
L-FUNCTIONS AND FUNCTORIALITY

J.W. COGDELL

1. Prelude: Arithmetic L-functions

Let M be an arithmetic/geometric object over Q.

To M is associated a very interesting complex analytic invariant: its L-function:

M 7→ L(M, s) = L∞(M, s)
∏

p

Lp(M, s) Re(s) >> 0

Examples:

M L∞(M, s) typical Lp(M, s) degree

Q π−s/2Γ
(

s
2

)
(1− p−s)−1 1

E (2π)−sΓ(s) (1− app
−s + pp−2s)−1 ap = p + 1− |E(Fp)| 2

K ΓR(s)r1ΓC(s)r2

∏
p|p(1−N(p)−s)−1 p primes of K (K : Q)

ρ det(1− ρ(Frp)p
−s)−1 Frp = Frobenius at p dim(ρ)

M ΓM(s) QM,p(p
−s) local (mod p) information deg(QM,p(X))

Here E is an elliptic curve defined over Q, K is an algebraic number field, so a finite
extension of Q, and ρ : Gal(Q/Q)→ GLn(C) is a n-dimensional Galois representation.

These are all conjectured to be nice:

(1) L(M, s) has a meromorphic continuation to all s ∈ C (entire if M irreducible and
dim(M) > 1);

(2) L(M, s) is bounded in vertical strips (BVS);
(3) L(M, s) satisfies a standard functional equation

L(M, s) = ε(M, s)L(M∨, 1− s)

These complex analytic invariants are built as a convergent Euler product in Re(s) >> 0
out of local information. However they (conjecturally) carry interesting global information

1
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after analytic continuation, and particularly in the critical strip 0 ≤ Re(s) ≤ 1 about the
line of symmetry Re(s) = 1/2.

M L(M, s) location Conjecture/Fact

Q π−s/2Γ
(

s
2

)
ζ(s) Re(s) = 1 Prime Number Theorem

Re(s) = 1/2 Riemann Hypothesis

E L(E, s) s = 1/2 Birch and Swinnerton–Dyer

K ΓR(s)r1ΓC(s)r2ζK(s) s = 1 Analytic Class Number Formula

ρ L(ρ, s) C Artin Conjecture

2. Automorphic L-functions

2.1. Classical – Hecke. Modular forms: f : H → C is a modular form of weight k for
Γ ⊂ SL2(Z) if

(1) f is holomorphic;

(2) for all γ =

(
a b
c d

)
∈ Γ

f

(
az + b

cz + d

)
= (cz + d)kf(z);

(3) f is holomorphic at the cusps of Γ.

Examples:

(1) θq(z) the theta series attached to a quadratic form q(x);
(2) ∆(z) the discriminant function from the theory of elliptic modular functions.

We will restrict to Γ = SL2(Z) for simplicity of exposition.

Since

(
1 1
0 1

)
∈ Γ then f(z + 1) = f(z) and we have the Fourier expansion:

f(z) =
∞∑

n=0

ane
2πinz.
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Then f(z) is cuspidal, or a cusp form, if a0 =
∫

1

0
f(z + x) dx = 0, i.e.,

f(z) =

∞∑

n=1

ane
2πinz.

These Fourier coefficients often carry interesting arithmetic information:

(1) If f(z) = θq(z), then an = r(n, q) counts the number of times n is represented by the
quadratic form q.

(2) If f(z) = ∆(z), then an = τ(n) is Ramanujan’s τ–function.

Hecke attached to each cusp form a complex analytic invariant – its L-function:

L(s, f) =

∫ ∞

0

f(iy)ysd×y = (2π)−sΓ(s)
∞∑

n=1

an

ns

= (2π)−sΓ(s)
∏

p

(1− app
−s + pk−1p−2s)−1

where the last equality is valid if f(z) is “arithmetic”, i.e., an eigen-function of the Hecke
operators. Due to the relations of the analytic invariant L(s, f) and the analytic object f(z)
through the Mellin transform, Hecke could prove the following.

Theorem 2.1. L(s, f) is nice: entire, BVS, and satisfies a functional equation.

The functional equation comes from the modular transformation law under

(
0 −1
1 0

)

sending z 7→ −1/z.

Since the Mellin transform has an inverse integral transform, Hecke was able to prove the
converse to this theorem.

Theorem 2.2. If D(s) = (2π)−sΓ(s)
∑

an/ns is nice with the correct functional equation
then f(z) =

∑
ane

2πinz is a cusp form of weight k for SL2(Z) and D(s) = L(s, f).

The modularity of f(z) essentially comes from the Fourier expansion and the functional
equation.

Note that Weil proved a corresponding Converse Theorem for Γ0(N) by using the func-
tional equation not just for L(s, f) but also for

L(s, f, χ) = (2π)−sΓ(s)
∞∑

n=1

χ(n)an

ns

with Dirichlet characters χ of conductor prime to the level N .
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2.2. GLn. In the modern analytic theory of automorphic forms, the modular form f of
Hecke is replaced by the automorphic representation π (Gelfand, Piatetski-Shapiro, Jacquet,
Langlands, Shalika, ...)

The object of study becomes the space of cuspidal automorphic forms

A0(GLn(Q)\GLn(A)).

Here

A = R
∏

p

′
Qp

is the ring of adeles of Q and we have

Q →֒ A discrete ; Q\A compact.

Then analogously

GLn(A) = GLn(R)
∏

p

′
GLn(Qp)

and again

GLn(Q) →֒ GLn(A) discrete ; GLn(Q)\GLn(A) finite volume mod center.

The functions ϕ ∈ A0(GLn(Q)\GLn(A)) are analogues of classical modular forms. They
satisfy

(1) modularity: ϕ(γg) = ϕ(g) for γ ∈ GLn(Q) and g ∈ GLn(A);
(2) regularity: smooth, satisfying a system of differential equations (analogue of holo-

morphy);
(3) uniform moderate growth (analogue of holomorphy at the cusps);
(4) cuspidality: analogous constant term integrals vanish.

The space A0(GLn(Q)\GLn(A)) has a natural action of GLn(A) by right translation. A
theorem of Gelfand and Piatetski-Shapiro tells us we have a discrete decomposition

A0(GLn(Q)\GLn(A)) =
⊕

m(π)Vπ

with finite multiplicities m(π) (in fact equal to 0 or 1). The constituents (π, Vπ) are the
cuspidal automorphic representations of GLn(A). Be warned – they are infinite dimensional.

Just as

GLn(A) = GLn(R)
∏

p

′
GLn(Qp)

each cuspidal representation π decomposes

π = π∞ ⊗
′
p πp = ⊗′

vπv

with π∞ a representation of GLn(R) and πp a representation of GLn(Qp), all infinite dimen-
sional.
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Following Hecke’s theory of integral representations, Jacquet and Langlands (n = 2)
and then Jacquet, Piatetski-Shapiro, and Shalika associated to these representations an
L-function

π∞ −→ L(s, π∞)←→ Γ(s)

πp −→ L(s, πp) = Qp(p
−s)−1 with Qp(X) ∈ C[X] of degree ≤ n

π −→ L(s, π) = L(s, π∞)
∏

p

L(s, πp) Re(s) >> 0.

As with Hecke, they were able to show that these complex analytic invariants were indeed
nice:

Theorem 2.3 (J,P-S,S). L(s, π) is nice: entire, BVS and satisfies a functional equation

L(s, π) = ε(s, π)L(1− s, π̃).

In fact, they were able to construct and analyze the twisted L-functions L(s, π×π′) for π′

a cuspidal representation of some GLm(A) and show that if m < n that these L-functions
were also nice.

Inverting the integral representation once again gives a Converse Theorem:

Theorem 2.4 (C,P-S). Let π = ⊗′πv be an irreducible admissible representation of GLn(A).
(Think of this as a collection of local data.) Suppose that the formal L-function

L(s, π) :=
∏

v

L(s, πv)

converges for some Re(s) >> 0 and has a automorphic central character. Suppose that for
every π′ ∈ T0, an appropriate cuspidal automorphic twisting set, we have that all L(s, π×π′)
are nice. Then π is in fact cuspidal automorphic.

Examples of twisting sets are:

• T0 = T0(n− 1) = {π′ | cuspidal automorphic for GLm(A), 1 ≤ m ≤ n− 1}

• T0 = T0(n− 2)

Moral: All nice degree n L-functions are modular, i.e., associated to a cuspidal auto-
morphic representation π of GLn(A).

3. Example – Langlands Conjectures

One goal of number theory is:

• understand GQ = Gal(Q/Q);

• understand all ρ : GQ = Gal(Q/Q) −→ GLn(C);
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• understand the associated invariants, i.e., the Artin L-functions L(ρ, s), where for almost
all p,

Lp(ρ, s) = det(I − ρ(Frp)p
−s)−1

a degree n Euler factor.

In light of our moral, and the expected niceness of the Artin L-functions the following
(also known as the Strong Artin Conjecture) seem natural.

Global Langlands Conjecture (Naive version): There exist natural bijections between

Repn(GQ) = {ρ : GQ → GLn(C); irreducible}

and

A0(n) = {π : cuspidal automorphic representations of GLn(A)}

such that L(ρ, s) = L(s, π) (among other things).

And we could then expect local versions:

Local Langlands Conjecture (Naive version): There exist natural bijections between

Repn(GQv
) = {ρv : GQv

= Gal(Qv/Qv)→ GLn(C)}

and

Av(n) = {πv : irred. admissible representations of GLn(Qv)}

such that L(ρv, s) = L(s, πv) (among other things).

This is naive because of several issues:

(1) The difference in the topologies of GQ and GLn(C) is such that one doesn’t pick up
enough information about the Galois group from complex representations. One needs
to use ℓ-adic representations.

(2) There are “more” automorphic or admissible representations of GLn than n-dimensional
Galois representations.

Weil dealt with the second issue for n = 1 by introducing the local and global Weil groups
WQ or WQv

to substitute for GQ, etc.

Deligne dealt with the first issue and second issue locally for n ≥ 2 by introducing the
local Weil-Deligne group W ′

Qv

to replace WQv
. So

GQ −→ WQ −→ ?? globally

GQv
−→ WQv

−→W ′
Qv

locally.

Which leaves us only with

Local Langlands Conjecture: There exist natural bijections between

Repn(W ′
Qv

) = {ρv : W ′
Qv

→ GLn(C), suitably semi-simple }
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and
Av(n) = {πv : irred. admissible representations of GLn(Qv)}

such that L(ρv, s) = L(s, πv) (among other things).

This is of course now a Theorem due to Harris and Taylor. We might state this as:

Theorem. “Local Galois representations in characteristic zero are modular.”

As for the GLC, all we can hope for at the moment is a type of Hasse principle – a
local/global compatibility.

If we view the information as flowing

Automorphic −→ Galois

which we have emphasized, this is a type of Class Field Theory. However, and this is
important for us, if one views the information as flowing

Galois −→ Automorphic

then this gives an Arithmetic Parameterization of automorphic or admissible representations.
Then one can ask, as Langlands did, how can we parameterize the representations of other
reductive algebraic groups, for example the split H = SOn or H = Spn? What replaces the
GLn(C) in the Galois representation?

It was to understand this that Langlands introduced his dual group or L-group. For these
split groups, the process is easy: dualize the root data and take the complex points of the
resulting group:

H LH

GLn GLn(C)
SO2n+1 Sp2n(C)
Sp2n SO2n+1(C)
SO2n SO2n(C)

Then the Local Langlands Conjecture for H, as an arithmetic parameterization problem,
takes the following form

Local Langlands Conjecture for H: Let

Rep(W ′
Qv

, H) = {φv : W ′
Qv

→L H(C), admissible}

and
Av(H) = {πv : irred. admissible representations of H(Qv)}.

Then there exists a surjective map

Av(H) −→ Rep(W ′
Qv

, H)

with finite fibres such that
L(s, πv) = L(φv, s)
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(among other things).

This would partition the admissible representations of H(Qv) into L-packets, i.e., finite
subsets all having the same L-functions.

Known cases:

• Qv = R, all H (Langlands).

• Qv = Qp, and πp unramified (Satake).

• H = GLn (Harris-Taylor, Henniart).

4. Functoriality

Functoriality is a manifestation of viewing either the GLC or LLC as giving arithmetic
parameterizations of automorphic/admissible representations. It involves one extra piece of
data, an L-homomorphism, which relates the arithmetic parameter spaces. Restricting
our attention to functoriality from one of our classical groups H to GLN this is a complex
analytic morphism

u : LH −→ LGLN = GLN(C)

which we will take as the natural embedding. With this we can formulate functoriality as a
way to transfer admissible or automorphic representations from H to GLN .

Local Functoriality: If πv is an irreducible admissible representation of H(Qv) then we
can obtain an irreducible admissible representation Πv of GLN(Qv) by following the diagram

LH
u

// LGLN

πv
�

//
�

// Πv.

W ′
Qv

φv

YY2222222222222222

Φv

DD																

and this should satisfy

L(s, πv) = L(φv, s) = L(Φv, s) = L(s, Πv)

along with similar equalities for twisted versions and for ε-factors.

In the case of Global Functoriality, since we do not have a global version of the Weil-Deligne
group, and so no such global diagram, we rely on local/global compatibility.

Global Functoriality Conjecture: If π = ⊗′πv is a cuspidal automorphic represen-
tation of H(A) then the representation Π = ⊗′Πv of GLN(A) we obtain by following the
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diagram

LH
u

// LGLN

π = ⊗′πv πv
�

//
�

// Πv Π = ⊗′Πv.

W ′
Qv

φv

YY2222222222222222

Φv

DD																

should be automorphic and moreover should satisfy

L(s, π) =
∏

v

L(s, πv) =
∏

v

L(s, Πv) = L(s, Π)

along with similar equalities for twisted versions and for ε-factors.

Establishment of instances of Global Functoriality can be considered as evidence of

• The existence of a global version of the Weil-Deligne group, often called the Langlands
group, to mediate a global diagram.

• The strong Artin conjecture.

• Specific modularity of orthogonal or symplectic Galois representations.

5. Converse Theorem and Functoriality

The Converse Theorem gives a method for attacking the Global Functoriality Conjecture
in the case where the target group is GLN as above.

To explain this, let H be a split classical group over Q as above, so H = SO2n, H =
SO2n+1, or H = Sp2n and let

u : LH →֒ GLN(C).

H LH u :L H →L GLN
LGLN GLN

SO2n+1 Sp2n(C) →֒ GL2n(C) GL2n

SO2n SO2n(C) →֒ GL2n(C) GL2n

Sp2n SO2n+1(C) →֒ GL2n+1(C) GL2n+1

Let π = ⊗′πv be a cuspidal automorphic representation of H(A).

There are three basic steps.
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Step 1: Constructing a Candidate Lift: To construct a candidate lift Π = ⊗′Πv we
just use the diagram from the Global Functoriality Conjecture:

LH
u

// LGLN

π = ⊗′πv πv
�

//
�

// Πv Π = ⊗′Πv.

W ′
Qv

φv

YY2222222222222222

Φv

DD																

Problem 1: We do not know the LLC for H(Qv) for all πv. There will be a finite number
of places S at which we do not have the necessary local diagram.

Step 2: Analytic Properties of L-functions: From our global diagram we expect to
have the equalities

L(s, π) = L(s, Π) and even L(s, π × π′) = L(s, Π× π′)

for all π′ in an appropriate cuspidal twisting set T0. Now, the L-functions L(s, π × π′) are
automorphic L-functions, so we have a good chance of controlling them.

In these specific examples, under the additional condition that the cuspidal representation
π be generic, these can be controlled by the Langlands-Shahidi method. This method
controls the analytic properties of automorphic L-functions by relating them to both constant
terms and non-constant Fourier coefficients of Eisenstein series and then utilizing the analytic
properties of the Eisenstein series (the “other” type of automorphic forms).

Problem 2: The functorial lift Π of cuspidal representations π of H(A) need not be cuspidal
on GLN . Hence the L(s, π × π′) may have poles.

Step 3: Apply the Converse Theorem: If Problem 1 and Problem 2 can be solved,
then one will have that indeed L(s, Π× π′) are nice for all π′ in an appropriate twisting set
T0. In fact, both of these problems are finessed using a more flexible variant of the Converse
Theorem:

Converse Theorem Variant: If we fix a finite set of finite places S and a (highly rami-
fied) idele class character η and let T0(S, η) be the set of cuspidal automorphic representations
π′ of GLm(A) for 1 ≤ m ≤ N − 1 such that

• π′ = π′
0 ⊗ η;

• π′
0 = ⊗′π′

0,v with π′
0,v unramified for all v ∈ S

then if L(s, Π×π′) is nice for all π′ ∈ T0(S, η) then there is an automorphic Π′ with Π′
v ≃ Πv

for all v /∈ S.
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– Taking for S the set of places from Problem 1 and using an η that is highly ramified at
those places, we are able to twist away all information at those place (using the stability of
the local L– and ε-factors under highly ramified twists) at the cost of losing control at those
places. This solves Problem 1.

– An observation of Kim tells us that if we twist by a highly ramified character, then
globally the L(s, π × π′) is entire, thus solving Problem 2.

Theorem 5.1 (C, Kim, Piatetski-Shapiro, Shahidi). Let H be a split classical group as above
and let π be a generic cuspidal representation of H(A). Then there exists an automorphic
representation Π of the appropriate GLN(A) such that Πv is the local Langlands functorial
lift of πv for all but finitely many places.

This is our solution of the Global Functoriality Conjecture in these cases.

Applications: Besides providing evidence for a Global Class Field Theory, as we have
discussed, one also obtains the following applications of these liftings.

1. Non-trivial bounds towards the Ramanujan Conjecture for these classical groups.

2. Combining this technique with the descent of Ginzburg-Rallis-Soudry, Jiang and Soudry
filled in the LLC for the places in Problem 1 for H = SO2n+1.

3. Various applications to local representation theory for the classical groups (Mœglin’s
dimension relation for generic discrete series representations, the first analysis of the con-
ductor, holomorphy and non-vanishing of certain local intertwining operators.)

Other Transfers: This general method, and variations thereof, has also been used to
establish Functorialities in the following situations.

H LH u :L H →L G LG G

GL2×GL2 GL2(C)×GL2(C) ⊗ GL4(C) GL4 R

GL2×GL3 GL2(C)×GL3(C) ⊗ GL6(C) GL6 K & S

GL4 GL4(C) ∧2 GL6(C) GL6 K

GL2/E Asai GL4 R; Kr

Un,n Base Change GL2n/E K & Kr

GSpin2n+1 GSp2n(C) →֒ GL2n(C) GL2n A & S

GSpin2n GSO2n(C) →֒ GL2n(C) GL2n A & S
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In the attribution column, R = D. Ramakrishnan, K = H. Kim, S = F. Shahidi, Kr = M.
Krishnamurthy, and A = M. Asgari.

The tensor product and exterior square functorialities of Kim and Shahidi then led them
to the symmetric cube and fourth power liftings from GL2 to GL4 and GL5 respectively
and holomorphy results for the symmetric power L-functions for GL2 up to the ninth power.
These results were then applied to:

• improved bounds towards the Ramanujan and Selberg conjectures for GL2 (Kim and
Shahidi, Kim and Sarnak);

• the hyperbolic circle problem (Kim and Shahidi);

• resolution of Hilbert’s eleventh problem for positive ternary quadratic forms over a
totally real number field (C, Piatetski-Shapiro, and Sarnak).

So, in the end, these seemingly far removed results have had applications to very concrete
arithmetic problems.


