LANGLANDS CONJECTURES FOR GL,

J.W. COGDELL

One of the principle goals of modern number theory is to understand the Galois group
Gr = Gal(k/k) of a local or global field k, such as Q for example. One way to try to
understand the group Gy is by understanding its finite dimensional representation theory. In
the case of a number field, to every finite dimensional representation p : Gy — GL,(C) Artin
attached a complex analytic invariant, its L-function L(s, p). One approach to understanding
p is through this invariant. For one dimensional p this idea was fundamental for the analytic
approach to abelian class field theory and the understanding of G¢. To obtain a more
complete understanding of G, we would hope for a more complete understanding of the
L(s, p) for higher dimensional representations.

There is another class of objects which possess similar analytic invariants. These are the
automorphic representations 7 of GL,,(A), where A is the adele ring of k. The analytic prop-
erties of the L-functions L(s, m) attached to automorphic representations are well understood
[13].

The Langlands conjectures predict the existence of a correspondence between the n-
dimensional representations of Gy and the automorphic representations of GL,,(A) which
preserves these analytic invariants. There is a concomitant correspondence between n-
dimensional representations of G, for a local field k£ and the admissible representations of
GL,(k), the local Langlands conjecture. There are two ways to view such correspondences.
If one views the passage of information from the automorphic side to the Galois side, as we
have done above, this is a local or global non-abelian class field theory. If one views the
passage if information from the Galois side to the automorphic side this is an arithmetic
parameterization of admissible or automorphic representations.

Over the past ten years there has been significant progress made in the understanding
of these Langlands conjectures. It began in the early nineties with the proof of the local
Langlands conjecture for local fields k£ of characteristic p by Laumon, Rapoport, and Stuhler
[44]. In the late nineties it was followed by a proof of the local Langlands conjecture for
non-archimedean fields of characteristic zero by Harris and Taylor [27], followed quickly by
a simplified proof due to Henniart [30]. Around the same time, following the program of
Drinfeld from his proof of the Langlands conjecture for GLy over a global function field [23],
L. Lafforgue established the global Langlands conjecture for GL, in the function field case
[35].

In this survey we would like to present an overview of these results, emphasizing their com-
mon features. There are already several excellent surveys on the individual works, namely
those of Carayol for the local conjectures [9, 10] and Laumon for the global conjectures
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[42, 43] and we refer the reader to these for more in depth coverage. The first two sec-
tions of this paper discuss Galois representations, automorphic representations, and their
L-functions. We next discuss the local Langlands conjectures in both the representation
theoretic version, proved by Langlands in the archimedean case around 1973 [38], and the
L-function version, which was the version established by Laumon, Rapoport, Stuhler, Har-
ris, Taylor, and Henniart in the non-archimedean case. Finally we discuss the version of the
global Langlands conjecture established by Drinfeld and Lafforgue in characteristic p.

Although there has been little general progress on the global Langlands conjecture for
number fields, there have been spectacular special cases established recently. Most notable
among these is the proof by Wiles of the modularity of certain 2-dimensional /-adic repre-
sentations of Gg associated to elliptic curves over Q, which he established on his way to the
proof of Fermat’s last theorem [59], and related results. Unfortunately, we will not discuss
these results here.

1. GALOIS REPRESENTATIONS AND THEIR L-FUNCTIONS

If G is a topological group and F' is a topological field then let Rep,, (G; F') denote the set
of equivalence classes of continuous representations p : G — GL,(F). Let Rep)(G; F) be
the subset of irreducible representations. For the most part we will be interested in complex
representations and so we will use Rep,,(G) for Rep,,(G; C) and similarly for Rep). At times
we will be interested in /' = Q, and when we do, we will use the coefficient field in the
notation.

If k is either a local or global field we will let k be a separable algebraic closure of k. Let
Gr = Gal(k/k) be the (absolute) Galois group and Wy, the (absolute) Weil group [51].

Let k£ be a non-archimedean local field. Let p be the characteristic and ¢ the order of
its residue field k. Let I C Gi be the inertia subgroup. If we let ® denote a choice of
geometric Frobenius element of G, then Wy can be taken as the subgroup of G algebraically
generated by ® and I but topologized such that I has the induced topology from G, I is
open, and multiplication by ® is a homeomorphism. This can also be given the structure of a
scheme over Q [51]. Then we have a continuous homomorphism G, — W}, with dense image.
Thus we have a natural inclusion Rep,,(Gr) — Rep,, (Wk). The image, that is, the those
representations that factor through continuous representations of G, are the representations
of Wy of Galois type. We also have a natural character w® € Rep, (Wj) defined by w*(I) =1
and w*(®) = ¢~*. This is also denoted by w®(w) = [|w||~* and gives a homomorphism
v : Wy — Z defined by |lw|| = ¢7*). Then every irreducible representation p of W}, is of
the form p = p° ® w® where p° is of Galois type [49, 19].

The representations that arise most naturally in arithmetic algebraic geometry, for ex-
ample those associated with the ¢-adic cohomology of algebraic varieties, are not complex
representations but rather representations in Rep,, (Gx; Q;), with £ # p, or Rep,,(Wj; Q,). The
representation theory for /-adic representations is richer than for complex representations
due to the difference in topologies in the two fields. Recognizing this, Deligne introduced
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what is now known as the Weil-Deligne group W, of the local field so that its representation
theory is essentially algebraic, so in essence it doesn’t distinguish between C and Q,, and
whose category of representations is the same that of the continuous ¢-adic representations of
Gy or Wy, [19]. Following Tate [51], let us define W} to be the group scheme over Q which is
the semidirect product of the Weil group W), with the additive group G, i.e., W) = Wy x G,,
where Wy, acts on G, by wrw ™! = ||w||z. If F is any field of characteristic 0, such as Q, or C,
the F-points of W/ is just W), x F' with composition (wy, z1)(wy, x2) = (wiws, 1 + ||w||z2).
But what is really important is the representation theory of W/. An n-dimensional represen-
tation of W] over F' is a pair p' = (p, N) consisting of (i) an n-dimensional F-vector space
V' with a group homomorphism p : Wy, — GL(V) whose kernel contains an open subgroup
of I, that is, which is continuous for the discrete topology on GL(V'), and (ii) a nilpotent
endomorphism N of V such that p(w)Np(w)™" = ||w||N [19, 49, 51].

If p' = (p, N) is a representation of W, there is a unique unipotent automorphism u of V'
which commutes with both N and p(W}) and such that eV p(w)u="") is semisimple for all
a € Fand all w € Wy, — I [19, 51]. The ® semisimplification of p' is then pl, = (pu™", N). p’
is called ®-semisimple (or Frobenius semisimple) if p' = !, for in this case u is the identity
and all the Frobeniuses act semisimply. This is equivalent to the representation p being
semisimple in the ordinary sense.

We will let Rep,,(W}/; F') denote the equivalence classes of n-dimensional ®-semisimple F'-
representations of the Weil-Deligne group W]. When F' = C we will simply write Rep,, (W)
for Rep,,(W}; C).

The importance of the Weil-Deligne group is in that it lets us capture, in an algebraic way,
the continuous (-adic representations of G, or Wy, [19, 49, 51|: for every semisimple (-adic
representation p; € Rep,,(Wy; Q,) there is an open subgroup of the inertia group I on which
pe is trivial and hence p; gives rise to an (ordinary) ®-semisimple Q,-representation p’ of W}.

Note that by condition (ii) in the definition of a representation of W) the topology on
F plays no role, so that if we have a fixed isomorphism ¢ : Q, — C we may identify
Rep, (W/;Q,) =~ Rep, (W};C) = Rep, (W}). Furthermore, note that in an irreducible rep-
resentation of W, we must have that N = 0, since the kernel of N would be an invariant
subspace, and so Rep" (W}) = Rep? (Wy).

If o = (p,N) € Rep, (W/;F) is an representation of W, on the vector space V', let
Vi = (Ker N)PY) be the invariants of the inertia subgroup I on the kernel of N. The we
can define the local L-factor by setting

Z(t,V) =det(1 —tp(®) Vi)™ € F(t)

to be the inverse of the characteristic polynomial of ® acting on Vi and if we have an

embedding F' < C, so if F' = C or we use the isomorphism ¢ : Q, — C, then we view F' as
a subfield of C and set

L(s,p") = Z(q ", p).
The definition of the local constants £(s, p', ), with ¢ an additive character of k, is more
delicate and we refer the reader to Deligne [19], Rohrlich [49] or Tate [51] for their precise
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definition. Of course, in the case N = 0 these are the usual local Artin-Weil L-functions and
e-factors.

If the local field k& is archimedean, so £k = R or C, then we are interested only in complex
representations of G or Wy. When £ = C the Weil group is simply C* while if £ = R then
Wgr ~ C* J]jC* where j* = —1 and jcj ! =¢ for ¢ € C*. In either case we have

1 > C* > Wi > O > 1.

There is no archimedean Weil-Deligne group, so for consistency we will set W, = W}, in these
cases. The L-and e-factors are then defined in terms of the classical I'-function and a local
functional equation [51].

When £k is a global field we will at least be interested in the representations of the global
Galois group G, the global Weil group W, or possibly the conjectural Langlands group Ly
[46].

When F = Q, we will let Rep,,(G; Q,) denote the set of global f-adic representations in the
following sense. They should be continuous, algebraic (in the sense that they take values in
GL(£)) for a finite dimensional extension E)/Qy), and almost everywhere unramified (in the
sense that there is a finite set of places S(p) of k such that for all v ¢ S(p) the representation
p is unramified at v).

For any global representation p of G, or Wy we have a local representation p, for each
completion v of k£ obtained by composing p with the natural maps Gy, — Gy or Wy, — W.
The conjectural Langlands group £, should have similar local-global compatibility with the
local Weil-Deligne groups.

To any n-dimensional complex or (-adic representation of either the Galois group or the
Weil group we have attached a global complex analytic invariant, the global L-function
L(p, s) defined by the Euler product

L(s,p) =] L(s.o)  els,0) =] (s, p0,0)

where 1) =[], 1, is an additive character of k.

These global analytic invariants are conjectured to be nice in the sense that

(1) L(s,p) should have a meromorphic continuation with at most a finite number of
poles, entire if p is irreducible but not trivial;

(2) these continuations should be bounded in vertical strips;

(3) they satisfy the functional equation L(s, p) = e(s, p)L(1 — s, p).

For G = G, or W, and F' = C these are the classical Artin-Weil L-functions and by Brauer’s
Theorem are known to converge in a right half plane, have meromorphic continuation to C,
and satisfy a functional equation.
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If k is a global function field, with constant field of order ¢, and p is an /-adic representation
of G, as above, then Grothendieck has shown that the L-function is in fact a rational function
of ¢7* and satisfies a functional equation and Deligne later showed that the e-factor of the
functional equation had a local factorization and was given as above [51].

2. AUTOMORPHIC REPRESENTATIONS AND THEIR L-FUNCTIONS

On the automorphic side, if k£ is a local field, we let A,(k) denote the set of equiva-
lence classes of irreducible admissible complex representations of GL, (k). When £ is non-
archimedean local, we let A%(k) denote the subset of equivalence classes of supercuspi-
dal representations of GL, (k). By the theory of Godement-Jacquet [24], or the theory of
Jacquet—Piatetski-Shapiro—Shalika outlined in [13], there a complex analytic invariant at-
tached to every m € A,(k), namely its L-function L(s,7) and a local e-factor (s, m, 1)
depending on a choice of additive character. If in addition we have an irreducible admissible
representation 7’ of GL,, (k) then we have the local Rankin-Selberg convolution L-functions
L(s,m x 7') and e-factor e(s, 7 x 7', ).

If £ is a global field we let A denote its ring of adeles. Let A, (k) denote the set of
irreducible automorphic representations of GL,(A) and A?(k) the subset of cuspidal au-
tomorphic representations. If 7 = ®'m, is an automorphic representation of GL,(A) and
7' = ®'n! an automorphic representation of GL,,(A) then we have its associated L-function
and e-factor defined by Euler products

L(s,m x ') HLSWUXW e(s,7r><7r'):Het(s,mxw;,wv).

As we have seen [13], these invariants are known to be nice, that is if 7 and 7' are unitary
cuspidal representations, then

(1) L(s,7 x 7') has an analytic continuation to all of C with at most simple poles at
s=0,1iff 7' = 7;

(2) these continuations are bounded in vertical strips;

(3) they satisfy the functional equation L(s, 7 x 7') = (s, m x ©')L(1 — s, 7 x 7).

When considering representations that occur in ¢-adic cohomologies it is most natural to
use Q,-valued automorphic forms and representations, which we denote by A, (k; Q,). For
example, we will need to consider the space of Q,-valued cuspidal representations whose
central character is of finite order, which we will denote by A%(k;Q,);. These are the
representations of GL,(A), or the associated Hecke algebra # of locally constant Q,-valued
functions of compact support on GL,(A), in the space of certain Q,-valued cusp forms on
GL,(A). For the convenience of the reader, we will review the definition from [42] for the
case of function fields over finite fields. The Q,-valued cusp form on GL,(A) of interest is a
function ¢ : GL,(A) — Q, such that

(i) v(vg) = ¢(g) for all v € GL,(k);
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(ii) There is a compact open subgroup K, C K = GL,(Oy) such that ¢(gk) = ¢(g) for
all k € K,

(iii) There is an a € A* with deg(a) # 0 such that p(ag) = ¢(g);

(iv) ¢ is cuspidal in the usual sense that the integral [, ¢(ug) du = 0 for each unipotent
radical U of a maximal parabolic subgroup of GL,, (A).

Note that the condition (iii) implies that the central character of ¢ is of finite order. The
theory can essentially be identified with the complex theory through the isomorphism ¢ :
Q, — C and the natural L-functions can be identified with the usual complex analytic ones
or they can be left as (-adic valued rational functions as in the appendix of [35] .

3. THE LOoCAL LANGLANDS CONJECTURE

In its most basic form, the local Langlands conjecture is a non-abelian generalization of
(abelian) local class field theory. The conjecture as first formulated by Langlands was in
terms of the Weil group. An early formulation, possibly the first, can be found in [36].
Langlands never restricted himself to GL,, but always formulated in terms of reductive
algebraic groups in general. Deligne first pointed the necessity of passing to what is now
known as the Weil-Deligne group to be able to include the special representations of G Ly (k)
for alocal field k [18]. The current formulation of the conjecture which is closest to Langlands
original is to be found in Borel’s article in Corvallis [4].

Local Langlands Conjecture I: Let k be a local field. Then there are a series of natural
bijections
Rep,(W}) < A, (k) p=pr > T=T,

satisfying a set of representation theoretic desiderata, including:

(i) For n =1 it should be given by the local class field theory isomorphism.

(ii) The central character of m, corresponds to the determinant det(p) under the n =1
correspondence;

(iii) Compatibility with twisting, i.e., if X is a character of k™ then prg, = p ® X;

(iv) 7, is square integrable iff p(W}) does not lie in a proper Levi subgroup of GL,(C);

(v) m, is tempered iff p(Wy) is bounded.

(vi) If H is a reductive connected k-group and H(k) — GL,(k) is a k morphism with
commutative kernel and co-kernel, then there is a required compatibility between these
bijections for GL, (k) and similar maps for H(k).

For more details on the the compatibility condition (vi), see the article of Borel in Cor-
vallis [4] or the accompanying article [14]. This is related to Langlands’ general functoriality
conjecture. Langlands himself never separated this version of his conjecture from his gen-
eral principle of functoriality [40]. Note that there is no mention of L-functions in this
formulation.

For non-archimedean local fields, it was in the book by Jacquet and Langlands [31] and
then in the work of Deligne [18] that a version of the local Langlands conjecture was phrased
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not in terms of representation theoretic properties, but rather in terms of the complex
analytic invariants, or L-functions, of the two sets in question. Deligne gave the complete
formulation for GLs. It was in this paper that he utilized for the first time the Weil-Deligne
group, which he had introduced in [19] in the context of -adic representations, in order to
have a correct formulation on the case of GL, over a non-archimedean local field.

Local Langlands Conjecture II: Let k be a non-archimedean local field. For each n > 1
there exists a bijective map A, (k) — Rep, (W}) denoted 7 — pr with the following properties.

(i) For n = 1 the bijection is given by local class field theory, normalized so that the
uniformizer of k corresponds to the geometric Frobenius.
(ii) For any m € A,(k) and 7" € A, (k) we have

L(s,pr @ pw) = L(s, 7 x T) (5, px ® p, ) = (5,7 x 7, ).

(iii) For any m € A, (k) the determinant of p. corresponds to the central character of ™
under local class field theory.

(iv) For any m in A, (k) we have p; = py.

(v) for any m € A, (k) and any character x of k* of finite order we have prg, = pr ® X.

There are two ways to think about what these conjectures offer. If one views the pri-
mary passage of information to be from A, (k) to Rep,(W}), then this can be thought of
as Langlands formulation of a non-abelian local class field theory. If one views the primary
passage of information from Rep,, (W}) to A, (k) then this gives an arithmetic parameteri-
zation of irreducible admissible representations of GL, (k). This is the arithmetic Langlands
classification of A, (k).

3.1. k local archimedean, i.e., K = R or C. In this case G is well understood; it is either
Z /27 or trivial. So the passage of information in this case is in the opposite direction. This
was done in great generality by Langlands about 1973 [38], and not only for GL, but for
general real reductive groups. For archimedean local fields there is no Weil-Deligne group.
The representation theoretic version is what is now known as the Langlands classification
or the Langlands parameters for representations of real groups. In fact, Langlands did
this in conjunction with the arithmetic parameterization in terms of Rep,, (W) for GL,, (or
admissible homomorphisms W, —¥ G for general G). The deep and interesting part is
the classification of representations in term of the information obtained from these maps,
particularly their relation with the construction of the discrete series.

Theorem 3.1. Let k be R or C. Then there are a are a series of natural bijections
Rep,, (W) < A, (k)
satisfying the properties (i)—(vi) of version I of the local Langlands conjecture.

For the precise relation with the usual Langlands classification for real algebraic groups,
see [38]. The statement proved is of course that originally given by Langlands and this may
well have motivated the precise conditions in the conjecture. Note again that the conditions
are representation theoretic and the L-functions and e-factors play no role.
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3.2. k local non-archimedean. Recently, this second version of the local Langlands con-
jecture has been established for non-archimedean local fields, first by Laumon, Rapoport,
and Stuhler in the positive characteristic case in 1993 [44] and then in the characteristic
0 case by by Harris and Taylor [27] in 1999 and by Henniart [30] in 2000. In both cases,
the correspondence is established at the level of a correspondence between irreducible Ga-
lois representations and supercuspidal representations. Much of the original representation
theoretic desiderata of the original conjecture has been replaced by an equality of twisted
L-functions, i.e., of the associated families of complex analytic invariants.

Let A?(k); denote the set of isomorphism classes of irreducible admissible representations
of GL, (k) having central character of finite order. Then the theorem of Laumon, Rapoport,
and Stuhler is the following [44].

Theorem 3.2. Let k be a local field of characteristic p > 0. For each n > 1 there exists
a bijective map A%(k); — Rep2(Gx) denoted m — p, satisfying the conditions (i)—(v) of
version II of the local Langlands conjecture.

When the local field £ is of characteristic 0 the local Langlands conjecture established by
Harris and Taylor [27] and Henniart [28] has precisely the same statement.

Theorem 3.3. Let k be a local field of characteristic 0. For each n > 1 there exists a
bijective map A% (k); — Repy(Gk) denoted m — py satisfying conditions (i)—(v) of version II
of the local Langlands conjecture.

The proofs involve the use of Q,-representations on both the Galois and automorphic side,
and is translated into the statements above in terms of complex analytic L-functions through
the isomorphism ¢ of Q, with C.

3.2.1. Reductions and Constructions. In any of the non-archimedean local cases, the
proof passes through a chain of identical reductions which reduces one to proving the ex-
istence of a single map having the desired properties. The three proofs then differ in the
constructions used to prove the existence of at least one correspondence.

There are essentially three steps in the reduction. Assume that we have any correspondence
A%(k); — Repo(Gr), still denoted 7 — p,, which satisfies (i)—(v) of the theorem.

1. Injectivity: Poles of L-functions. For p and p' in Rep. (Gx) we have that L(s, p ® o)
has a pole at s = 0 iff p' = p. Similarly, if 7 and 7’ are both in A) (k) then L(s,m x 7')
has a pole at s = 0 iff 7/ ~ 7. Thus we see that any such correspondence satisfying (ii) is
automatically injective.

2. Bijectivity: Numerical Local Langlands. For p € Rep? (Gi) let a(p) denote the exponent
of the Artin conductor of p [51]. This is determined by the e—factor (s, p,v). Let p: k* —
C* be identified with a character of the Galois group via local class field theory. If we let
Rep? (Gk)m,,. denote the set of p € Repy(Gr) with a(p) = m and det(p) = p then this set is
finite. Similarly, we let A2 (k),,, denote the set of 7 € A%(k) with f(7) = m and central
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character w, = p, where now f(m) is the exponent of the conductor of Jacquet, Piatetski-
Shapiro, and Shalika [13], and this set is also finite. The statement of the numerical local
Langlands conjecture, which had been established by Henniart in 1988 [30], is that for fixed
m € Z, and multiplicative character u of finite order we have |Rep\ (Gk)m.ul = [AL (k) m.ul-
Since (ii) and (iii) guarantee that our correspondence preserves the character p and the
conductors, then once we know that the correspondence is injective, the numerical local
Langlands conjecture gives that the correspondence is surjective and hence bijective.

3. Uniqueness: The Local Converse Theorem. The uniqueness of a correspondence sat-
isfying (i)—(v) is a consequence of the local converse theorem for GL(n). This result was
first stated by Jacquet, Piatetski-Shapiro, and Shalika [32] but the first published proof was
by Henniart [29] with precisely this application in mind. The statement is the following.
Suppose that m and 7’ are both elements of A% (k) and that the twisted e-factors agree, that
is

e(s,m x T, 0) =¢e(s, 7 X 7,0),
for all 7 € A? (k) with 1 <m <n — 1. Then 7 2 7’. (Note that the corresponding twisted
L-functions are all identically 1 [13].) From this, by induction on n, one sees that any such
(now bijective) correspondence satisfying (i)—(v) must be unique.

These three steps then reduce the local Langlands conjecture to the question of existence
of some correspondence satisfying (i)—(v). It is this existence problem that was solved by
Laumon, Rapoport, and Stuhler in positive characteristic and by Harris and Taylor and then
Henniart in the characteristic zero case.

4. Existence: Global Geometric Constructions. In all cases, the local existence is based
on establishing certain instances of a global correspondence of Galois representations and
automorphic representations. Note that we now work with /-adic representations on both
the Galois and automorphic side.

For k of characteristic p > 0, Laumon, Rapoport, and Stuhler begin with a local represen-
tation T € AY (k). They realize k as a local component of a global field K of characteristic p,
so k = K, for some place v of K, and then embed 7 as the local component at v of a cuspidal
representation II of a global division algebra D(A) of rank n such that D*(K,) = GL, (k)
and II, = 7. They globally realize an action of Gx x D*(A) on the (-adic cohomology of
the moduli space of D-elliptic modules (D an order in D) such that in the decomposition
of this cohomology a representation R ® II of G x D*(A) occurs. By construction II, = 7
and they take R, = p,. By the nature of their construction they are able to verify that
(i)—(v) are satisfied. Thus they establish the needed local existence statement via a global
geometric construction and a limited global correspondence.

The proof of Harris and Taylor of the local Langlands conjecture for non-archimedean
fields of characteristic 0 is similar in spirit to that of Laumon, Rapoport, and Stuhler in
characteristic p. They replace the moduli space of D-elliptic modules with certain “simple
Shimura varieties” associated to unitary groups U, of Kottwitz. They realize k as a local
component of a number field K, so k = K, for some place v of K, and then embed 7 as the
local component at v of a cuspidal representation IT of a certain (twisted) unitary group of
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rank n. They then realize a global correspondence between these cuspidal representations and
global Galois representations in the /-adic cohomology of the associated Shimura varieties.
By studying the resulting correspondence locally at a place of bad reduction they find a local
representation on which they have an irreducible action of GL, (k) x D) (k) x W}, where
D is the division algebra over k of rank n and Hasse invariant 1/n, by 7 ® JL(7) ® px,
where JL(7) is the image of 7 under the local Jacquet-Langlands correspondence and py
is thus defined. Again, from their construction they can verify that this correspondence
satisfies conditions (i)—(v). Note that not only do they get a geometric realization of the
local Langlands correspondence, they get a simultaneous realization of the local Jacquet-
Langlands correspondence.

Henniart, in his proof of the local Langlands conjecture for non-archimedean fields of char-
acteristic 0, again uses a global construction but in a far less serious way. In particular, he
does not give a geometric realization of the correspondence. For Henniart, both the state-
ment and the proof most naturally give a bijection from the Galois side to the automorphic
side p — m,. Henniart begins with an irreducible representation p of G, with finite order
determinant. This then factors through a representation of Gal(F'/k) for a finite dimensional
extension F' of k. Using Brauer induction, he writes p as a sum of monomial representations.
The characters can be lifted to the automorphic side by local class field theory, and so he
must show that the corresponding sum of automorphically induced representations exists
and is supercuspidal. The resulting supercuspidal representation is then m,. This he does
again by embedding the local situation into a global one and then appealing to certain weak
cases of global automorphic induction that had been earlier established by Harris [25]. Har-
ris’s result relies on the theory of base change and the association of f-adic representations
to automorphic representations of GL,,(A) by Clozel [12], which in turn relies on the work of
Kottwitz on the good reduction of certain unitary Shimura varieties. So at the bottom there
is in fact a global geometric construction, but it is of a simpler type than used by Harris and
Taylor. Henniart’s proof makes more use of L-functions and less use of geometry. His proof
is shorter and more analytic, but does not give a geometric realization of the correspondence.

A more complete synopsis of these results can be found in the Séminaire Bourbaki reports
of Carayol [9, 10].

3.3. Complements. In order to complete the local Langlands correspondence one needs to
consider all suitable representations of the Weil-Deligne group on the Galois theoretic side
and all irreducible admissible representations of GL,, (k) on the automorphic side. In order to
do this, the first step is to remove the condition of finite-order on the central character. This
is obtained by simply replacing the Galois group by the Weil group on the Galois side of the
correspondence. On the automorphic side one still has supercuspidal representations. Then
to pass to all admissible representations of GL,, (k) one uses the representations of the Weil-
Deligne group. Representation theoretically, the passage from representations of the Weil
group to representations of the Weil-Deligne group on the Galois side mirrors the passage
from supercuspidal representations to irreducible representations on the automorphic side,
as was shown by Bernstein and Zelevinsky (see [1, 60], particularly Section 10 of [60], or
[47]). Thus from the results of Laumon, Rapoport, Stuhler, Harris, Taylor, and Henniart
the full local Langlands correspondence follows.
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In spite of these results, the work on the local Langlands conjecture continues. The
proofs above give the existence of the correspondence and in some cases provides an explicit
geometric model. It provides a matching of certain invariants, like the conductor, and the
local L-functions. However, for applications, it would be desirable to have an explicit version
of the local Langlands correspondence, particularly for the supercuspidal representations of
GL,, in terms of the Bushnell-Kutzko compact induction data [6]. The search for an explicit
local Langlands correspondence is currently being pursued by Bushnell, Henniart, Kutzko,
and others.

4. THE GLOBAL LANGLANDS CONJECTURE

As in the local case, in its most basic form, the global Langlands conjecture should be a
non-abelian generalization of (abelian) global class field theory. When Deligne pointed out
the necessity of introducing the Weil-Deligne group in the local non-archimedean regime, it
was realized that there seemed to be no natural global version of the Weil-Deligne group.
This lead to a search for a global group to replace the Weil-Deligne group. This was one of the
purposes of Langlands’ article [39]. It is now believed that this group, which Ramakrishnan

calls the conjectural Langlands group L, should be related to the equally conjectural motivic
Galois group of k, M [46].

4.1. k a global field of characteristic p > 0. In spite of these difficulties, Drinfeld for-
mulated and proved a version of the global Langlands conjecture for global function fields
[23] which related the irreducible 2-dimensional representations of the Galois group itself
with the irreducible cuspidal representations of GLy(A). This is the global analogue of the
local theorem of Laumon, Rapoport, and Stuhler for which the Weil-Deligne group was
not needed. We should emphasize that the results of Drinfeld were obtained in the 1970’s,
though published only later, and so predate those of Laumon, Rapoport, and Stuhler by
several years. Recently the work of Drinfeld has been extended by L. Lafforgue to give a
proof of the global Langlands conjecture for GL,, over a function field [35].

The formulation of the global Langlands conjecture established by Drinfeld and Lafforgue
is essentially the same as in the local non-archimedean case above with a few modifications
that we would now like to explain. Take k to be the function field of a smooth, projective,
geometrically connected curve X over a finite field F of characteristic p. Fix a prime ¢ which
is different from p and an isomorphism ¢ : Q, — C.

On the Galois side, they consider isomorphism classes of irreducible continuous ¢-adic
representations p : Gy — GL,(Q,) which are unramified outside a finite number of places,
as described in Section 1, and whose determinant is of finite order. We will denote these
by Repy (Gr; Q,);. On the automorphic side they consider the space of Q,-valued cuspidal
representations whose central character is of finite order A% (k; Q) 7, as described in Section
2. A reasonable formulation of a global Langlands conjecture in analogy with what we have
in the local situation is the following.
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Global Langlands Conjecture in characteristic p: For eachn > 1 there exists a bijective
map A% (k; Q,); — Rep\) (Gk; Q) s denoted m— p, with the following properties.

(i) For n =1 the bijection is given by global class field theory.
(ii) For any ™ € A%(k; Q) and «' € A% (k; Q) we have

L(8, px ® prr) = L(s,m x ') (8, pr ® pur) = e(s,m x 7).

(iii) For any m € A%(k; Qy); the determinant of p. corresponds to the central character
of m under global class field theory.

(iv) For any 7 in A%(k : Q,); we have p; = py.

(v) for any m € A%(k;Q,); and any character x of k* of finite order we have prg, =
Pr @ X;

(vi) the global bijections should be compatible with the local bijections of the local Langlands
conjecture.

If we take a cuspidal representation m € A%(k; Qy);, let S(m) denote the finite set of places
x € |X| such that 7, is unramified for all x ¢ S(7). For x ¢ S(m) the local representation 7,
is completely determined by a semi-simple conjugacy class A, in GL,(Q,), which we identify
with GL,,(C) via ¢, called the Satake class or Satake parameter of 7, [4]. As this parameter
determines and is determined by a character of the associated unramified Hecke algebra
H, at x [50] the eigenvalues of A, , denoted zi(m,),...,2z,(7;), are also called the Hecke
etgenvalues of m,. These Hecke eigenvalues completely determine m,. Then by the strong
multiplicity one theorem for GL,, [13] the collection of Hecke eigenvalues {z;(7,), ..., 2,(72)}
for almost all x ¢ S(7) completely determine .

If we take a Galois representation p € Repg(gk; @e)f then we also have a finite set of places
S(p) such that p is unramified at all x ¢ S(p). For x ¢ S(p) the image p(®,) of a geometric
Frobenius ®, at z is a well defined semi-simple conjugacy class in GL,(Q,) ~ GL,(C).
The eigenvalues of p(®,), denoted z1(pz), - - ., zn(pz), are called the Frobenius eigenvalues of
pz- These Frobenius eigenvalues completely determine p, and by the Chebotarev density
theorem the collection of Frobenius eigenvalues {z1(ps), ..., 2,(p.)} for almost all z ¢ S(p)
completely determine p itself.

The result established by Drinfeld for n = 2 [23] and Lafforgue for n > 3 [35], which as
we will outline below is equivalent to the statement above, is the following.

Theorem 4.1. Let k be a global function field of characteristic p as above. For each n > 1
there exists a unique bijective map A%(k; Q) — Repy(Gr; Q) s denoted 7+ p, such that
for every cuspidal m € AP (k; Q) s we have the equality of Hecke and Frobenius eigenvalues

{z1(72), ..., zn(m2) } = {21(Pra)s - > 20 (Pr) }

for all x ¢ S, a finite set of places containing S(w) U S(px), or equivalently we have the
equality of the partial complex analytic L-functions

L?(s,m) = L(s, p).



LANGLANDS CONJECTURES FOR GL, 13

To see that this does indeed give the statements of the conjecture as presented above, note
first that for all = ¢ S, the equality of the equality of the associated Hecke and Frobenius
eigenvalues at these places is consistent with the local Langlands conjecture at the unramified
places. Hence (vi) is satisfied at these places. Next, for 7 € A%(k; Q,); we have an Euler
product factorization for the L-function L(s,7) = [[,¢x L(s,m.) and for all z ¢ S(m)
the local L-function is given by L(s,m,) = det(1 — t(A,, )g*)"* [13]. Hence the Hecke
eigenvalues for m,, x ¢ S(m), are determined by the local L-factor at these places and
conversely. Similarly, for p € Rep. (Gi; Q) s we again have a factorization of the global
L-function L(s, p) = [,¢ x| L(s, ps) where now L(s, p,) = det(l — L(p(P;))g,*) "t Hence
now the local eigenvalues of Frobenius for p(®,), ¢ S(p), are determined by the local
L-factor at these places and conversely. Hence we do have the equality of partial L-functions
L3(s,m) = L°(s, py) for a finite set S D S(w) U S(p,) as stated. Using the global functional
equation for both L(s,7) and L(s, p,) and the local factorization of the global e—factors,
standard L-function techniques give that in fact S(m) = S(px), that L(s,m;) = L(S, pra)
at these places, and that in general the restriction of p, to the local Galois group of k£ at x
corresponds to 7, under the local Langlands conjecture. Thus (vi) is satisfied in general and
from this (ii)—(v) follow from the Euler product factorizations and the analogous statements
from the local conjecture.

4.1.1. Reductions and Constructions. As in the local situation, the proof passes through
a chain of reductions that reduces one to proving the existence of a single map having the
desired properties. The existence is then established by a global construction using the
cohomology of a certain moduli scheme on which GL,, acts.

1. Uniqueness and bijectivity. Given the existence of one global bijection as above, the
uniqueness of the bijection has long been known to follow from an application of the strong
multiplicity one theorem on the automorphic side [13] and the Chebotarev density theorem
on the Galois side. These strong uniqueness principles also imply that any such maps © — p;
and p — 7, satisfying the conditions of the theorem must be reciprocal bijections.

2. The inductive procedure of Piatetski-Shapiro and Deligne. This inductive principle was
outlined by Deligne in an IHES seminar in 1980 and then later recorded in [41]. It reduces
the proof of the theorem to the following seemingly weaker existence statement.

Theorem 4.2. For each n > 1 there ezists a map A%(k;Q,); — Repp(Gi; Qp); denoted
T — p = px such that we have the equality of Hecke and Frobenius eigenvalues

{z1(m0), - s 2(me)} = {21(pra), -5 20(pre) }
for almost all x ¢ S(7) U S(px).

Indeed, suppose one has established the existence of the map m — p, for 7 € A%(k; Q) f
for r = 1,...,n — 1. Then utilizing the global functional equation of Grothendieck, the
factorization of the global Galois e-factor [41], and the converse theorem for GL,, [13, 15, 16]
one obtains for free the inverse map p — 7, for p € Rep? (Gy; Q) forr=1,...,n.
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3. Ezistence [23, 35]. It had been known since Weil that there is a natural moduli problem
associated to GL,, over a function field, namely the set of isomorphism classes of rank n vector
bundles on the curve X are parameterized by the double cosets GL,(k)\ GL,(A)/ GL,(O).
To obtain the maps in question, one needs a bit more structure, and so Drinfeld and then
Lafforgue considered the (compactified) Deligne-Mumford stack V' of rank n shtukas (with
level structure), which is actually a stack over X x X. There is a natural action of the global
Hecke algebra  on this stack by correspondences and the corresponding ¢-adic cohomology
H(k®.,V;Q,) then affords a simultaneous representation of H and G, xGy,. One then uses the
geometric Grothendieck-Lefshetz trace formula to compute the trace of this representation.
One then compares this with the output of the Arthur-Selberg trace formula to prove that
indeed the derived representation 7 ® p, ® pr of H X G, X G occurs in this cohomology. The
construction is inductive and essentially uses everything.

4.1.2. Complements. An immediate consequence of this result is the Ramanujan-Petersson
conjecture for GL,,. This had been earlier established by Drinfeld for n = 2 [22] and partially
by Lafforgue for n > 3 [34]. The complete solution follows from the global Langlands
conjecture.

Theorem 4.3. For every m € A%(k); and every place x ¢ S(7) we have |z;(m;)| = 1.

In addition, Lafforgue [35] is able to deduce the following conjecture of Deligne [20].

Theorem 4.4. Fvery irreducible local system p over a curve whose determinant is of finite
order is pure of weight 0; moreover the symmetric polynomaials in the eigenvalues of Frobenius
generate a finite extension of Q.

In addition, Lafforgue is able to conclude that over a curve the notion of an irreducible
local /-adic system does not depend on the choice of £ and to verify the assertion of descent
in the “geometric Langlands correspondence”.

A more complete synopsis of these results can be found in the reports of Laumon [42, 43].

4.2. k a global field of characteristic 0. There is very little known of a general nature in
the number field case. However, there are some rather spectacular examples of such global
correspondences.

4.2.1. General conjectures. Recall that for n = 1 from global class field theory we have a
canonical bijection between the continuous characters of G, and characters of finite order of
k*\A*. To obtain all characters of £*\A* we must again replace the Galois group by the
global Weil group Wj.

For n > 2, by analogy with the local Langlands conjecture, we need a global analogue
of the Weil-Deligne group. But unfortunately no such analogue is available. Instead the
conjectures are envisioned in terms of a conjectural Langlands group Ly [46]. At best, one
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hopes that L fits into an exact sequence

].—_>£2 /£k /gk /].

with £ complex pro-reductive. This should fit into a commutative diagram

1 —— LY —— L > G » 1
L I
I — M) —— My > G > 1

where My, is the equally conjectural motivic Galois group [46].

In these terms, in general one expects/conjectures the following types of global correspon-
dences [11, 46].

(i) The irreducible n-dimensional representations of Gy should be in bijective correspon-
dence with the cuspidal representations of GL, (A) of Galois type. (This is a restric-
tion on 7y.)

(ii) The irreducible n-dimensional representations of M, should be in bijective correspon-
dence with the algebraic cuspidal representations of GL,,(A). These are the analogues
of algebraic Hecke characters.

(iii) The irreducible n-dimensional representations of £ should be in bijective correspon-
dence with all cuspidal representations of GL,,(A).

Of course, all of these correspondences should satisfy properties similar to those on the local
conjectures, particularly the preservation of L- and e- factors (with twists), compatibility
with the local correspondences, etc.

In reality, very little is known of a truly general nature. One problem for the current
methods seems to be that there is no natural moduli problem for GL,, over a number field.

4.2.2. Known results. There are many partial results of a general nature if one starts on
the automorphic side and tries to construct the associated Galois representation.

When n = 2 and k = Q we have the fundamental result of Deligne [17], based on founda-
tional work of Eichler and Shimura, which associates to every cuspidal representation 7 of
GL3(Ag) which corresponds to a holomorphic new form of weight > 2 a compatible system of
¢-adic representations p = p, such that L(s,7) = L(s, p). The Ramanujan-Petersson conjec-
ture for such forms followed. This was extended to weight one forms over Q in the classical
context by Deligne and Serre [21]. These results were extended to totally real fields k, still
with n = 2, by a number of people, including Rogawski-Tunnell [48], Ohta [45], Carayol [8],
Wiles [58], Taylor [52, 54], and Blasius-Rogawski [3]. For imaginary quadratic fields there
is the work of Harris-Soudry-Taylor [26] and Taylor [53]. For more complete surveys, the
reader can consult the surveys of Blasius [2] and Taylor [55].
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For general GL,, and k a totally real number field Clozel has been able to attach a compat-
ible system of ¢-adic representations to cuspidal, algebraic, regular, self-dual representation
of GL, (Ax) having local components of a certain type at one or two finite places [12].

More spectacular are the results which go in the opposite direction, that is, starting with
a specific Galois representation and showing that it is modular. The results we have in mind
are those of Langlands [37] and Tunnell [57], with partial results by Taylor, et. al, [7, 56|, on
the modularity of degree 2 complex Galois representations (the strong Artin conjecture) and
the results of Wiles [59] and then Breuil, Conrad, Diamond, and Taylor [5] on the modularity
of (the two dimensional Galois representation on the (-adic Tate module of) elliptic curves
over Q.
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