do not use the family of all S(�) where � runs overall ray 
lass 
hara
ters mod a, whi
h might seem more natural but 
ould be too sparse.Indeed, the image of U+ in (O=a)� 
an be large [15℄. Instead we use the family of all S(�)



ON SUMS OF THREE SQUARES 7as � runs over all 
hara
ters of the group (O=a)�. Let C(a) denote this group of 
hara
ters.Then we will 
onsider the average value of jS(�)j2 in this familyXC(a) jS(�)j2: Note that thelength of the sum is jC(a)j whi
h is given by the generalized Euler totient fun
tion �(a) andis trivially bounded by N(a) and is at least of size N(a)1��, unlike the group of ray 
lass
hara
ters.In addition to averaging over this family, we will utilize the te
hnique of arithmeti
 ampli-�
ation. To this end we will take an auxiliary parameter M whi
h will be of size XÆ with Æsmall. Its pre
ise value will be determined in the 
ourse of the argument. We take a set f�gof totally positive integers whi
h should be relatively prime to a and all have norm boundedby M . There should be roughly M of them and they should be balan
ed, in that for thear
himedean embeddings v ea
h �v should be roughly of the same size. For ea
h � we takea 
oeÆ
ient 
(�) su
h that j
(�)j = 1. We then 
onsider the ampli�ed sumA =XC(a) jS(�)j2jX� 
(�)�(�)j2:To obtain an estimate on our original S(�1) we will take arithmeti
ally de�ned 
oeÆ
ients
(�) = ��11 (�) thus amplifying the term jS(�1)j2 by a fa
tor of M2.To utilize A, we expand the norm squares, inter
hange the order of summation, andperform the 
hara
ter sum over C(a). This yieldsA = �(a)X�1;�2 
(�1)
(�2) X�1;�2�1�1��2�2 (mod a) �(�1)�(�2)F (�1)F (�2)W �N(�1)X �W �N(�2)X �:We split this sum into two terms, the diagonal D and the o� diagonal OD, whereD = �(a)X�1;�2 
(�1)
(�2) X�1�1=�2�2 �(�1)�(�2)F (�1)F (�2)W �N(�1)X �W �N(�2)X �andOD = �(a)X�1;�2 
(�1)
(�2) X�1�1��2�2=h2ah6=0 �(�1)�(�2)F (�1)F (�2)W �N(�1)X �W �N(�2)X �:The diagonal term is estimated simply using the Ramanujan bounds for the �(�), knownin this 
ase by Brylinski and Labesse [2℄, namely j�(�)j << N(�)�, and then analysing thesize of the sums determined by the 
uto� fun
tions. These yieldD << N(a)X1+�M1+�:The o� diagonal term is more interesting. Let us write it asOD = �(a)X�1;�2 
(�1)
(�2) X06=h2ah mod U+ B(�1; �2; h)



8 J.W. COGDELLwhere in B(�1; �2; h) we have resummed over U+ whi
h only has an e�e
t on the 
uto�fun
tions F . The terms B(�1; �2; h) are estimated using several variable Mellin inversion.We 
an write B(�1; �2; h) = 1(2�i)d ZRe(s)=aD(s; �1; �2; h)H(s) dsfor suitably large a where s = (s1; : : : ; sd) 2 C d . D(s; �1; �2; h) is a type of Diri
hlet seriesD(s; �1; �2; h) = X`>>0 X�1�1+�2�2=`�1�1��2�2=h �(�1)�(�2) pN(�1�1�2�2)N(`) !k�1 `�swhere we have used a multi-index notation, so `�s = `�s11 � � � `�sdd where `1; : : : ; `d are theimages of ` under the d embeddings of k into R. This Diri
hlet series 
arries the arithmeti
information in B(�1; �2; h). The fun
tion H(s) is essentially the Mellin transform of the
uto� fun
tions.H(s) is relatively simple to handle. It is entire, rapidly de
reasing in Im(s), and 
an beestimated by jH(s)j << (MX)1d P�j+� dYj=1(1 + jtjj)�5where as is 
ommon we have written sj = �j + itj.The interesting bit of the estimate is in the Diri
hlet series D(s; �1; �2; h). It is essentiallya Diri
hlet series formed with produ
ts of shifted Fourier 
oeÆ
ients. Selberg has shownhow to approa
h su
h Diri
hlet series via Poin
ar�e series [21℄. To this end, let us set g(�) =yk'(�1�)'(�2�). Then there is a Poin
ar�e series Ph(�; s) su
h that when we 
ompute thePetersson inner produ
t of g with Ph(s) we �ndhg; Ph(s)i = N(�1�2)(1�k)=2 dYj=1 �(sj + k � 1)D(s; �1; �2; h):One now expands this inner produ
t spe
trally via Parseval's formula. If we let f�jg be asuitable orthonormal basis of Maass 
usp forms thenhg; Ph(s)i =Xj hg; �jih�j; Ph(s)i+ 
(s)where 
(s) is a similar expression involving the 
ontinuous spe
trum and is estimated ina similar manner. Sarnak has developed a general method for estimating hg; �ji (see forexample [16℄) whi
h in this 
ase yieldshg; �ji << N(�1�2)(1�k)=2 dYi=1(1 + jrj;ij)k+1e��2 jrj;ijwhere rj = (rj;1; : : : ; rj;d) is the spe
tral parameter of �j. The term h�j; Ph(s)i is expressedin terms of the h-Fourier 
oeÆ
ient �j(h) of �j and the asso
iated ar
himedean �{fa
torsinvolving the spe
tral parameters rj. We then estimate these using the bounds towardsRamanujan in both the ar
himedean and non-ar
himedean aspe
ts due to Kim and Shahidi



ON SUMS OF THREE SQUARES 9[11℄. The sum is then 
ontrolled using Weyl's law. A similar type of estimate 
an be found[14℄ and in the appendix of [17℄.In the �nal analysis, these estimates give that the Diri
hlet series D(s; �1; �2; h) has ananalyti
 
ontinuation to the domain Re(sj) > 12 + 19 and in this region satis�esjD(s; �1; �2; h)j << N(�1�2)12N(h)19+� dYj=1 jhjj12��i(1 + jtjj)3+�where the hj are the images of h under the d embeddings of k into R. Note that the 19 inthe boundary of the domain of 
ontinuation 
omes from the ar
himedean estimates towardsRamanujan while the 19 in the exponent of N(h) is from the non-ar
himedean bound towardsRamanujan of Kim and Shahidi.Returning now to our expression of B(�1; �2; h) in terms of the inverse Mellin transform,we 
an now shift the lines of integration to Re(sj) = 12 + 19 + � = 1118 + � to obtainjB(�1; �2; h)j << M1+�(MX)1118+�whi
h in turn results in OD << N(a)M4+1118+�X 1118+�:When we 
ombine D and OD and 
hoose M = XÆ to give them the same order of growthin X we �nd that M = X7=65. Now taking X = N(a) to get the dominant term from ourpartition we get an estimate of our ampli�ed sumA =XC(a) jS(�)j2jX� 
(�)�(�)j2 << N(a)2+ 765+�:We now take 
(�) = ��11 (�) to amplify the term we are interested in. Then estimatingthis one term by the entire sum we �ndM2jS(�1)j2 << N(a)2+ 765+�or jS(�1)j << N(a)1� 7130+�whi
h �nally gives L(12 ; � 
 �1) << N(a)12� 7130+�as desired.Note that to our knowledge this estimate is better than the 
urrent best bounds even inthe 
ase k = Q .
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