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One of the prin
iple goals of modern number theory is to understand the Galois group

G

k

= Gal(k=k) of a lo
al or global �eld k, su
h as Q for example. One way to try to

understand the group G

k

is by understanding its �nite dimensional representation theory. In

the 
ase of a number �eld, to every �nite dimensional representation � : G

k

! GL

n

(C ) Artin

atta
hed a 
omplex analyti
 invariant, its L-fun
tion L(s; �). One approa
h to understanding

� is through this invariant. For one dimensional � this idea was fundamental for the analyti


approa
h to abelian 
lass �eld theory and the understanding of G

ab

k

. To obtain a more


omplete understanding of G

k

we would hope for a more 
omplete understanding of the

L(s; �) for higher dimensional representations.

There is another 
lass of obje
ts whi
h possess similar analyti
 invariants. These are the

automorphi
 representations � of GL

n

(A ), where A is the adele ring of k. The analyti
 prop-

erties of the L-fun
tions L(s; �) atta
hed to automorphi
 representations are well understood

[13℄.

The Langlands 
onje
tures predi
t the existen
e of a 
orresponden
e between the n-

dimensional representations of G

k

and the automorphi
 representations of GL

n

(A ) whi
h

preserves these analyti
 invariants. There is a 
on
omitant 
orresponden
e between n-

dimensional representations of G

k

for a lo
al �eld k and the admissible representations of

GL

n

(k), the lo
al Langlands 
onje
ture. There are two ways to view su
h 
orresponden
es.

If one views the passage of information from the automorphi
 side to the Galois side, as we

have done above, this is a lo
al or global non-abelian 
lass �eld theory. If one views the

passage if information from the Galois side to the automorphi
 side this is an arithmeti


parameterization of admissible or automorphi
 representations.

Over the past ten years there has been signi�
ant progress made in the understanding

of these Langlands 
onje
tures. It began in the early nineties with the proof of the lo
al

Langlands 
onje
ture for lo
al �elds k of 
hara
teristi
 p by Laumon, Rapoport, and Stuhler

[44℄. In the late nineties it was followed by a proof of the lo
al Langlands 
onje
ture for

non-ar
himedean �elds of 
hara
teristi
 zero by Harris and Taylor [27℄, followed qui
kly by

a simpli�ed proof due to Henniart [30℄. Around the same time, following the program of

Drinfeld from his proof of the Langlands 
onje
ture for GL

2

over a global fun
tion �eld [23℄,

L. La�orgue established the global Langlands 
onje
ture for GL

n

in the fun
tion �eld 
ase

[35℄.

In this survey we would like to present an overview of these results, emphasizing their 
om-

mon features. There are already several ex
ellent surveys on the individual works, namely

those of Carayol for the lo
al 
onje
tures [9, 10℄ and Laumon for the global 
onje
tures
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[42, 43℄ and we refer the reader to these for more in depth 
overage. The �rst two se
-

tions of this paper dis
uss Galois representations, automorphi
 representations, and their

L-fun
tions. We next dis
uss the lo
al Langlands 
onje
tures in both the representation

theoreti
 version, proved by Langlands in the ar
himedean 
ase around 1973 [38℄, and the

L-fun
tion version, whi
h was the version established by Laumon, Rapoport, Stuhler, Har-

ris, Taylor, and Henniart in the non-ar
himedean 
ase. Finally we dis
uss the version of the

global Langlands 
onje
ture established by Drinfeld and La�orgue in 
hara
teristi
 p.

Although there has been little general progress on the global Langlands 
onje
ture for

number �elds, there have been spe
ta
ular spe
ial 
ases established re
ently. Most notable

among these is the proof by Wiles of the modularity of 
ertain 2-dimensional `-adi
 repre-

sentations of G

Q

asso
iated to ellipti
 
urves over Q , whi
h he established on his way to the

proof of Fermat's last theorem [59℄, and related results. Unfortunately, we will not dis
uss

these results here.

1. Galois Representations and their L-fun
tions

If G is a topologi
al group and F is a topologi
al �eld then let Rep

n

(G;F ) denote the set

of equivalen
e 
lasses of 
ontinuous representations � : G ! GL

n

(F ). Let Rep

0

n

(G;F ) be

the subset of irredu
ible representations. For the most part we will be interested in 
omplex

representations and so we will use Rep

n

(G) for Rep

n

(G; C ) and similarly for Rep

0

n

. At times

we will be interested in F = Q

`

and when we do, we will use the 
oeÆ
ient �eld in the

notation.

If k is either a lo
al or global �eld we will let k be a separable algebrai
 
losure of k. Let

G

k

= Gal(k=k) be the (absolute) Galois group and W

k

the (absolute) Weil group [51℄.

Let k be a non-ar
himedean lo
al �eld. Let p be the 
hara
teristi
 and q the order of

its residue �eld �. Let I � G

k

be the inertia subgroup. If we let � denote a 
hoi
e of

geometri
 Frobenius element of G

k

then W

k


an be taken as the subgroup of G

k

algebrai
ally

generated by � and I but topologized su
h that I has the indu
ed topology from G

k

, I is

open, and multipli
ation by � is a homeomorphism. This 
an also be given the stru
ture of a

s
heme over Q [51℄. Then we have a 
ontinuous homomorphism G

k

!W

k

with dense image.

Thus we have a natural in
lusion Rep

n

(G

k

) ! Rep

n

(W

k

). The image, that is, the those

representations that fa
tor through 
ontinuous representations of G

k

, are the representations

of W

k

of Galois type. We also have a natural 
hara
ter !

s

2 Rep

1

(W

k

) de�ned by !

s

(I) = 1

and !

s

(�) = q

�s

. This is also denoted by !

s

(w) = kwk

�s

and gives a homomorphism

� : W

k

! Z de�ned by kwk = q

��(w)

. Then every irredu
ible representation � of W

k

is of

the form � = �

Æ


 !

s

where �

Æ

is of Galois type [49, 19℄.

The representations that arise most naturally in arithmeti
 algebrai
 geometry, for ex-

ample those asso
iated with the `-adi
 
ohomology of algebrai
 varieties, are not 
omplex

representations but rather representations in Rep

n

(G

k

;Q

`

), with ` 6= p, or Rep

n

(W

k

;Q

`

). The

representation theory for `-adi
 representations is ri
her than for 
omplex representations

due to the di�eren
e in topologies in the two �elds. Re
ognizing this, Deligne introdu
ed
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what is now known as the Weil-Deligne group W

0

k

of the lo
al �eld so that its representation

theory is essentially algebrai
, so in essen
e it doesn't distinguish between C and Q

`

, and

whose 
ategory of representations is the same that of the 
ontinuous `-adi
 representations of

G

k

or W

k

[19℄. Following Tate [51℄, let us de�ne W

0

k

to be the group s
heme over Q whi
h is

the semidire
t produ
t of the Weil groupW

k

with the additive group G

a

, i.e.,W

0

k

=W

k

nG

a

,

whereW

k

a
ts on G

a

by wxw

�1

= kwkx. If F is any �eld of 
hara
teristi
 0, su
h as Q

`

or C ,

the F -points of W

0

k

is just W

k

�F with 
omposition (w

1

; x

1

)(w

w

; x

2

) = (w

1

w

2

; x

1

+ kw

1

kx

2

).

But what is really important is the representation theory ofW

0

k

. An n-dimensional represen-

tation of W

0

k

over F is a pair �

0

= (�;N) 
onsisting of (i) an n-dimensional F -ve
tor spa
e

V with a group homomorphism � : W

k

! GL(V ) whose kernel 
ontains an open subgroup

of I, that is, whi
h is 
ontinuous for the dis
rete topology on GL(V ), and (ii) a nilpotent

endomorphism N of V su
h that �(w)N�(w)

�1

= kwkN [19, 49, 51℄.

If �

0

= (�;N) is a representation of W

0

k

, there is a unique unipotent automorphism u of V

whi
h 
ommutes with both N and �(W

k

) and su
h that e

aN

�(w)u

��(w)

is semisimple for all

a 2 F and all w 2 W

k

� I [19, 51℄. The � semisimpli�
ation of �

0

is then �

0

ss

= (�u

��

; N). �

0

is 
alled �-semisimple (or Frobenius semisimple) if �

0

= �

0

ss

, for in this 
ase u is the identity

and all the Frobeniuses a
t semisimply. This is equivalent to the representation � being

semisimple in the ordinary sense.

We will let Rep

n

(W

0

k

;F ) denote the equivalen
e 
lasses of n-dimensional �-semisimple F -

representations of the Weil-Deligne group W

0

k

. When F = C we will simply write Rep

n

(W

0

k

)

for Rep

n

(W

0

k

; C ).

The importan
e of the Weil-Deligne group is in that it lets us 
apture, in an algebrai
 way,

the 
ontinuous `-adi
 representations of G

k

or W

k

[19, 49, 51℄: for every semisimple `-adi


representation �

`

2 Rep

n

(W

k

;Q

`

) there is an open subgroup of the inertia group I on whi
h

�

`

is trivial and hen
e �

`

gives rise to an (ordinary) �-semisimple Q

`

-representation �

0

ofW

0

k

.

Note that by 
ondition (ii) in the de�nition of a representation of W

0

k

the topology on

F plays no role, so that if we have a �xed isomorphism � : Q

`

! C we may identify

Rep

n

(W

0

k

;Q

`

) ' Rep

n

(W

0

k

; C ) = Rep

n

(W

0

k

). Furthermore, note that in an irredu
ible rep-

resentation of W

0

k

we must have that N = 0, sin
e the kernel of N would be an invariant

subspa
e, and so Rep

0

n

(W

0

k

) = Rep

0

n

(W

k

).

If �

0

= (�;N) 2 Rep

n

(W

0

k

;F ) is an representation of W

0

k

on the ve
tor spa
e V , let

V

I

N

= (Ker N)

�(I)

be the invariants of the inertia subgroup I on the kernel of N . The we


an de�ne the lo
al L-fa
tor by setting

Z(t; V ) = det(1� t�(�)jV

I

N

)

�1

2 F (t)

to be the inverse of the 
hara
teristi
 polynomial of � a
ting on V

I

N

and if we have an

embedding F ,! C , so if F = C or we use the isomorphism � : Q

`

! C , then we view F as

a sub�eld of C and set

L(s; �

0

) = Z(q

�s

; �

0

):

The de�nition of the lo
al 
onstants "(s; �

0

;  ), with  an additive 
hara
ter of k, is more

deli
ate and we refer the reader to Deligne [19℄, Rohrli
h [49℄ or Tate [51℄ for their pre
ise
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de�nition. Of 
ourse, in the 
ase N = 0 these are the usual lo
al Artin-Weil L-fun
tions and

"-fa
tors.

If the lo
al �eld k is ar
himedean, so k = R or C , then we are interested only in 
omplex

representations of G

k

or W

k

. When k = C the Weil group is simply C

�

while if k = R then

W

R

' C

�

`

jC

�

where j

2

= �1 and j
j

�1

= 
 for 
 2 C

�

. In either 
ase we have

1 ���! C

�

���! W

k

���! G

k

���! 1:

There is no ar
himedean Weil-Deligne group, so for 
onsisten
y we will setW

0

k

= W

k

in these


ases. The L-and "-fa
tors are then de�ned in terms of the 
lassi
al �-fun
tion and a lo
al

fun
tional equation [51℄.

When k is a global �eld we will at least be interested in the representations of the global

Galois group G

k

, the global Weil group W

k

, or possibly the 
onje
tural Langlands group L

k

[46℄.

When F = Q

`

we will let Rep

n

(G;Q

`

) denote the set of global `-adi
 representations in the

following sense. They should be 
ontinuous, algebrai
 (in the sense that they take values in

GL(E

�

) for a �nite dimensional extension E

�

=Q

`

), and almost everywhere unrami�ed (in the

sense that there is a �nite set of pla
es S(�) of k su
h that for all v =2 S(�) the representation

� is unrami�ed at v).

For any global representation � of G

k

or W

k

we have a lo
al representation �

v

for ea
h


ompletion v of k obtained by 
omposing � with the natural maps G

k

v

! G

k

or W

k

v

!W

k

.

The 
onje
tural Langlands group L

k

should have similar lo
al-global 
ompatibility with the

lo
al Weil-Deligne groups.

To any n-dimensional 
omplex or `-adi
 representation of either the Galois group or the

Weil group we have atta
hed a global 
omplex analyti
 invariant, the global L-fun
tion

L(�; s) de�ned by the Euler produ
t

L(s; �) =

Y

v

L(s; �

v

) "(s; �) =

Y

v

"(s; �

v

;  

v

)

where  =

Q

v

 

v

is an additive 
hara
ter of k.

These global analyti
 invariants are 
onje
tured to be ni
e in the sense that

(1) L(s; �) should have a meromorphi
 
ontinuation with at most a �nite number of

poles, entire if � is irredu
ible but not trivial;

(2) these 
ontinuations should be bounded in verti
al strips;

(3) they satisfy the fun
tional equation L(s; �) = "(s; �)L(1� s; ~�).

ForG = G

k

orW

k

and F = C these are the 
lassi
al Artin-WeilL-fun
tions and by Brauer's

Theorem are known to 
onverge in a right half plane, have meromorphi
 
ontinuation to C ,

and satisfy a fun
tional equation.
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If k is a global fun
tion �eld, with 
onstant �eld of order q, and � is an `-adi
 representation

of G

k

as above, then Grothendie
k has shown that the L-fun
tion is in fa
t a rational fun
tion

of q

�s

and satis�es a fun
tional equation and Deligne later showed that the "-fa
tor of the

fun
tional equation had a lo
al fa
torization and was given as above [51℄.

2. Automorphi
 representations and their L-fun
tions

On the automorphi
 side, if k is a lo
al �eld, we let A

n

(k) denote the set of equiva-

len
e 
lasses of irredu
ible admissible 
omplex representations of GL

n

(k). When k is non-

ar
himedean lo
al, we let A

0

n

(k) denote the subset of equivalen
e 
lasses of super
uspi-

dal representations of GL

n

(k). By the theory of Godement{Ja
quet [24℄, or the theory of

Ja
quet{Piatetski-Shapiro{Shalika outlined in [13℄, there a 
omplex analyti
 invariant at-

ta
hed to every � 2 A

n

(k), namely its L-fun
tion L(s; �) and a lo
al "-fa
tor "(s; �;  )

depending on a 
hoi
e of additive 
hara
ter. If in addition we have an irredu
ible admissible

representation �

0

of GL

m

(k) then we have the lo
al Rankin-Selberg 
onvolution L-fun
tions

L(s; � � �

0

) and "-fa
tor "(s; � � �

0

;  ).

If k is a global �eld we let A denote its ring of adeles. Let A

n

(k) denote the set of

irredu
ible automorphi
 representations of GL

n

(A ) and A

0

n

(k) the subset of 
uspidal au-

tomorphi
 representations. If � = 


0

�

v

is an automorphi
 representation of GL

n

(A ) and

�

0

= 


0

�

0

v

an automorphi
 representation of GL

m

(A ) then we have its asso
iated L-fun
tion

and "-fa
tor de�ned by Euler produ
ts

L(s; � � �

0

) =

Y

v

L(s; �

v

� �

0

) "(s; � � �

0

) =

Y

v

"(s; �

v

� �

0

v

;  

v

):

As we have seen [13℄, these invariants are known to be ni
e, that is if � and �

0

are unitary


uspidal representations, then

(1) L(s; � � �

0

) has an analyti
 
ontinuation to all of C with at most simple poles at

s = 0; 1 i� �

0

= ~�;

(2) these 
ontinuations are bounded in verti
al strips;

(3) they satisfy the fun
tional equation L(s; � � �

0

) = "(s; � � �

0

)L(1� s; ~� � ~�

0

).

When 
onsidering representations that o

ur in `-adi
 
ohomologies it is most natural to

use Q

`

-valued automorphi
 forms and representations, whi
h we denote by A

n

(k;Q

`

). For

example, we will need to 
onsider the spa
e of Q

`

-valued 
uspidal representations whose


entral 
hara
ter is of �nite order, whi
h we will denote by A

0

n

(k;Q

`

)

f

. These are the

representations of GL

n

(A ), or the asso
iated He
ke algebra H of lo
ally 
onstant Q

`

-valued

fun
tions of 
ompa
t support on GL

n

(A ), in the spa
e of 
ertain Q

`

-valued 
usp forms on

GL

n

(A ). For the 
onvenien
e of the reader, we will review the de�nition from [42℄ for the


ase of fun
tion �elds over �nite �elds. The Q

`

-valued 
usp form on GL

n

(A ) of interest is a

fun
tion ' : GL

n

(A ) ! Q

`

su
h that

(i) '(
g) = '(g) for all 
 2 GL

n

(k);
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(ii) There is a 
ompa
t open subgroup K

'

� K = GL

n

(O

k

) su
h that '(gk) = '(g) for

all k 2 K

'

;

(iii) There is an a 2 A

�

with deg(a) 6= 0 su
h that '(ag) = '(g);

(iv) ' is 
uspidal in the usual sense that the integral

R

U

'(ug) du � 0 for ea
h unipotent

radi
al U of a maximal paraboli
 subgroup of GL

n

(A ).

Note that the 
ondition (iii) implies that the 
entral 
hara
ter of ' is of �nite order. The

theory 
an essentially be identi�ed with the 
omplex theory through the isomorphism � :

Q

`

! C and the natural L-fun
tions 
an be identi�ed with the usual 
omplex analyti
 ones

or they 
an be left as `-adi
 valued rational fun
tions as in the appendix of [35℄ .

3. The Lo
al Langlands Conje
ture

In its most basi
 form, the lo
al Langlands 
onje
ture is a non-abelian generalization of

(abelian) lo
al 
lass �eld theory. The 
onje
ture as �rst formulated by Langlands was in

terms of the Weil group. An early formulation, possibly the �rst, 
an be found in [36℄.

Langlands never restri
ted himself to GL

n

but always formulated in terms of redu
tive

algebrai
 groups in general. Deligne �rst pointed the ne
essity of passing to what is now

known as the Weil-Deligne group to be able to in
lude the spe
ial representations of GL

2

(k)

for a lo
al �eld k [18℄. The 
urrent formulation of the 
onje
ture whi
h is 
losest to Langlands

original is to be found in Borel's arti
le in Corvallis [4℄.

Lo
al Langlands Conje
ture I: Let k be a lo
al �eld. Then there are a series of natural

bije
tions

Rep

n

(W

0

k

)$A

n

(k) � = �

�

$ � = �

�

satisfying a set of representation theoreti
 desiderata, in
luding:

(i) For n = 1 it should be given by the lo
al 
lass �eld theory isomorphism.

(ii) The 
entral 
hara
ter of �

�


orresponds to the determinant det(�) under the n = 1


orresponden
e;

(iii) Compatibility with twisting, i.e., if � is a 
hara
ter of k

�

then �

�
�

= �
 �;

(iv) �

�

is square integrable i� �(W

0

k

) does not lie in a proper Levi subgroup of GL

n

(C );

(v) �

�

is tempered i� �(W

k

) is bounded.

(vi) If H is a redu
tive 
onne
ted k-group and H(k) ! GL

n

(k) is a k morphism with


ommutative kernel and 
o-kernel, then there is a required 
ompatibility between these

bije
tions for GL

n

(k) and similar maps for H(k).

For more details on the the 
ompatibility 
ondition (vi), see the arti
le of Borel in Cor-

vallis [4℄ or the a

ompanying arti
le [14℄. This is related to Langlands' general fun
toriality


onje
ture. Langlands himself never separated this version of his 
onje
ture from his gen-

eral prin
iple of fun
toriality [40℄. Note that there is no mention of L-fun
tions in this

formulation.

For non-ar
himedean lo
al �elds, it was in the book by Ja
quet and Langlands [31℄ and

then in the work of Deligne [18℄ that a version of the lo
al Langlands 
onje
ture was phrased
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not in terms of representation theoreti
 properties, but rather in terms of the 
omplex

analyti
 invariants, or L-fun
tions, of the two sets in question. Deligne gave the 
omplete

formulation for GL

2

. It was in this paper that he utilized for the �rst time the Weil-Deligne

group, whi
h he had introdu
ed in [19℄ in the 
ontext of `-adi
 representations, in order to

have a 
orre
t formulation on the 
ase of GL

2

over a non-ar
himedean lo
al �eld.

Lo
al Langlands Conje
ture II: Let k be a non-ar
himedean lo
al �eld. For ea
h n � 1

there exists a bije
tive map A

n

(k)! Rep

n

(W

0

k

) denoted � 7! �

�

with the following properties.

(i) For n = 1 the bije
tion is given by lo
al 
lass �eld theory, normalized so that the

uniformizer of k 
orresponds to the geometri
 Frobenius.

(ii) For any � 2 A

n

(k) and �

0

2 A

n

0

(k) we have

L(s; �

�


 �

�

0

) = L(s; � � �

0

) "(s; �

�


 �

�

0

;  ) = "(s; � � �

0

;  ):

(iii) For any � 2 A

n

(k) the determinant of �

�


orresponds to the 
entral 
hara
ter of �

under lo
al 
lass �eld theory.

(iv) For any � in A

n

(k) we have �

~�

= e�

�

.

(v) for any � 2 A

n

(k) and any 
hara
ter � of k

�

of �nite order we have �

�
�

= �

�


 �.

There are two ways to think about what these 
onje
tures o�er. If one views the pri-

mary passage of information to be from A

n

(k) to Rep

n

(W

0

k

), then this 
an be thought of

as Langlands formulation of a non-abelian lo
al 
lass �eld theory. If one views the primary

passage of information from Rep

n

(W

0

k

) to A

n

(k) then this gives an arithmeti
 parameteri-

zation of irredu
ible admissible representations of GL

n

(k). This is the arithmeti
 Langlands


lassi�
ation of A

n

(k).

3.1. k lo
al ar
himedean, i.e., k = R or C . In this 
ase G

k

is well understood; it is either

Z=2Z or trivial. So the passage of information in this 
ase is in the opposite dire
tion. This

was done in great generality by Langlands about 1973 [38℄, and not only for GL

n

but for

general real redu
tive groups. For ar
himedean lo
al �elds there is no Weil-Deligne group.

The representation theoreti
 version is what is now known as the Langlands 
lassi�
ation

or the Langlands parameters for representations of real groups. In fa
t, Langlands did

this in 
onjun
tion with the arithmeti
 parameterization in terms of Rep

n

(W

k

) for GL

n

(or

admissible homomorphisms W

k

!

L

G for general G). The deep and interesting part is

the 
lassi�
ation of representations in term of the information obtained from these maps,

parti
ularly their relation with the 
onstru
tion of the dis
rete series.

Theorem 3.1. Let k be R or C . Then there are a are a series of natural bije
tions

Rep

n

(W

k

)$ A

n

(k)

satisfying the properties (i){(vi) of version I of the lo
al Langlands 
onje
ture.

For the pre
ise relation with the usual Langlands 
lassi�
ation for real algebrai
 groups,

see [38℄. The statement proved is of 
ourse that originally given by Langlands and this may

well have motivated the pre
ise 
onditions in the 
onje
ture. Note again that the 
onditions

are representation theoreti
 and the L-fun
tions and "-fa
tors play no role.
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3.2. k lo
al non-ar
himedean. Re
ently, this se
ond version of the lo
al Langlands 
on-

je
ture has been established for non-ar
himedean lo
al �elds, �rst by Laumon, Rapoport,

and Stuhler in the positive 
hara
teristi
 
ase in 1993 [44℄ and then in the 
hara
teristi


0 
ase by by Harris and Taylor [27℄ in 1999 and by Henniart [30℄ in 2000. In both 
ases,

the 
orresponden
e is established at the level of a 
orresponden
e between irredu
ible Ga-

lois representations and super
uspidal representations. Mu
h of the original representation

theoreti
 desiderata of the original 
onje
ture has been repla
ed by an equality of twisted

L-fun
tions, i.e., of the asso
iated families of 
omplex analyti
 invariants.

Let A

0

n

(k)

f

denote the set of isomorphism 
lasses of irredu
ible admissible representations

of GL

n

(k) having 
entral 
hara
ter of �nite order. Then the theorem of Laumon, Rapoport,

and Stuhler is the following [44℄.

Theorem 3.2. Let k be a lo
al �eld of 
hara
teristi
 p > 0. For ea
h n � 1 there exists

a bije
tive map A

0

n

(k)

f

! Rep

0

n

(G

k

) denoted � 7! �

�

satisfying the 
onditions (i){(v) of

version II of the lo
al Langlands 
onje
ture.

When the lo
al �eld k is of 
hara
teristi
 0 the lo
al Langlands 
onje
ture established by

Harris and Taylor [27℄ and Henniart [28℄ has pre
isely the same statement.

Theorem 3.3. Let k be a lo
al �eld of 
hara
teristi
 0. For ea
h n � 1 there exists a

bije
tive map A

0

n

(k)

f

! Rep

0

n

(G

k

) denoted � 7! �

�

satisfying 
onditions (i){(v) of version II

of the lo
al Langlands 
onje
ture.

The proofs involve the use of Q

`

-representations on both the Galois and automorphi
 side,

and is translated into the statements above in terms of 
omplex analyti
 L-fun
tions through

the isomorphism � of Q

`

with C .

3.2.1. Redu
tions and Constru
tions. In any of the non-ar
himedean lo
al 
ases, the

proof passes through a 
hain of identi
al redu
tions whi
h redu
es one to proving the ex-

isten
e of a single map having the desired properties. The three proofs then di�er in the


onstru
tions used to prove the existen
e of at least one 
orresponden
e.

There are essentially three steps in the redu
tion. Assume that we have any 
orresponden
e

A

0

n

(k)

f

! Rep

0

n

(G

k

), still denoted � 7! �

�

, whi
h satis�es (i){(v) of the theorem.

1. Inje
tivity: Poles of L-fun
tions. For � and �

0

in Rep

0

n

(G

k

) we have that L(s; � 
 �

0

)

has a pole at s = 0 i� �

0

�

=

e�. Similarly, if � and �

0

are both in A

0

n

(k) then L(s; � � �

0

)

has a pole at s = 0 i� �

0

' e�. Thus we see that any su
h 
orresponden
e satisfying (ii) is

automati
ally inje
tive.

2. Bije
tivity: Numeri
al Lo
al Langlands. For � 2 Rep

0

n

(G

k

) let a(�) denote the exponent

of the Artin 
ondu
tor of � [51℄. This is determined by the "{fa
tor "(s; �;  ). Let � : k

�

!

C

�

be identi�ed with a 
hara
ter of the Galois group via lo
al 
lass �eld theory. If we let

Rep

0

n

(G

k

)

m;�

denote the set of � 2 Rep

0

n

(G

k

) with a(�) = m and det(�) = � then this set is

�nite. Similarly, we let A

0

n

(k)

m;�

denote the set of � 2 A

0

n

(k) with f(�) = m and 
entral
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hara
ter !

�

= �, where now f(�) is the exponent of the 
ondu
tor of Ja
quet, Piatetski-

Shapiro, and Shalika [13℄, and this set is also �nite. The statement of the numeri
al lo
al

Langlands 
onje
ture, whi
h had been established by Henniart in 1988 [30℄, is that for �xed

m 2 Z

+

and multipli
ative 
hara
ter � of �nite order we have jRep

0

n

(G

k

)

m;�

j = jA

0

n

(k)

m;�

j.

Sin
e (ii) and (iii) guarantee that our 
orresponden
e preserves the 
hara
ter � and the


ondu
tors, then on
e we know that the 
orresponden
e is inje
tive, the numeri
al lo
al

Langlands 
onje
ture gives that the 
orresponden
e is surje
tive and hen
e bije
tive.

3. Uniqueness: The Lo
al Converse Theorem. The uniqueness of a 
orresponden
e sat-

isfying (i){(v) is a 
onsequen
e of the lo
al 
onverse theorem for GL(n). This result was

�rst stated by Ja
quet, Piatetski-Shapiro, and Shalika [32℄ but the �rst published proof was

by Henniart [29℄ with pre
isely this appli
ation in mind. The statement is the following.

Suppose that � and �

0

are both elements of A

0

n

(k) and that the twisted "{fa
tors agree, that

is

"(s; � � �;  ) = "(s; �

0

� �;  );

for all � 2 A

0

m

(k) with 1 � m � n� 1. Then �

�

=

�

0

. (Note that the 
orresponding twisted

L-fun
tions are all identi
ally 1 [13℄.) From this, by indu
tion on n, one sees that any su
h

(now bije
tive) 
orresponden
e satisfying (i){(v) must be unique.

These three steps then redu
e the lo
al Langlands 
onje
ture to the question of existen
e

of some 
orresponden
e satisfying (i){(v). It is this existen
e problem that was solved by

Laumon, Rapoport, and Stuhler in positive 
hara
teristi
 and by Harris and Taylor and then

Henniart in the 
hara
teristi
 zero 
ase.

4. Existen
e: Global Geometri
 Constru
tions. In all 
ases, the lo
al existen
e is based

on establishing 
ertain instan
es of a global 
orresponden
e of Galois representations and

automorphi
 representations. Note that we now work with `-adi
 representations on both

the Galois and automorphi
 side.

For k of 
hara
teristi
 p > 0, Laumon, Rapoport, and Stuhler begin with a lo
al represen-

tation � 2 A

0

n

(k). They realize k as a lo
al 
omponent of a global �eld K of 
hara
teristi
 p,

so k = K

v

for some pla
e v of K, and then embed � as the lo
al 
omponent at v of a 
uspidal

representation � of a global division algebra D(A ) of rank n su
h that D

�

(K

v

) = GL

n

(k)

and �

v

= �. They globally realize an a
tion of G

K

� D

�

(A ) on the `-adi
 
ohomology of

the moduli spa
e of D-ellipti
 modules (D an order in D) su
h that in the de
omposition

of this 
ohomology a representation R
 � of G

K

�D

�

(A ) o

urs. By 
onstru
tion �

v

= �

and they take R

v

= �

�

. By the nature of their 
onstru
tion they are able to verify that

(i){(v) are satis�ed. Thus they establish the needed lo
al existen
e statement via a global

geometri
 
onstru
tion and a limited global 
orresponden
e.

The proof of Harris and Taylor of the lo
al Langlands 
onje
ture for non-ar
himedean

�elds of 
hara
teristi
 0 is similar in spirit to that of Laumon, Rapoport, and Stuhler in


hara
teristi
 p. They repla
e the moduli spa
e of D-ellipti
 modules with 
ertain \simple

Shimura varieties" asso
iated to unitary groups U

n

of Kottwitz. They realize k as a lo
al


omponent of a number �eld K, so k = K

v

for some pla
e v of K, and then embed � as the

lo
al 
omponent at v of a 
uspidal representation � of a 
ertain (twisted) unitary group of
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rank n. They then realize a global 
orresponden
e between these 
uspidal representations and

global Galois representations in the `-adi
 
ohomology of the asso
iated Shimura varieties.

By studying the resulting 
orresponden
e lo
ally at a pla
e of bad redu
tion they �nd a lo
al

representation on whi
h they have an irredu
ible a
tion of GL

n

(k) � D

�

n

(k) � W

k

, where

D is the division algebra over k of rank n and Hasse invariant 1=n, by � 
 JL(�) 
 �

�

,

where JL(�) is the image of � under the lo
al Ja
quet-Langlands 
orresponden
e and �

�

is thus de�ned. Again, from their 
onstru
tion they 
an verify that this 
orresponden
e

satis�es 
onditions (i){(v). Note that not only do they get a geometri
 realization of the

lo
al Langlands 
orresponden
e, they get a simultaneous realization of the lo
al Ja
quet-

Langlands 
orresponden
e.

Henniart, in his proof of the lo
al Langlands 
onje
ture for non-ar
himedean �elds of 
har-

a
teristi
 0, again uses a global 
onstru
tion but in a far less serious way. In parti
ular, he

does not give a geometri
 realization of the 
orresponden
e. For Henniart, both the state-

ment and the proof most naturally give a bije
tion from the Galois side to the automorphi


side � 7! �

�

. Henniart begins with an irredu
ible representation � of G

k

with �nite order

determinant. This then fa
tors through a representation of Gal(F=k) for a �nite dimensional

extension F of k. Using Brauer indu
tion, he writes � as a sum of monomial representations.

The 
hara
ters 
an be lifted to the automorphi
 side by lo
al 
lass �eld theory, and so he

must show that the 
orresponding sum of automorphi
ally indu
ed representations exists

and is super
uspidal. The resulting super
uspidal representation is then �

�

. This he does

again by embedding the lo
al situation into a global one and then appealing to 
ertain weak


ases of global automorphi
 indu
tion that had been earlier established by Harris [25℄. Har-

ris's result relies on the theory of base 
hange and the asso
iation of `-adi
 representations

to automorphi
 representations of GL

n

(A ) by Clozel [12℄, whi
h in turn relies on the work of

Kottwitz on the good redu
tion of 
ertain unitary Shimura varieties. So at the bottom there

is in fa
t a global geometri
 
onstru
tion, but it is of a simpler type than used by Harris and

Taylor. Henniart's proof makes more use of L-fun
tions and less use of geometry. His proof

is shorter and more analyti
, but does not give a geometri
 realization of the 
orresponden
e.

A more 
omplete synopsis of these results 
an be found in the S�eminaire Bourbaki reports

of Carayol [9, 10℄.

3.3. Complements. In order to 
omplete the lo
al Langlands 
orresponden
e one needs to


onsider all suitable representations of the Weil-Deligne group on the Galois theoreti
 side

and all irredu
ible admissible representations of GL

n

(k) on the automorphi
 side. In order to

do this, the �rst step is to remove the 
ondition of �nite-order on the 
entral 
hara
ter. This

is obtained by simply repla
ing the Galois group by the Weil group on the Galois side of the


orresponden
e. On the automorphi
 side one still has super
uspidal representations. Then

to pass to all admissible representations of GL

n

(k) one uses the representations of the Weil-

Deligne group. Representation theoreti
ally, the passage from representations of the Weil

group to representations of the Weil-Deligne group on the Galois side mirrors the passage

from super
uspidal representations to irredu
ible representations on the automorphi
 side,

as was shown by Bernstein and Zelevinsky (see [1, 60℄, parti
ularly Se
tion 10 of [60℄, or

[47℄). Thus from the results of Laumon, Rapoport, Stuhler, Harris, Taylor, and Henniart

the full lo
al Langlands 
orresponden
e follows.
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In spite of these results, the work on the lo
al Langlands 
onje
ture 
ontinues. The

proofs above give the existen
e of the 
orresponden
e and in some 
ases provides an expli
it

geometri
 model. It provides a mat
hing of 
ertain invariants, like the 
ondu
tor, and the

lo
al L-fun
tions. However, for appli
ations, it would be desirable to have an expli
it version

of the lo
al Langlands 
orresponden
e, parti
ularly for the super
uspidal representations of

GL

n

in terms of the Bushnell-Kutzko 
ompa
t indu
tion data [6℄. The sear
h for an expli
it

lo
al Langlands 
orresponden
e is 
urrently being pursued by Bushnell, Henniart, Kutzko,

and others.

4. The Global Langlands Conje
ture

As in the lo
al 
ase, in its most basi
 form, the global Langlands 
onje
ture should be a

non-abelian generalization of (abelian) global 
lass �eld theory. When Deligne pointed out

the ne
essity of introdu
ing the Weil-Deligne group in the lo
al non-ar
himedean regime, it

was realized that there seemed to be no natural global version of the Weil-Deligne group.

This lead to a sear
h for a global group to repla
e the Weil-Deligne group. This was one of the

purposes of Langlands' arti
le [39℄. It is now believed that this group, whi
h Ramakrishnan


alls the 
onje
tural Langlands group L

k

, should be related to the equally 
onje
tural motivi


Galois group of k, M

k

[46℄.

4.1. k a global �eld of 
hara
teristi
 p > 0. In spite of these diÆ
ulties, Drinfeld for-

mulated and proved a version of the global Langlands 
onje
ture for global fun
tion �elds

[23℄ whi
h related the irredu
ible 2-dimensional representations of the Galois group itself

with the irredu
ible 
uspidal representations of GL

2

(A ). This is the global analogue of the

lo
al theorem of Laumon, Rapoport, and Stuhler for whi
h the Weil-Deligne group was

not needed. We should emphasize that the results of Drinfeld were obtained in the 1970's,

though published only later, and so predate those of Laumon, Rapoport, and Stuhler by

several years. Re
ently the work of Drinfeld has been extended by L. La�orgue to give a

proof of the global Langlands 
onje
ture for GL

n

over a fun
tion �eld [35℄.

The formulation of the global Langlands 
onje
ture established by Drinfeld and La�orgue

is essentially the same as in the lo
al non-ar
himedean 
ase above with a few modi�
ations

that we would now like to explain. Take k to be the fun
tion �eld of a smooth, proje
tive,

geometri
ally 
onne
ted 
urve X over a �nite �eld F of 
hara
teristi
 p. Fix a prime ` whi
h

is di�erent from p and an isomorphism � : Q

`

! C .

On the Galois side, they 
onsider isomorphism 
lasses of irredu
ible 
ontinuous `-adi


representations � : G

k

! GL

n

(Q

`

) whi
h are unrami�ed outside a �nite number of pla
es,

as des
ribed in Se
tion 1, and whose determinant is of �nite order. We will denote these

by Rep

0

n

(G

k

;Q

`

)

f

. On the automorphi
 side they 
onsider the spa
e of Q

`

-valued 
uspidal

representations whose 
entral 
hara
ter is of �nite order A

0

n

(k;Q

`

)

f

, as des
ribed in Se
tion

2. A reasonable formulation of a global Langlands 
onje
ture in analogy with what we have

in the lo
al situation is the following.
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Global Langlands Conje
ture in 
hara
teristi
 p: For ea
h n � 1 there exists a bije
tive

map A

0

n

(k;Q

`

)

f

! Rep

0

n

(G

k

;Q

`

)

f

denoted � 7! �

�

with the following properties.

(i) For n = 1 the bije
tion is given by global 
lass �eld theory.

(ii) For any � 2 A

0

n

(k;Q

`

)

f

and �

0

2 A

0

n

0

(k;Q

`

)

f

we have

L(s; �

�


 �

�

0

) = L(s; � � �

0

) "(s; �

�


 �

�

0

) = "(s; � � �

0

):

(iii) For any � 2 A

0

n

(k;Q

`

)

f

the determinant of �

�


orresponds to the 
entral 
hara
ter

of � under global 
lass �eld theory.

(iv) For any � in A

0

n

(k : Q

`

)

f

we have �

~�

= e�

�

.

(v) for any � 2 A

0

n

(k;Q

`

)

f

and any 
hara
ter � of k

�

of �nite order we have �

�
�

=

�

�


 �;

(vi) the global bije
tions should be 
ompatible with the lo
al bije
tions of the lo
al Langlands


onje
ture.

If we take a 
uspidal representation � 2 A

0

n

(k;Q

`

)

f

, let S(�) denote the �nite set of pla
es

x 2 jXj su
h that �

x

is unrami�ed for all x =2 S(�). For x =2 S(�) the lo
al representation �

x

is 
ompletely determined by a semi-simple 
onjuga
y 
lass A

�

x

in GL

n

(Q

`

), whi
h we identify

with GL

n

(C ) via �, 
alled the Satake 
lass or Satake parameter of �

x

[4℄. As this parameter

determines and is determined by a 
hara
ter of the asso
iated unrami�ed He
ke algebra

H

x

at x [50℄ the eigenvalues of A

�

x

, denoted z

1

(�

x

); : : : ; z

n

(�

x

), are also 
alled the He
ke

eigenvalues of �

x

. These He
ke eigenvalues 
ompletely determine �

x

. Then by the strong

multipli
ity one theorem for GL

n

[13℄ the 
olle
tion of He
ke eigenvalues fz

1

(�

x

); : : : ; z

n

(�

x

)g

for almost all x =2 S(�) 
ompletely determine �.

If we take a Galois representation � 2 Rep

0

n

(G

k

;Q

`

)

f

then we also have a �nite set of pla
es

S(�) su
h that � is unrami�ed at all x =2 S(�). For x =2 S(�) the image �(�

x

) of a geometri


Frobenius �

x

at x is a well de�ned semi-simple 
onjuga
y 
lass in GL

n

(Q

`

) ' GL

n

(C ).

The eigenvalues of �(�

x

), denoted z

1

(�

x

); : : : ; z

n

(�

x

), are 
alled the Frobenius eigenvalues of

�

x

. These Frobenius eigenvalues 
ompletely determine �

x

and by the Chebotarev density

theorem the 
olle
tion of Frobenius eigenvalues fz

1

(�

x

); : : : ; z

n

(�

x

)g for almost all x =2 S(�)


ompletely determine � itself.

The result established by Drinfeld for n = 2 [23℄ and La�orgue for n � 3 [35℄, whi
h as

we will outline below is equivalent to the statement above, is the following.

Theorem 4.1. Let k be a global fun
tion �eld of 
hara
teristi
 p as above. For ea
h n � 1

there exists a unique bije
tive map A

0

n

(k;Q

`

)

f

! Rep

0

n

(G

k

;Q

`

)

f

denoted � 7! �

�

su
h that

for every 
uspidal � 2 A

0

n

(k;Q

`

)

f

we have the equality of He
ke and Frobenius eigenvalues

fz

1

(�

x

); : : : ; z

n

(�

x

)g = fz

1

(�

�;x

); : : : ; z

n

(�

�;x

)g

for all x =2 S, a �nite set of pla
es 
ontaining S(�) [ S(�

�

), or equivalently we have the

equality of the partial 
omplex analyti
 L-fun
tions

L

S

(s; �) = L

S

(s; �

�

):
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To see that this does indeed give the statements of the 
onje
ture as presented above, note

�rst that for all x =2 S, the equality of the equality of the asso
iated He
ke and Frobenius

eigenvalues at these pla
es is 
onsistent with the lo
al Langlands 
onje
ture at the unrami�ed

pla
es. Hen
e (vi) is satis�ed at these pla
es. Next, for � 2 A

0

n

(k;Q

`

)

f

we have an Euler

produ
t fa
torization for the L-fun
tion L(s; �) =

Q

x2jXj

L(s; �

x

) and for all x =2 S(�)

the lo
al L-fun
tion is given by L(s; �

x

) = det(1 � �(A

�

x

)q

�s

)

�1

[13℄. Hen
e the He
ke

eigenvalues for �

x

, x =2 S(�), are determined by the lo
al L-fa
tor at these pla
es and


onversely. Similarly, for � 2 Rep

0

n

(G

k

;Q

`

)

f

we again have a fa
torization of the global

L-fun
tion L(s; �) =

Q

x2jXj

L(s; �

x

) where now L(s; �

x

) = det(1 � �(�(�

x

))q

�s

x

)

�1

. Hen
e

now the lo
al eigenvalues of Frobenius for �(�

x

), x =2 S(�), are determined by the lo
al

L-fa
tor at these pla
es and 
onversely. Hen
e we do have the equality of partial L-fun
tions

L

S

(s; �) = L

S

(s; �

�

) for a �nite set S � S(�) [ S(�

�

) as stated. Using the global fun
tional

equation for both L(s; �) and L(s; �

�

) and the lo
al fa
torization of the global "{fa
tors,

standard L-fun
tion te
hniques give that in fa
t S(�) = S(�

�

), that L(s; �

x

) = L(s; �

�;x

)

at these pla
es, and that in general the restri
tion of �

�

to the lo
al Galois group of k at x


orresponds to �

x

under the lo
al Langlands 
onje
ture. Thus (vi) is satis�ed in general and

from this (ii){(v) follow from the Euler produ
t fa
torizations and the analogous statements

from the lo
al 
onje
ture.

4.1.1. Redu
tions and Constru
tions. As in the lo
al situation, the proof passes through

a 
hain of redu
tions that redu
es one to proving the existen
e of a single map having the

desired properties. The existen
e is then established by a global 
onstru
tion using the


ohomology of a 
ertain moduli s
heme on whi
h GL

n

a
ts.

1. Uniqueness and bije
tivity. Given the existen
e of one global bije
tion as above, the

uniqueness of the bije
tion has long been known to follow from an appli
ation of the strong

multipli
ity one theorem on the automorphi
 side [13℄ and the Chebotarev density theorem

on the Galois side. These strong uniqueness prin
iples also imply that any su
h maps � 7! �

�

and � 7! �

�

satisfying the 
onditions of the theorem must be re
ipro
al bije
tions.

2. The indu
tive pro
edure of Piatetski-Shapiro and Deligne. This indu
tive prin
iple was

outlined by Deligne in an IHES seminar in 1980 and then later re
orded in [41℄. It redu
es

the proof of the theorem to the following seemingly weaker existen
e statement.

Theorem 4.2. For ea
h n � 1 there exists a map A

0

n

(k;Q

`

)

f

! Rep

0

n

(G

k

;Q

`

)

f

denoted

� 7! � = �

�

su
h that we have the equality of He
ke and Frobenius eigenvalues

fz

1

(�

x

); : : : ; z

n

(�

x

)g = fz

1

(�

�;x

); : : : ; z

n

(�

�;x

)g

for almost all x =2 S(�) [ S(�

�

).

Indeed, suppose one has established the existen
e of the map � 7! �

�

for � 2 A

0

r

(k;Q

`

)

f

for r = 1; : : : ; n � 1. Then utilizing the global fun
tional equation of Grothendie
k, the

fa
torization of the global Galois "-fa
tor [41℄, and the 
onverse theorem for GL

n

[13, 15, 16℄

one obtains for free the inverse map � 7! �

�

for � 2 Rep

0

r

(G

k

;Q

`

)

f

for r = 1; : : : ; n.
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3. Existen
e [23, 35℄. It had been known sin
e Weil that there is a natural moduli problem

asso
iated to GL

n

over a fun
tion �eld, namely the set of isomorphism 
lasses of rank n ve
tor

bundles on the 
urve X are parameterized by the double 
osets GL

n

(k)nGL

n

(A )=GL

n

(O).

To obtain the maps in question, one needs a bit more stru
ture, and so Drinfeld and then

La�orgue 
onsidered the (
ompa
ti�ed) Deligne-Mumford sta
k V of rank n shtukas (with

level stru
ture), whi
h is a
tually a sta
k over X�X. There is a natural a
tion of the global

He
ke algebra H on this sta
k by 
orresponden
es and the 
orresponding `-adi
 
ohomology

H

�




(k


k

V ;Q

`

) then a�ords a simultaneous representation ofH and G

k

�G

k

. One then uses the

geometri
 Grothendie
k-Lefshetz tra
e formula to 
ompute the tra
e of this representation.

One then 
ompares this with the output of the Arthur-Selberg tra
e formula to prove that

indeed the derived representation �
�

�


 e�

�

of H�G

k

�G

k

o

urs in this 
ohomology. The


onstru
tion is indu
tive and essentially uses everything.

4.1.2. Complements. An immediate 
onsequen
e of this result is the Ramanujan-Petersson


onje
ture for GL

n

. This had been earlier established by Drinfeld for n = 2 [22℄ and partially

by La�orgue for n � 3 [34℄. The 
omplete solution follows from the global Langlands


onje
ture.

Theorem 4.3. For every � 2 A

0

n

(k)

f

and every pla
e x =2 S(�) we have jz

i

(�

x

)j = 1.

In addition, La�orgue [35℄ is able to dedu
e the following 
onje
ture of Deligne [20℄.

Theorem 4.4. Every irredu
ible lo
al system � over a 
urve whose determinant is of �nite

order is pure of weight 0; moreover the symmetri
 polynomials in the eigenvalues of Frobenius

generate a �nite extension of Q .

In addition, La�orgue is able to 
on
lude that over a 
urve the notion of an irredu
ible

lo
al `-adi
 system does not depend on the 
hoi
e of ` and to verify the assertion of des
ent

in the \geometri
 Langlands 
orresponden
e".

A more 
omplete synopsis of these results 
an be found in the reports of Laumon [42, 43℄.

4.2. k a global �eld of 
hara
teristi
 0. There is very little known of a general nature in

the number �eld 
ase. However, there are some rather spe
ta
ular examples of su
h global


orresponden
es.

4.2.1. General 
onje
tures. Re
all that for n = 1 from global 
lass �eld theory we have a


anoni
al bije
tion between the 
ontinuous 
hara
ters of G

k

and 
hara
ters of �nite order of

k

�

nA

�

. To obtain all 
hara
ters of k

�

nA

�

we must again repla
e the Galois group by the

global Weil group W

k

.

For n � 2, by analogy with the lo
al Langlands 
onje
ture, we need a global analogue

of the Weil-Deligne group. But unfortunately no su
h analogue is available. Instead the


onje
tures are envisioned in terms of a 
onje
tural Langlands group L

k

[46℄. At best, one
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hopes that L

k

�ts into an exa
t sequen
e

1 ���! L

0

k

���! L

k

���! G

k

���! 1

with L

0

k


omplex pro-redu
tive. This should �t into a 
ommutative diagram

1 ���! L

0

k

���! L

k

���! G

k

���! 1

?

?

y

?

?

y

?

?

y

?

?

y

?

?

y

1 ���! M

0

k

���! M

k

���! G

k

���! 1

where M

k

is the equally 
onje
tural motivi
 Galois group [46℄.

In these terms, in general one expe
ts/
onje
tures the following types of global 
orrespon-

den
es [11, 46℄.

(i) The irredu
ible n-dimensional representations of G

k

should be in bije
tive 
orrespon-

den
e with the 
uspidal representations of GL

n

(A ) of Galois type. (This is a restri
-

tion on �

1

.)

(ii) The irredu
ible n-dimensional representations ofM

k

should be in bije
tive 
orrespon-

den
e with the algebrai
 
uspidal representations of GL

n

(A ). These are the analogues

of algebrai
 He
ke 
hara
ters.

(iii) The irredu
ible n-dimensional representations of L

k

should be in bije
tive 
orrespon-

den
e with all 
uspidal representations of GL

n

(A ).

Of 
ourse, all of these 
orresponden
es should satisfy properties similar to those on the lo
al


onje
tures, parti
ularly the preservation of L- and "- fa
tors (with twists), 
ompatibility

with the lo
al 
orresponden
es, et
.

In reality, very little is known of a truly general nature. One problem for the 
urrent

methods seems to be that there is no natural moduli problem for GL

n

over a number �eld.

4.2.2. Known results. There are many partial results of a general nature if one starts on

the automorphi
 side and tries to 
onstru
t the asso
iated Galois representation.

When n = 2 and k = Q we have the fundamental result of Deligne [17℄, based on founda-

tional work of Ei
hler and Shimura, whi
h asso
iates to every 
uspidal representation � of

GL

2

(A

Q

) whi
h 
orresponds to a holomorphi
 new form of weight � 2 a 
ompatible system of

`-adi
 representations � = �

�

su
h that L(s; �) = L(s; �). The Ramanujan-Petersson 
onje
-

ture for su
h forms followed. This was extended to weight one forms over Q in the 
lassi
al


ontext by Deligne and Serre [21℄. These results were extended to totally real �elds k, still

with n = 2, by a number of people, in
luding Rogawski-Tunnell [48℄, Ohta [45℄, Carayol [8℄,

Wiles [58℄, Taylor [52, 54℄, and Blasius-Rogawski [3℄. For imaginary quadrati
 �elds there

is the work of Harris-Soudry-Taylor [26℄ and Taylor [53℄. For more 
omplete surveys, the

reader 
an 
onsult the surveys of Blasius [2℄ and Taylor [55℄.
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For general GL

n

and k a totally real number �eld Clozel has been able to atta
h a 
ompat-

ible system of `-adi
 representations to 
uspidal, algebrai
, regular, self-dual representation

of GL

n

(A

k

) having lo
al 
omponents of a 
ertain type at one or two �nite pla
es [12℄.

More spe
ta
ular are the results whi
h go in the opposite dire
tion, that is, starting with

a spe
i�
 Galois representation and showing that it is modular. The results we have in mind

are those of Langlands [37℄ and Tunnell [57℄, with partial results by Taylor, et. al, [7, 56℄, on

the modularity of degree 2 
omplex Galois representations (the strong Artin 
onje
ture) and

the results of Wiles [59℄ and then Breuil, Conrad, Diamond, and Taylor [5℄ on the modularity

of (the two dimensional Galois representation on the `-adi
 Tate module of) ellipti
 
urves

over Q .
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