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To Steve Rallis, with admiration, on the occasion of his sixtieth birthday

The question of functoriality is a central one in the theory of automorphic
forms and representations. There has been recent progress on the proof of
this conjecture for globally generic representations of the split classical groups
by combining the converse theorem with the Langlands-Shahidi method of
controlling automorphic L-functions [6, 7]. We refer the reader to those papers
for an exposition of the general process.

One crucial local result needed in these proofs is the stability of the local
γ-factors for the split classical groups. This seemingly technical result allows
us to finesse the lack of the local Langlands conjecture at the finite number
of finite places where the generic cuspidal representation is ramified. For the
split odd orthogonal results this was established in [8] and then used in es-
tablishing functoriality from SO2n+1 to GL2n in [6]. For the functoriality for
even orthogonal groups and symplectic groups, the results of [8] were extended
to these cases in Section 4 of [7]. In these later cases, the stability was es-
tablished by expressing the local γ-factor as a Mellin transform of a certain
partial Bessel function [16] and then using results on the asymptotics of these
partial Bessel functions established in the split case in [8].

In order to facilitate the establishment of functoriality for general quasi-
split groups, we turn to the problem of stability of local γ-factors for generic
representations of these groups. In this paper, we extend the results of [8] and
[7] on the asymptotics of certain partial Bessel functions of representations to
the quasi-split case. The definition of the partial Bessel functions of interest
can be found in Section 3 and the statement of our main result about them
can be found in Section 7 of this paper. The arguments are essentially those
found in [8] and [7] generalized to the quasi-split setting. Even though the
modifications are minor in places, we have chosen to reproduce the arguments
in full both to make this paper self contained and to be sure there is no question
as to their validity in this increased generality.
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In a subsequent paper [9] we will turn to the combination of these as-
ymptotics with the expression of the local γ-factor as a Mellin transform of
related Bessel functions in [16] to obtain the general stability result for these
γ-factors. Then progress on functoriality for quasi-split groups can proceed.

We conclude the paper with an Appendix on the existence of the (full)
Bessel function of a generic representation associated to certain minimal Weyl
elements (see Section 8). While this existence is not needed for the applications
to functoriality, such Bessel functions are analogs of (twisted) orbital integrals
(cf. Remark 3.2 of [16]) and are expected to play a fundamental role in the
relative trace formula. Their existence was assumed in [16] (cf. Section 3 of
that paper) for heuristic purposes, even though it was not used for the results
established there; those results also require only the partial Bessel functions.
We prove the existence of the Bessel function for quasi-split groups here, albeit
in the limited context of certain minimal Weyl elements.

We would like to thank the referee for bringing to our attention a false proof
in an earlier version of this paper and for the suggestions made on streamlining
the presentation of the paper. We would also like to once again acknowledge
that the genesis of many of the ideas for analyzing Bessel functions are to be
found in the thesis of Averbuch [1].

1. Preliminaries

Let k be a non-archimedean local field of characteristic zero, with ring of
integers O and maximal ideal P. Let q = qk be the order of the residue field
O/P. Let Γ = Gal(k/k) denote the absolute Galois group of k.

Let G be a connected reductive algebraic group which is defined and quasi-
split over k. We shall assume in addition that the center Z = Z(G) is connected
and cohomologically trivial to first order, i.e., H1(Γ,Z) = {0}. Since the
ultimate goal of this paper is an application to the stability of the local γ-factor
of a generic representation of G(k) under highly ramified twists, we know by
Proposition 5.4 of [16] and the Appendix to [7] that these restrictions have
no effect on the applicability of our results.

Fix a Borel subgroup B = TU over k with unipotent radical U and maximal
torus T. Let A be the maximal k-split subtorus of T; then T = Z(A).

Let Φ̃ = Φ(T,G) be the set of (non-restricted) roots of T in G [4, 13]. The
choice of U then defines a set of positive roots Φ̃+ and simple roots ∆̃ of T in
U. Let K/k be Galois splitting field of G and let ΓK = Gal(K/k). Since G



Partial Bessel functions for quasi-split groups 97

is quasi-split over k, and split over K, both Φ̃ and ∆̃ decompose into a finite
number of Γ or ΓK orbits [13].

Let Φ = Φ(A,G) be the set of (restricted) roots of G with respect to A.
Again, the choice of U then defines a set of positive roots Φ+ and simple roots
∆ for A. The root system Φ may have multiple roots. Let Φnd be the non-
divisible roots of Φ. For each α ∈ Φnd we will let (α) denote the set of roots
which are positive multiples of α. The possibilities are either (α) = {α} or
(α) = {α, 2α} [2]. The Γ or ΓK orbits in ∆̃ are in one-to-one correspondence
with the restricted simple roots ∆ [3]. Given α ∈ ∆ we will let ∆̃α denote the
Γ-orbit of roots α̃ ∈ ∆̃ which restrict to α.

Let W denote the (relative) Weyl group of A in G, i.e., N (A)/Z(A).

1.1. Splittings. For each α̃ ∈ ∆̃ let Kα̃ be the splitting field of the simple
root α̃. So k ⊂ Kα̃ ⊂ K. Let {xα̃ | α̃ ∈ ∆̃} be a Steinberg splitting of G (cf.
Section 4.1.3 of [5]). So if Uα̃ ⊂ GK is the root subgroup corresponding to α̃
over K, we have

(i) xα̃ : Ga → Uα̃ is an isomorphism over Kα̃;

(ii) xγ(α̃) = γ ◦ xα̃ ◦ γ−1 for γ ∈ ΓK .

This splitting determines an associated Chevalley system {xα̃ | α̃ ∈ Φ̃} for
G over K called a Chevalley-Steinberg system for G (see Section 4.1.3 of
[5]). Recall that such a splitting always satisfies Ad(t)xα̃(u) = xα̃(α̃(t)u)
for t ∈ T(K). A Chevalley-Steinberg system then defines compatible root
datum (T, (Uα̃)α̃∈eΦ) for G(K) and (T, (Uα)α∈Φ) for G(k) [5]. The choice
of a splitting gives representatives for the (absolute) Weyl group elements
wα̃ ∈ W̃ = N (T )/T associated to the simple reflections for α̃ ∈ ∆̃ via

wα̃ = xα̃(1)x−α̃(−1)xα̃(1)

(see Section 3.2.1 of [5]).

The choice of a splitting fixes the natural homomorphisms from the usual
simply connected rank one groups into G. If α ∈ ∆ is such that (α) = {α}
and we let α̃ ∈ ∆̃ be a root of T restricting to α, then the associated rank one
group Gα is isomorphic to RKα̃/kSL2. In this case the associated k-splitting
gives xα = RKα̃/kxα̃ and xα : RKα̃/kGa → Uα = U(α). If u ∈ Kα̃ then

xα(u) =
∏

β̃∈e∆α

xβ̃(uβ̃) with uγ(α̃) = γ(u).
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If α ∈ ∆ is such that (α) = {α, 2α} and we let α̃, α̃′ ∈ ∆̃α be two roots of T
restricting to α such that α̃+ α̃′ is again a root. Then α̃ and α̃′ have the same
splitting field, Kα̃ which is a quadratic extension of the splitting field Kα̃+α̃′

of α̃ + α̃′. For simplicity, let us denote K ′
α̃ = Kα̃+α̃′ . Then the associated

rank one group Gα is isomorphic to RK′
α̃/kSU3. Let Hα̃ denote the subvariety

of Kα̃ ×Kα̃, considered as a vector space of dimension 4 over K ′
α̃ defined by

v+vσ = uσu, where σ is the non-trivial Galois automorphism in Gal(Kα̃/K
′
α̃),

equipped with the group law

(u, v)(u′, v′) = (u+ u′, v + v′ + uσu′).

Then U(α) ' RKα̃/K′
α̃
Hα̃, with the pair (u, v) corresponding to the unipotent

matrix

µ(u, v) =

1 −uσ −v
0 1 u
0 0 1

 ∈ SU3.

Then the splitting is given as follows. Choose a splitting x′α̃ : Ga → Uα̃. Then
xα̃′ = σ ◦ xα̃ ◦ σ−1 and xα̃+α̃′ = int w−1

α̃′ ◦ xα̃ (see [5], Sction 4.1.9). Then

xα(u, v) =
∏

{β̃,β̃′}

xβ̃(uβ̃)xβ̃+β̃′(−vβ̃)xβ̃′(u
σ
β̃
)

for (u, v) ∈ Hα̃ ⊂ Kα̃ ×Kα̃, where the product is over distinct pairs {β̃, β̃′} ∈
∆̃α with β̃ + β̃′ a root. Here, for each β̃ we choose γ ∈ Gal(K/k) such
that β̃ = γ(α̃); then β̃′ = γ(α̃′), xβ̃ = γ ◦ xα̃ ◦ γ−1, xβ̃′ = γ ◦ xα̃′ ◦ γ−1,
xβ̃+β̃′ = γ ◦ xα̃+α̃′ ◦ γ−1, uβ̃ = γ(u), and vβ̃ = γ(v). Note that the image of
xα̃(u, v) in Uα/U2α only depends on u and will be denoted xα(u). The map
u 7→ xα(u) gives an isomorphism of k-vector spaces of Kα̃ onto U(α)/U2α.
We shall use this notation in the case of (α) = {α} as well, taking U2α to be
trivial.

The splitting, through the isomorphisms with the simply connected rank
one groups, gives representatives for the (relative) Weyl group elements wα ∈
W associated to the simple reflections for α ∈ ∆ (see Sections 4.1.5 and 4.1.9
of [5]). We can then choose representatives for each w ∈ W by means of a
reduced decomposition and this choice of the wα. This is independent of the
choice of decomposition.

Let ω : k× → Z be the valuation on k, with associated normalized absolute
value |u| = q

−ω(u)
k where qk is the order of the residue class field of k. This

extends uniquely to give a compatible valuation on K and each Kα̃, which
we will also denote by ω since it is unique, with associated absolute values.
The root datum (T, (Uα̃)α̃∈eΦ) is naturally valued by the maps ϕα̃ : Uα̃ → R
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defined by

ϕα̃(xα̃(u)) = ω(u) for u ∈ K×.

This valuation on the root datum descends to a valuation ϕα : Uα → R of the
associated root datum (T, (Uα)α∈Φ) for G(k) (see Section 4.2.2 and Theorem
4.2.3 of [5]). If α ∈ ∆ is such that (α) = {α} then we have

ϕα(xα(u)) = ω(u) for u ∈ K×
α̃ .

If the root α ∈ ∆ is multiple, so (α) = {α, 2α}, then

ϕα(xα(u, v)) =
1
2
ω(v) ≤ ω(u) for (u, v) ∈ Hα̃, (u, v) 6= (0, 0)

while

ϕ2α(xα(0, v)) = ω(v) for v ∈ K×
α̃ , T rKα̃/K′

α̃
(v) = 0.

The valued root datum allows us to define a natural exhaustive family of
compact open subgroups of U(K) and hence U(k). Enumerate the simple
roots ∆̃ = {α̃1, . . . , α̃r}. If β̃ ∈ Φ̃+ is a positive root occurring in U then β̃
has a unique expression of the form β̃ = n1α̃1 + · · · + nrα̃r with nj a non-
negative integer. Then as usual we set ht(β̃) = n1 + · · · + nr, the height of
the positive root β̃. For each positive integer M we define a concave function
fM : Φ̃ → R ∪ {∞} by fM (β̃) = −ht(β̃)M if β̃ ∈ Φ̃+ and fM (β̃) = ∞ if
β̃ ∈ Φ̃−. This then allows us to define an open compact subgroup Uβ̃,fM

⊂
Uα̃(K) by Uβ̃,fM

= ϕ−1

β̃
([fM (β̃),∞]) (see Section 6.2 of [4]). If β̃ ∈ Φ̃+

then Uβ̃,fM
= ϕ−1

β̃
([Mht(β̃),∞]) while if β̃ ∈ Φ̃− then Uβ̃,fM

= {1}. Then,
following Bruhat and Tits, we define a corresponding subgroup UfM

⊂ G(K)
as the subgroup generated the Uβ̃,fM

(see Section 6.4 of [4]). In our case, this
will be a compact open subgroup of U(K) and as M →∞ these will exhaust
U(K). As the standard commutation relations show (see also Section 6.1 of
[4]) in our case we can describe UfM

simply as those elements of U(K) of the
form

u =
∏

β̃∈eΦ+

xβ̃(uβ̃) with |uβ̃ |K ≤ q
Mht(β̃)
K .

Since the valued root datum descends to (T, (Uβ)β∈Φ) and the function fM

is Galois invariant, the subgroups UfM
will also descend to subgroups UfM

⊂
U(k). These will play a role in what follows. This family of open compact sub-
groups will also satisfy the conditions needed in [16] (see particularly Section
6 therein).
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1.2. Generic characters of U. The notion of splitting is also necessary to
define the concept of a generic character of U(k) and generic representations.
Let ψ be a non-trivial additive character of k. If u ∈ U(k) then we can write

u =
∏

β̃∈eΦ+

xβ̃(uβ̃)

with the uβ̃ ∈ K satisfying γ(uβ̃) = uγ(β̃) for all γ ∈ ΓK . Then we can extend
ψ to a non-degenerate character of U(k) relative to this splitting by setting

ψ(u) = ψ

∑
α̃∈e∆

uα̃

 .

Note that the Galois invariance of the ∆̃ ensures that
∑
uα̃ ∈ k.

The abelianization Uab of U is isomorphic to the direct sum of the abelian-
ization of the root groups U(α) for α ∈ ∆ and we have Uab

(α) ' U(α)/U2α '
RKα̃/kGa, with the last isomorphism being given by uα̃ ∈ Kα̃ 7→ xα(uα̃). Thus
we have

ψ(u) = ψ

(∑
α∈∆

xα(uα̃)

)
=
∏
α∈∆

ψ
(
TrKα̃/k(uα̃)

)
.

If we let ψα = ψ ◦ TrKα̃/k then we see that under the isomorphism Uab '
⊕RKα̃/kGa we have ψ =

∏
ψα.

The representatives of w ∈W fixed above will be compatible with ψ in the
following sense. For every subset θ ⊂ ∆ and w ∈ W such that w(θ) ⊂ ∆ we
have

ψ(u) = ψ(Ad(w)u)

for all u ∈ Uθ, the unipotent radical of the Levi subgroup Mθ of the parabolic
subgroup Pθ associated to θ (see Section 1.4 below and Section 3 of [15]).
When we speak of generic representations of G(k) we will always mean generic
with respect to this character ψ of U(k).

1.3. A splitting of the torus. Recall that we have assumed that the center
Z = Z(G) of G is connected and cohomologically trivial to first order, i.e.,
H1(Γ,Z) = {0}.

Enumerate the (non-restricted) simple roots of T as ∆̃ = {α̃1, . . . , α̃r}. Let
Kα̃i = Ki ⊃ Oi ⊃ Pi denote the ring of integers and maximal ideal for the
field of definition of α̃i. Then for every t ∈ T(k) we have α̃i(t) ⊂ Ki. For
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every n-tuple M = (M1, . . . ,Mr) of positive integers let us set

TM = {t ∈ T(k) | α̃i(t) ∈ 1 + PMi
i , 1 ≤ i ≤ r}.

Note that Z(k) ⊂ TM for all M . For later purposes (see Section 6) we would
like to be able to split the center off of TM for M sufficiently large.

We have the short exact sequence

0 −−−−→ Z −−−−→ T
ρ−−−−→ Tad −−−−→ 0

where Tad is a Cartan in the adjoint group of G. We can take ρ to be

ρ(t) = (α̃1(t), . . . , α̃r(t)) ∈ (k)r.

Then

Tad ' {(α̃1(t), . . . , α̃r(t)) | t ∈ T}.

Any exact sequence of tori splits. Let j be a splitting, i.e., an injection j :
Tad → T such that ρ ◦ j = id. Applying cohomology we find

0 −−−−→ ZΓ −−−−→ TΓ −−−−→ TΓ
ad −−−−→ H1(Γ,Z) = 0.

Thus

0 −−−−→ Z(k) −−−−→ T(k)
ρ−−−−→ Tad(k) −−−−→ 0

is exact and split and consequently

T(k) ' Z(k)Tad(k).

Observe that Z(k) is the center of G(k). Moreover

Tad(k) ' {(α̃1(t), . . . , α̃r(t)) | t ∈ T(k)}.

Thus

Tad(k) ⊂ K×
1 × · · · ×K×

r

where Ki/k are as above. Let

Oi = {α̃i(t) | t ∈ T(k)} ⊂ K×
i .

Observe that each Oi is open in K×
i . Take the Mi large enough that

(1 + PM1
1 )× · · · × (1 + PMr

r ) ⊂ Tad(k)

and let

T1
M = j((1 + PM1

1 )× · · · × (1 + PMr
r )).

Observe that

ρ(TM ) = (1 + PM1
1 )× · · · × (1 + PMr

r )
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and then

TM = Z(k)T1
M .

Thus we have proved the following lemma.

Lemma 1.1. With the notation above, for M = (M1, . . . ,Mn) sufficiently
large we have the splitting

TM = Z(k)T1
M .

We finally note that if G is as above and its center Z has H1(Γ,Z) = {0},
then the same will be true for the center Z(M) of any Levi subgroup M of G.
This follows by using induced tori to which one can apply Shapiro’s lemma.
Thus we have similar splittings for the maximal tori of any Levi subgroup of
G. We will present a detailed proof of this in [9].

1.4. Bruhat decomposition. Let W denote the (relative) Weyl group of A
in G, i.e., N (A)/Z(A) and let S denote the set of simple reflections in W corre-
sponding to the choice of simple roots ∆ as above. Then (G(k),B(k),N(k), S)
is a Tits system, where we have let N = N (A), and the pair (W,S) is a Coxeter
system [2]. Hence the basic results on the Bruhat decomposition remain valid
in this case.

We recall some standard results, all of which can be found in Section 21 of
[2]. Let g be the Lie algebra of G. For α ∈ Φ, let gα be the corresponding
eigenspace in g and g(α) = ⊕β∈(α)gβ . For each α there is a unique closed
unipotent k-subgroup U(α) normalized by T with Lie algebra g(α). (These
were described in Section 1.1 for α ∈ ∆.) U is then directly spanned by the
U(α) with α ∈ Φ+

nd.

For w ∈W let

Φ+
w = {α ∈ Φ+

nd | w(α) > 0} and Φ−
w = {α ∈ Φ+

nd | w(α) < 0}

and set

U+
w = UΦ+

w
= U ∩ w−1Uw and U−

w = UΦ−
w

= U ∩ w−1U−w.

Then

U = U+
wU−

w

and

wU+
ww

−1 ⊂ U and wU−
ww

−1 ⊂ U−.
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For each w ∈W we let C(w) = BwB = BwU−
w be the corresponding Bruhat

cell. The (k-rational) Bruhat decomposition for G is then

G =
⋃

w∈W

C(w) =
⋃

w∈W

BwU−
w .

The relative closure of the Bruhat cells are described as follows (see Theorem
21.26 and Proposition 21.27 of [2]). For w ∈W , let w = wα1 · · ·wαn , αi ∈ ∆,
be a reduced decomposition of w. Let

S(w) = {wαi1
· · ·wαim

| 1 ≤ i1 < · · · < im ≤ n}.

Then

C(w) =
⋃

w′∈S(w)

C(w′).

Since the Bruhat order on W can be characterized by w′ ≤ w iff w′ ∈ S(w)
[12], we may also write this as

C(w) =
⋃

w′≤w

C(w′).

Let θ ⊂ ∆. Let [θ] denote the set of k-roots which are linear combinations
of the elements of θ. Set Ψ(θ) = Φ+ − [θ]. Let

Aθ =

 ⋂
α∈[θ]

kerα

◦

.

Then [θ] = Φ(A,Z(Aθ)) and Z(Aθ) = 〈T,U(α) | α ∈ [θ]〉. Then

Pθ = Z(Aθ) n UΨ(θ)

is a standard parabolic subgroup. P∅ = B. If we set Wθ = 〈wα | α ∈ θ〉 then
we also have

Pθ = BWθB.

If α is a simple root and we let Pα = P{α} then

Pα = C(wα) ∪ B.

2. Partial Bessel functions

2.1. Finite field heuristics. In order to motivate what follows, let us take F
to be a finite field and G a quasi-split reductive algebraic group over F. The
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basics of the theory of Bessel functions for representations of algebraic groups
over finite fields can be found in [10, 11].

We may retain all the notation and concepts of Section 1. Suppose that
(π, Vπ) is a generic representation of G(F). Over a finite field, generic repre-
sentations will tend to have both Whittaker functionals and Whittaker vec-
tors. So suppose that vW ∈ Vπ satisfies π(u)vW = ψ(u)vW for u ∈ U(F)
and Λ = ΛW satisfies Λ(π(u)v) = ψ(u)Λ(v) for all u ∈ U(F) and all v ∈ Vπ.
Moreover, assume these choices are normalized so that Λ(vW ) = 1. Then
Jπ(g) = Λ(π(g)vW ) is a function in the Whittaker model of π and it satisfies

Jπ(ugu′) = ψ(u)Jπ(g)ψ(u′) u, u′ ∈ U(F).

This is the Bessel function of the representation.

If we restrict this function to the various Bruhat cells, then the restriction
of Jπ to C(w) is not identically zero iff for every α ∈ ∆ we have that wα > 0
implies wα ∈ ∆. Let Jπ,w denote the restriction of Jπ to C(w). Write C(w) =
BwB = UTwU−

w . Then Jπ,w(utwu′) = ψ(u)Jπ,w(tw)ψ(u′) is essentially a
function on T(F) and one can check that its restriction to the split A vanishes
unless a ∈ Aw = {a ∈ A | wα(a) = 1 for all simple α with wα > 0}. This
function on Aw carries the information of the restriction Jπ,w of the Bessel
function Jπ to the Bruhat cell associated to w.

Finally, for what follows, note that one has a formula for Jπ,w(aw) given
by

Jπ,w(aw) = |U−
w(F)|−1

∫
U−

w(F)

WvW
(awu)ψ−1(u) du

where, as usual, the Whittaker model is defined by Wv(g) = Λ(π(g)v) for
v ∈ Vπ.

2.2. Weyl group elements that support Bessel functions. Now let k
once again be a non-archimedean field of characteristic 0.

We say that an element w ∈W supports a Bessel function if for every α ∈ ∆
we have that wα > 0 implies wα ∈ ∆. So every simple root which remains
positive under the action of w must remain simple. Note that w = e and
w = w`, the long element of W , always support Bessel functions. By Lemma
89 of [17] (page 257), which is valid for quasi-split groups, we have that w
supports a Bessel function iff w = w`w

θ
` for θ = θw = {α ∈ ∆ | wα > 0} ⊂ ∆

and wθ
` ∈ Wθ the corresponding long Weyl element. This implies that there

are actually 2|∆| Weyl elements which support Bessel functions and to each
θ ⊂ ∆ we have associated a Weyl element wθ = w`w

θ
` which supports a Bessel

function.
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To the set θ is associated the standard parabolic subgroup Pθ as above.
Then, in this case, we have Φ+

w = [θw] so that U+
w = Uθ and U−

w = UΨ(θ).
Furthermore, if we set

Aw = {a ∈ A | wα(a) = 1 for all simple α with wα > 0}
= {a ∈ A | wα(a) = 1 for all α ∈ θ}

then A0
w = Aw(θ) is the split component of the center of the Levi component

of the associate parabolic Pw(θ). (Note that in [8] we implicitly assumed that
w(θ) = θ, which was indeed true in the case of interest to us.)

We recall from [8] the following proposition.

Proposition 2.1. Let w,w′ ∈ W support Bessel functions. Write w = w`w
θ
`

and w′ = w`w
θ′

` for subsets θ, θ′ ⊂ ∆. Then w′ ≤ w iff θ ⊂ θ′. In particular, if
θ is of the form θ = ∆−{α}, i.e., if Pθ is a maximal parabolic subgroup, then
the only Weyl elements w′ ≤ w which support Bessel functions are w′ = w
and w′ = e.

Proof: Let θ = θw and θ′ = θw′ . By Example 3, Section 5.9 of [12], we know
that w′ ≤ w iff w`w ≤ w`w

′ and this last is equivalent to wθ
` ≤ wθ′

` . Since wθ
`

is the long element of Wθ, then by the compatibility of the Bruhat ordering
(Section 5.5 and 5.10 of [12]) any reduced expression for wθ

` contains only
the basic reflections rα for α ∈ θ and by Section 1.8 of [12], we know that
each simple reflection rα with α ∈ θ occurs. The same is true of wθ′

` with
respect to θ′. However, wθ

` ≤ wθ′

` can be characterized by wθ
` occurring as a

sub-expression of a reduced expression for wθ′

` . Thus we must have θ ⊂ θ′. �

We will say that w ∈ W is a minimal Weyl element supporting a Bessel
function if w supports a Bessel function and the only w′ ∈ W with w′ ≤ w
which support Bessel functions are w′ = w and w′ = e, i.e., the associated
parabolic subgroup is maximal.

2.3. Bessel functions. Let (π, Vπ) be an irreducible admissible generic rep-
resentation of G(k). We fix a splitting of U and a non-degenerate character ψ
of U(k) as in Section 1.2. Let W(π, ψ) be the associated Whittaker model of
π. The functions W ∈ W(π, ψ) satisfy W (ug) = ψ(u)W (g) for u ∈ U(k).

If π is a generic representation with Whittaker model W(π, ψ) then to each
w ∈ W which supports a Bessel function we may associate a formal Bessel
function Jπ,w(a) for a ∈ Aw by

Jπ,w(a) =
∫

U−
w(k)

Wv(awu)ψ−1(u) du
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for any choice of Wv ∈ W(π, ψ) for which Wv(e) = 1.

Assuming that the integral exists, this is independent of the choice of v ∈
Vπ, since the map

v 7→
∫

U−
w(k)

Wv(awu)ψ−1(u) du

defines a ψ-Whittaker functional on Vπ. To see this, consider π(u′)v. Under
the decomposition U = U+

wU−
w we write u′ = u

′+u
′−. Then∫

U−
w(k)

Wπ(u′)v(awu)ψ−1(u) du =
∫

U−
w(k)

Wv(awuu′)ψ−1(u) du

=
∫

U−
w(k)

Wv(awu
′+uu

′−)ψ−1(u) du

= ψ(u
′−)
∫

U−
w(k)

Wv(awu
′+u)ψ−1(u) du

= ψ(u
′−)ψ(Ad(aw)u

′+)
∫

U−
w(k)

Wv(awu)ψ−1(u) du

= ψ(u
′−)ψ(Ad(aw)u

′+)
∫

U−
w(k)

Wv(awu)ψ−1(u) du.

Now, since u
′+ ∈ U+

w = Uθ, then Ad(w)u
′+ ∈ Uw(θ). Also, a ∈ Aw =

Z(Mw(θ)). Thus Ad(aw)u
′+ = Ad(w)u

′+ and so by compatibility

ψ(Ad(aw)u
′+) = ψ(Ad(w)u

′+) = ψ(u
′+).

Hence∫
U−

w(k)

Wπ(u′)v(awu)ψ−1(u) du = ψ(u′)
∫

U−
w(k)

Wv(awu)ψ−1(u) du

and this integral defines a Whittaker functional on Vπ. By the uniqueness
of the Whittaker model, this must be a non-zero multiple of the standard
Whittaker functional v 7→Wv(e). So there is a constant Jπ,w(a)∫

U−
w(k)

Wv(awu)ψ−1(u) du = Jπ,w(a)Wv(e).

Since v was chosen so that Wv(e) = 1 this gives∫
U−

w(k)

Wv(awu)ψ−1(u) du = Jπ,w(a)

independent of v with this property.
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The convergence of the integrals defining the Bessel functions is subtle
and in general we do not have a proof. For Bessel functions attached to a
minimal Weyl element which supports a Bessel function we gave an argument
for convergence in [8] for the case of split groups (see Lemmas 4.2 and 4.3
as well as Proposition 4.2 of [8]). The convergence for the quasi-split case
can be proven by the same argument, utilizing the compact open subgroups
UfM

of Section 1.1 in place of the corresponding X(M) of [8]. Since we will
not use this full Bessel function in the main theorem or its applications, we
will forgo presenting the details of the proof at this point. However, since we
believe these Bessel functions to be very significant, we do present the proof of
convergence in this most simple case in an appendix at the end of this paper
(see Section 8).

2.4. Partial Bessel functions For our purposes, an equally important notion
is that of a partial Bessel function. Let Y be any open compact subgroup of
U−

w and let v ∈ Vπ with Wv(e) = 1. Then we define

jv,w,Y (a) =
∫

Y

Wv(awy)ψ−1(y) dy

again for a ∈ Aw. Note that now there are no convergence problems since
Y is open and compact and Wv is smooth (so the integral reduces to a finite
sum). Note that if {Yi} is an increasing exhaustive family of open compact
subgroups, then at least formally Jπ,w = lim

i
jv,w,Yi

.

3. Approximate Whittaker Vectors

In our finite field heuristics, the vector v ∈ Vπ which we used to form the Bessel
function was a Whittaker vector. Over local fields we do not have Whittaker
vectors. However, we can form a family of approximate Whittaker vectors,
which we will need, as follows.

Let (π, Vπ) be a generic representation with Whittaker model W(π). Let
v ∈ Vπ be any vector such that Wv(e) = 1. Let U0 ⊂ U(k) be an open compact
subgroup. Then we set

vU0 =
1

Vol(U0)

∫
U0

ψ−1(u)π(u)v du.

Since the representation is smooth, so that v has a compact open stabilizer,
the integration is in fact a finite sum and each vU0 ∈ Vπ. If one considers the
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corresponding Whittaker function, it will satisfy

WvU0
(ugu0) = ψ(u)WvU0

(g)ψ(u0)

for u ∈ U and u0 ∈ U0. Note that

WvU0
(g) =

1
Vol(U0)

∫
U0

ψ−1(u)Wv(gu) du

so that

WvU0
(e) = Wv(e) = 1

so that vU0 6= 0.

We will call vU0 an approximate Whittaker vector for π with respect to U0.

For any v ∈ Vπ let Stab(v) = {g ∈ G(k) | π(g)v = v}. This is a compact
open subgroup of G(k). For U0 a compact open subgroup of U(k), let

TU0 = {t ∈ T(k) | ψ(u0) = ψ(Ad(t)u0) for all u0 ∈ U0}.

Proposition 3.1. Let v ∈ Vπ such that Wv(e) = 1. Then for any compact
open subgroup U0 ⊂ U(k) we have

Supp(WvU0
) ∩ B(k)Stab(vU0) ⊂ U(k)TU0Stab(vU0).

Proof: Let W0 = WvU0
and let K0 = Stab(vU0). Let g = utk ∈ B(k)K0 =

U(k)T(k)K0. Then W0(utk) = ψ(u)W0(t). Now for any u0 ∈ U0 we have

ψ(u0)W0(t) = W0(tu0) = W0(tu0t
−1t) = ψ(tu0t

−1)W0(t).

Therefore 0 = (ψ(u0) − ψ(Ad(t)u0))W0(t). Thus W0(t) 6= 0 implies ψ(u0) =
ψ(Ad(t)u0) for all u0 ∈ U0. �

4. Partial Bessel functions and approximate Whittaker
vectors

In our finite field heuristics in Section 2, the Bessel function was obtained as
the Whittaker function associated to a Whittaker vector. In this section we see
that we have retained such a relation, at least for the partial Bessel functions
and the approximate Whittaker vectors.

Let w ∈ W be a Weyl group element that supports a Bessel function.
For U∗ an open compact subgroup of U(k) we will uniformly assume that U∗
satisfies the property

U∗ = U+
∗,wU−

∗,w where U+
∗,w = U∗ ∩U+

w , U−
∗,w = U∗ ∩U−

w .
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Accordingly, we will let Y∗ = U−
∗,w, the associated open compact subgroup of

U−
w . We begin with a proposition which will be useful in the next section as

well.

Proposition 4.1. Let U0 ⊂ U1 be two open compact subsets of U(k) as above.
Let F (g) be a smooth function on G satisfying F (ug) = ψ(u)F (g) for all
u ∈ U(k), i.e., F is any smooth Whittaker function but not necessarily in the
Whittaker model of π. Let χ be a smooth function on G satisfying χ(ugu0) =
χ(u) for u ∈ U(k) and u0 ∈ U0. Let

F̃ (g) =
1

Vol(U0)

∫
U0

F (gu0)ψ−1(u0) du0.

Assume

I(a) =
∫

Y1

F (awy)χ(awy)ψ−1(y) dy

is convergent for all a ∈ Aw. Then so is

Ĩ(a) =
∫

Y1

F̃ (awy)χ(awy)ψ−1(y) dy

and I(a) = Ĩ(a).

Proof: Let c0 = Vol(U0). Inserting the definition of F̃ into Ĩ(a) we have

Ĩ(a) =
1
c0

∫
Y1

∫
U0

F (awyu0)ψ−1(u0) du0 χ(awy)ψ−1(y) dy.

Interchanging the order of the compact integrations (which are actually finite
sums since the functions involved are smooth) we have

Ĩ(a) =
1
c0

∫
U0

∫
Y1

F (awyu0)χ(awy)ψ−1(yu0) dy du0.

In the inner integral

Iu0(a) =
∫

Y1

F (awyu0)χ(awy)ψ−1(yu0) dy

write u0 = u−0 u
+
0 with u±0 ∈ U±

0,w. Then we have

Iu0(a) = ψ−1(u+
0 )
∫

Y1

F (awyu−0 u
+
0 )χ(awy)ψ−1(yu−0 ) dy.
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As χ is left invariant under U−
0,w we may perform a change of variables and

absorb u−0 into y, leaving

Iu0(a) = ψ−1(u+
0 )
∫

Y1

F (awyu+
0 )χ(awy)ψ−1(y) dy.

Now, as U+
0,w ⊂ U+

1,w, this normalizes U−
1,w = Y1. Furthermore, as conjugation

does not effect the value of the character ψ(y), we may perform a new change
of variable in y by conjugating by u+

0 to arrive at

Iu0(a) = ψ−1(u+
0 )
∫

Y1

F (awu+
0 y)χ(awy)ψ−1(y) dy

= ψ−1(u+
0 )ψ(Ad(aw)u+

0 )
∫

Y1

F (awy)χ(awy)ψ−1(y) dy.

But since a ∈ Aw and ψ was chosen to be compatible with the splitting, we
have

ψ(Ad(aw)u+
0 ) = ψ(u+

0 ).

Hence, for each u0 we have Iu0(a) = I(a). and hence F̃ (a) = F (a). �

If we now let v ∈ Vπ such thatWv(e) = 1 and take F (g) = Wv(g) and χ ≡ 1,
then we see that F̃ (g) = Wv0(g) where Wv0 is the approximate Whittaker
vector associated to v and the open compact subgroup U0. The conclusion
of the proposition is then an equality of partial Bessel functions jv,w,Y0(a) =
jv0,w,Y0(a). On the other hand, since Y0 ⊂ U0, we see that in this case

jv0,w,Y0(a) =
∫

Y0

Wv0(awy)ψ
−1(y) dy =

∫
Y0

Wv0(aw)ψ(y)ψ−1(y) dy

= Vol(Y0)Wv0(aw).

Thus we have the following corollary.

Corollary 4.2. For this class of Y0 we always have

jv,w,Y0(a) = Vol(Y0)Wv0(aw).

So the partial Bessel function is indeed given by the Whittaker function of
an approximate Whittaker vector.

As a second corollary, we can investigate how these partial Bessel functions
behave as we increase the compact open subgroup. Suppose that U0 and U1

are compact open subgroups of U(k) as above with U0 ⊂ U1. First, taking
F = Wv0 and χ ≡ 1 in Proposition 4.1 and using that since U0 ⊂ U1 we have
F̃ = Wv1 , we have jv0,w,Y1 = jv,w,Y1 . On the other hand, if we begin with v1
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and then compute the partial Bessel function with respect to U0 then automat-
ically Wv1(gu0) = ψ(u0)Wv1(g) and we see jv1,w,Y0(a) = Vol(Y0)Wv1(aw) =
Vol(Y0)Vol(Y1)−1jv,w,Y1(a).

Corollary 4.3. If U0 ⊂ U1 ⊂ U(k) with Ui compact open as above then we
have the relations

jv0,w,Y1 = jv,w,Y1 and jv1,w,Y0(a) = (Y1 : Y0)−1jv,w,Y1(a).

5. Asymptotics of Bessel functions I

We now turn to an investigation of the asymptotics of the Bessel functions
attached to a minimal Weyl elements w which supports a Bessel function.
From our finite field heuristics, we expect these Bessel function to be supported
on the cell C(w), vanish as we approach bounding cells which do not support
Bessel functions, and have non-zero asymptotics as we approach the cell C(e)
associated to the identity. To investigate the contribution from the other
boundary cells, let us number the Weyl elements w′ such that C(w′) lies on
the boundary of C(w) in a convenient fashion. More precisely, let Sw = {w′ ∈
W | w′ ≤ w}, let s = sw = |Sw|, and enumerate the elements of Sw so that
w′1 = e, w′s = w and if w′i ≤ w′j then i ≤ j.

We will be considering various open compact subgroups of U(k). If we
denote one such by Ui, we will always work under our standard assumption

Ui = U+
i,wU−

i,w where U+
i,w = Ui ∩U+

w , U−
i,w = Ui ∩U−

w

and let Yi = U−
i,w be the associated open compact subgroup of U−

w with which
we form our partial Bessel functions. Similarly, if v ∈ Vπ with Wv(e) = 1 we
will let vi be the associated approximate Whittaker vector

vi = Vol(Ui)−1

∫
Ui

ψ−1(u)π(u)v du.

We will also set ji = jv,w,Yi
= jvj ,w,Yi

whenever Uj ⊂ Ui.

We begin with two (large) open compact subgroups U1 ⊂ Us ⊂ U(k) as
above. We will fix U1, but Us will be pushed to be large enough to contain all
other Ui constructed. Take v ∈ Vπ with Wv(e) = 1. Let K0 ⊂ Stab(v) be an
open compact subgroup of G(k) fixing v. Let

K1 =
⋂

u∈U1

u−1K0u.
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Since K0 ∩ U1 is compact and open in U1 we see that this intersection is in
fact finite and K1 is another compact open subgroup of G(k) which fixes v.
B(k)K1 is then a neighborhood of B(k)e in B(k)\G(k).

Let χ1 be the characteristic function of B(k)K1. Let H1 = Wv1χ1 and
H ′

1 = Wv1(1 − χ1). We may accordingly decompose js(a) = I1(a) + I ′1(a) for
a ∈ Aw, where

I1(a) =
∫

Y1

H1(awy)ψ−1(y) dy and I ′1(a) =
∫

Y1

H ′
1(awy)ψ

−1(y) dy.

Proposition 5.1. I1(a) =
∫

Ys

Wv(awy)χ1(awy)ψ−1(y) dy.

Proof: This is simply Proposition 4.1 applied to F = Wv, χ = χ1, and U1 ⊂
Us. We need only check that χ1 satisfies the hypotheses of that proposition.
Now χ1 is the characteristic function of B(k)K1, so the left invariance under
U(k) is clear. Now let u1 ∈ U1. Then χ1(gu1) = 1 iff gu1 ∈ B(k)K1 iff g ∈
B(k)K1u

−1
1 . Since u1 ∈ U1 ⊂ B(k), we have B(k)K1u

−1 = B(k)u1K1u
−1
1 =

B(k)K1. Hence χ1(gu1) = χ1(g). We can now apply Proposition 4.1. �

Note that for K1 sufficiently small, this integral depends only on the behav-
ior of the approximate Whittaker vector near the cell C(e) on the boundary
of C(w).

Note first that the function H ′
1 satisfies the following properties:

(i) H ′
1(ug) = ψ(u)H ′

1(g) for all u ∈ U(k);

(ii) H ′
1(gu1) = ψ(u1)H ′

1(g) for all u1 ∈ U1;

(iii) H ′
1(gk1) = H ′

1(g) for all k1 ∈ K1;

(iv) Supp◦(H ′
1) ∩ B(k)K1 = ∅.

Here, and throughout, we will let Supp◦ denote the “open support” of a func-
tion, i.e., Supp◦(H) = {g | H(g) 6= 0} and so the usual support is given by
Supp(H) = Supp◦(H).

We would now like to inductively define an increasing sequence of com-
pact open subgroups U1 ⊂ U2 ⊂ · · · ⊂ Us−1 ⊂ Us ⊂ U(k), enlarging Us if
necessary, which all satisfy the decomposition properties above, a decreasing
sequence compact open subgroups K1 ⊃ K2 ⊃ · · · ⊃ Ks−1, and functions
H ′

i(g) for 1 ≤ i < s such that:

(i) H ′
i(ug) = ψ(u)H ′

i(g) for all u ∈ U(k);
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(ii) H ′
i(gui) = ψ(ui)H ′

i(g) for all ui ∈ Ui;

(iii) H ′
i(gki) = H ′

i(g) for all ki ∈ Ki;

(iv) Supp(H ′
i) ∩ (∪j≤iC(w′j)) = ∅.

Suppose we have constructed Ui, Ki, and H ′
i for i < j.

Let S′j−1 = Supp◦(H ′
j−1). Let p : G(k) → B(k)\G(k). Then p(S′j−1 ∩

C(w′j)) is compact in p(C(w′j)). Since p(C(w′j)) is a single U(k) orbit in
B(k)\G(k), and in fact homeomorphic to U−

w′
j
, there exists a compact open

subgroup U′
j−1 ⊂ U(k) such that p(w′jU

′
j−1) ⊃ p(S′j−1) ∩ p(C(w′j)). Take Uj

large enough so that Uj ⊃ 〈U′
j−1,Uj−1〉 and set

Kj =
⋂

uj∈Uj

u−1
j Kj−1uj .

As before, this is really a finite intersection.

Consider

H̃j(g) =
1

Vol(Uj)

∫
Uj

H ′
j−1(guj)ψ−1(uj) duj .

Then H̃j(gkj) = H̃j(g) for all kj ∈ Kj .

Let S̃j = Supp◦(H̃j). Then p(S̃j) ⊂ p(S′jUj) and p(S̃j) ∩ p(C(w′j)) ⊂
p(w′jUj). Let χj be the characteristic function of B(k)w′jUjKj . This set gives
a compact neighborhood of w′jUj in B(k)\G(k). Then set Hj = H̃jχj and
H ′

j = H̃j(1 − χj). The function H ′
j then satisfies the required properties

(i)–(iv) above.

As for the functions Hi, they satisfy properties similar to those of H1,
namely:

(a) Hi(ug) = ψ(u)Hi(g) for all u ∈ U(k);

(b) Hi(gui) = ψ(ui)Hi(g) for all ui ∈ Ui;

(c) Hi(gki) = Hi(g) for all ki ∈ Ki;

(d) Supp◦(Hi) ⊂ B(k)w′iUiKi.

However, for 1 < i < s we have an even stronger property.

Lemma 5.2. If 1 < i < s and Ui is sufficiently large then Hi ≡ 0.
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Proof: Since 1 < i < s the Weyl element w′i does not support a Bessel function.
By (d) above, Hi(g) 6= 0 implies that g ∈ B(k)w′iUiKi. Writing g = utw′iuiki

with the implied notation we see Hi(utw′juiki) = ψ(uui)Hi(tw′i). Since w′i
does not support a Bessel function, there exists a simple root α ∈ ∆ such that
w′iα is positive but but not simple. Then for Ui sufficiently large, there exists
ui ∈ Ui ∩U(α) such that ψ(ui) 6= 1. Then

ψ(ui)Hi(tw′i) = Hi(tw′iui) = Hi((Ad(tw′i)ui)tw′i) = Hi(tw′i)

since Ad(tw′i)ui ∈ U(w′
iα). Hence H ′

i(g) = 0 for g ∈ B(k)w′iUiKi as well. Hence
Hi ≡ 0. �

Now return to the second part of our incomplete Bessel function, namely
I ′1(a). We can similarly define

I ′i(a) =
∫

Ys

H ′
i(awy)ψ

−1(y) dy.

Lemma 5.3. For every 1 ≤ i < s we have I ′1(a) = I ′i(a).

Proof: We proceed by finite induction, with the i = 1 case being true by
definition. Suppose we know the lemma for all j with 1 ≤ j < i. Recall that

H̃i(g) =
1

Vol(Ui)

∫
Ui

H ′
i−1(gui)ψ−1(ui) dui

and H ′
i(g) = H̃i(g)χi(g). Let us set

Ĩi(a) =
∫

Ys

H̃i(awy)ψ−1(y) dy.

If we now apply Proposition 4.1 with Ui ⊂ Us, F = H ′
i−1 and χ ≡ 1 we

have Ĩi(a) = I ′i−1(a). On the other hand, since H̃i = Hi +H ′
i = H ′

i we have
Ĩi(a) = I ′i(a). Thus, by induction, I ′i(a) = I ′i−1(a) = I ′1(a). �

Lemma 5.4. For each i with 1 ≤ i < s let us set χ′i =
∏

1≤j≤i(1−χj). Let χ̃
be a function on G(k) such that χ̃(ugui) = χ̃(g) for all u ∈ U(k) and ui ∈ Ui.
Then

I ′i(a) =
∫

Ys

Wv(awy)χ′i(awy)ψ
−1(y) dy.

Proof: For each i, let χ̃i be a function on G(k) such that χ̃(ugui) = χ̃(g) for
all u ∈ U(k) and ui ∈ Ui. Let

I ′i(a, χ̃i) =
∫

Ys

H ′
i(awy)χ̃i(awy)ψ−1(y) dy
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so that we obtain I ′i(a) itself by taking χ̃i ≡ 1.

By induction, we will show that

I ′i(a, χ̃i) =
∫

Ys

Wv(awy)χ′i(awy)χ̃i(awy)ψ−1(y) dy.

In the case i = 1, then by definition

I ′1(a, χ̃1) =
∫

Ys

H ′
1(awy)χ̃1(awy)ψ−1(y) dy

=
∫

Ys

Wv1(awy)(1− χ1(awy))χ̃1(awy)ψ−1(y) dy

and the result follows from Proposition 4.1.

Now suppose the statement is true for all j with 1 ≤ j < i. Then

I ′i(a, χ̃i) =
∫

Ys

H ′
i(awy)χ̃i(awy)ψ−1(y) dy

=
∫

Ys

H̃i(awy)(1− χi(awy))χ̃i(awy)ψ−1(y) dy.

Now apply Proposition 4.1 with Ui ⊂ Ul, F = H ′
i−1 and χ = (1 − χi)χ̃i. We

then obtain

I ′i(a, χ̃i) =
∫

Ys

H ′
i−1(awy)(1− χi(awy))χ̃i(awy)ψ−1(y) dy.

Now we apply our induction hypothesis with χ̃i−1 = (1− χi)χ̃i to obtain

I ′i(a, χ̃i) =
∫

Ys

Wv(awy)χ′i−1(awy)(1− χi(awy))χ̃i(awy)ψ−1(y) dy

=
∫

Ys

Wv(awy)χ′i(awy)χ̃i(awy)ψ−1(y) dy.

Now, applying this with χ̃i ≡ 1 gives the desired statement. �

Recall that we had decomposed js(a) as js(a) = I1(a) + I ′1(a) As a conse-
quence of these lemmas we may write

I ′1(a) = I ′s−1(a) =
∫

Ys

Wv(awy)χ′s−1(awy)ψ
−1(y) dy

where χ′s−1 =
∏

1≤j≤s−1(1 − χj). Since χj was the characteristic function
of B(k)w′jUjKj we see that Supp(χ′s−1) is the characteristic function of the
compliment of ⋃

1≤j<s

B(k)w′jUjKj
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and by construction this is a neighborhood of

∂C(w) =
⋃

1≤j<s

C(w′j).

Hence there will be an open compact neighborhood Ω of e in U−
w such that

C(w) ∩ Supp(χ′s−1) = B(k)wΩ. If we then let χΩ denote the characteristic
function of Ω we have

I ′1(a) =
∫

Ys

Wv(awy)χΩ(y)ψ−1(y) dy.

Note that Ω does not depend on our choice of Us. Hence choosing Us suffi-
ciently large, we can assume that Ω ⊂ U−

s,w = Ys.

Thus we have established the following proposition.

Proposition 5.5. Let w be a minimal Weyl element supporting a Bessel func-
tion and let v ∈ Vπ with Wv(e) = 1. Then there exist a compact open subgroup
K1 of G(k) and a compact open neighborhood Ω of e in U−

w such that for every
sufficiently large compact open subgroup Us of U(k)

jv,w,Ys
(a) =

∫
Ys

Wv(awy)χ1(awy)ψ−1(y) dy +
∫

Ω

Wv(awy)ψ−1(y) dy

where χ1 is the characteristic function of B(k)K1.

As expected, this gives that there are two contributions to the Bessel func-
tion associated to w – one from the cell C(w) associated to w itself and one
from C(e), the only cell on the boundary of C(w) that supports a Bessel
function.

As a corollary, note that since v is a smooth vector of Vπ and Ω is compact
then

vΩ =
∫

Ω

ψ−1(y)π(y)v dy

is a finite sum, so that vΩ ∈ Vπ and∫
Ω

Wv(awy)ψ−1(y) dy = WvΩ(aw).

This then gives the following corollary.

Corollary 5.6. Let w be a minimal Weyl element supporting a Bessel func-
tion and let v ∈ Vπ with Wv(e) = 1. Then there exist a compact open subgroup
K1 of G(k) and a vector vΩ ∈ Vπ such that for every sufficiently large compact
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open subgroup Us of U(k)

jv,w,Ys
(a) =

∫
Ys

Wv(awy)χ1(awy)ψ−1(y) dy +WvΩ(aw)

where χ1 is the characteristic function of B(k)K1.

6. The contribution from near C(e)

For applications functoriality as in [8, 6, 7] it is essential that we be able to
show that the first integral occurring in the expression of the Bessel function in
Corollary 5.6 – the contribution from the cell C(e) – is only mildly dependent
on the representation π. In fact, it will depend only on the central character
ωπ of π. For this purpose it is easier if we take U1 to be one of the UfM

of Section 1.1. This is clearly permissible since this family of compact open
subgroups is cofinal and satisfy the decomposition properties of Section 4. (In
fact, we could have taken each Uj as UfMj

with M = M1 ≤M2 ≤ · · · ≤Ms.)

We are interested in the first term

I1(a) =
∫

Ys

Wv(awy)χ1(awy)ψ−1(y) dy (6.1)

of Corollary 5.6, which by Proposition 5.1 we know is equal to

I1(a) =
∫

Ys

Wv1(awy)χ1(awy)ψ−1(y) dy (6.2)

with

v1 = Vol(U1)−1

∫
U1

ψ−1(u)π(u)v du.

Recall that χ1 is the characteristic function of B(k)K1 with K1 open and
compact. It is easy to see that, by construction, K1 ⊂ Stab(v1). Then
applying Proposition 3.1 we see that the support of Wv1χ1 is contained in
U(k)TU1Stab(v1).

Consider now TU1 . By definition,

TU1 = {t ∈ T(k) | ψ(u1) = ψ(Ad(t)u1) for all u1 ∈ U1}.

Now take U1 = UfM
. We have seen in Section 1.2 that we can write our

generic character as

ψ(u) = ψ

(∑
α∈∆

xα(uα̃)

)
=
∏
α∈∆

ψ
(
Trkα̃/k(uα̃)

)
,
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or, letting ψα = ψ ◦ TrKα̃/k, we have ψ =
∏
ψα under the isomorphism

Uab ' ⊕RKα̃/kGa. Thus, the condition that t lies in TU1 becomes

ψα(uα̃ − α̃(t)uα̃) = 1

for all uα̃ ∈ Kα̃ with ω(uα̃) ≥ −M . If we normalize our additive character of k
in such a way that it is trivial on O but not on P−1, i.e., ψ(u) = 1 for ω(u) ≥ 0
but there exists u with ω(u) = −1 such that ψ(u) 6= 1, then ψα(uα̃) = 1 for
ω(uα̃) ≥ −dα̃ where P−dα̃

α̃ is the inverse different of Kα̃. Thus our condition
that t lie in TU1 becomes

ω((1− α̃(t))uα̃) ≥ −dα̃

for all uα̃ with ω(uα̃) ≥ −M , i.e.,

α̃(t) ∈ 1 + PM−dα̃

α̃ for all α̃ ∈ ∆̃.

Recalling the notation of Section 1.3, and writing di = dα̃i
, we have estab-

lished the following lemma.

Lemma 6.1. Suppose U1 = UfM
with M sufficiently large. Then for M =

(M, . . . ,M)− (d1, . . . , dr) we have

TU1 = TM = Z(k)T1
M .

Proof: The first equality follows from the argument preceeding the statement
of the lemma. The second equality then follows from Lemma 1.1 for M suffi-
ciently large. �

Return now to our expression (6.2) for the contribution to the Bessel func-
tion from the small cell C(e). Then the support of Wv1χ1 is contained in
U(k)TU1K1 with K1 ⊂ Stab(v1), and we can now write this as U(k)Z(k)T1

MK1,
taking U1 = UfM

. Let us write this decomposition as

g = u(g)z(g)t1(g)k1(g) for g ∈ U(k)Z(k)T1
MK1.

Then we can write

Wv1(awy)χ1(awy) = ψ(u(awy))ωπ(z(awy))Wv1(t
1(awy))

for awy ∈ U(k)Z(k)T1
MK1, or y ∈ (aw)−1U(k)Z(k)T1

MK1.

For U1 = UfM
we have that

v1 = Vol(UfM
)−1

∫
UfM

ψ−1(u)π(u)v du.
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Then if t1 ∈ T1
M we see that

π(t1)v1 = Vol(UfM
)−1

∫
UfM

ψ−1(Ad(t1)u)π(u)π(t1)v du.

Since T1
M ⊂ TM = TU1 we see that

ψ(Ad(t1)u) = ψ(u)

for all u ∈ U1 = UfM
. Hence we see that if M is sufficiently large that

T1
M ⊂ Stab(v), then T1

M ⊂ Stab(v1) so that

Wv1(t
1(awy)) = Wv1(e) = Wv(e) = 1.

Note that the vector v was fixed at the beginning of our construction and
precedes any other choices made. Hence we see that if M is taken sufficiently
large we have the support of Wv1χ1 is precisely U(k)Z(k)T1

MK1.

Combining these analyses, we arrive at the following proposition.

Proposition 6.2. Let v ∈ Vπ be such that Wv(e) = 1. Choose M sufficiently
large so that T1

M ⊂ Stab(v) and that Lemma 1.1 holds. Take U1 = UfM
. Then

for a ∈ Aw we have

I1(a) =
∫

Ys

Wv(awy)χ1(awy)ψ−1(y) dy

=
∫

Ys∩(aw)−1U(k)Z(k)T1
MK1

ψ(u(awy))ωπ(z(awy))ψ−1(y) dy

which depends on the representation π only through its central character ωπ.

7. Asymptotics of Bessel functions II

Let us now return to our partial Bessel function jv,w,Ys
(a) from Corollary 5.6

jv,w,Ys
(a) =

∫
Ys

Wv(awy)χ1(awy)ψ−1(y) dy +WvΩ(aw).

Recall that the first term, namely I1(a) from (6.1), is the contribution to the
Bessel function from near the small cell C(e) while the second term WvΩ(aw)
is the contribution from the “interior” of the cell C(w).

Consider first the contribution from C(w). We may rewrite this as

j
C(w)
v,w,Ys

(a) = WvΩ(aw) = Wπ(w)vΩ(a). (7.1)
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In this form it is seen to be given by the value of a Whittaker function for
a vector π(w)vΩ ∈ Vπ. As a function of a ∈ Aw this then is compactly
supported as α(a) → ∞ for simple roots α ∈ ∆, as all smooth Whittaker
functions are, and satisfies asymptotics determined by the representation π as
α(a) → 0. Hence its asymptotics are well understood and are determined by
the representation π. Also, since this contribution is given by a fixed Whittaker
function, it is smooth as a function of a ∈ Aw.

The contribution from the cell C(e), which we will now denote by jC(e)
v,w,Ys

(a),
is quite interesting and was analyzed in the last section. From Proposition 6.2
we know that jC(e)

v,w,Ys
(a) = I1(a) is actually given by a quite complicated

exponential sum, namely

j
C(e)
v,w,Ys

(a) =
∫

Ys∩(aw)−1U(k)Z(k)T1
MK1

ψ(u(awy))ωπ(z(awy))ψ−1(y) dy. (7.2)

Since the contribution from C(w) vanishes as α(a) → ∞ we see that the
asymptotics of the Bessel function jv,w,Ys

(a) as α(a) → ∞ are completely
given by this exponential sum. Fortunately for our application, even though
this sum is complicated, it depends on the representation π only through its
central character ωπ.

Combining the above, we finally arrive at the main theorem of this paper.

Theorem 7.1. Let (π, Vπ) be a generic representation of G(k) and let v ∈ Vπ

satisfy Wv(e) = 1. Let w ∈W be a Weyl group element which supports a Bessel
function and is a minimal non-trivial such. Then for every sufficiently large
compact open subgroup Y ⊂ U−

w(k) we have that the partial Bessel function
jv,w,Y(a) can be decomposed as

jv,w,Y(a) = j
C(e)
v,w,Y(a) + j

C(w)
v,w,Y(a)

where jC(w)
v,w,Y(a) is given by (7.1) and is a smooth function of a ∈ Aw which

vanishes as α(a) → ∞ and j
C(e)
v,w,Y(a) is given by (7.2) and is dependent only

on the central character ωπ of π.

We will return to the application of this result to the stability of local
γ-functions for generic representations of quasi-split groups in a subsequent
paper [9].
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8. Appendix: On the existence of Jπ,w(a).

In this Appendix we will present the arguments for the convergence of the
Bessel function Jπ,w(a) attached to a minimal Weyl element w which supports
a Bessel function from Section 2.3. We begin with some preliminaries which
generalize a construction of Steinberg [17] to the quasi-split setting.

8.1. Coefficients of Steinberg Let g denote the Lie algebra of G. Recall [2]
that we have the decomposition of the Lie algebra of G given by

g = g0 ⊕
⊕

α∈Φnd

g(α).

For each non-divisible root α ∈ Φnd chose a k-rational basis {Xα,iα | 1 ≤
iα ≤ dim(g(α))} of g(α). Similarly choose a k-rational basis {H1, . . . ,Hr} of
g0 = t, the Lie algebra of the maximal k-torus T . We may assume this basis
is an extension of a basis of a, the Lie algebra of A.

Let N = dimk u be the dimension of the maximal unipotent subgroup U
of G, or its Lie algebra u. Consider the N th exterior product of g, ∧Ng with
the basis consisting of wedge products of the basis {Xα,iα

,Hj} of g. G acts
k-rationally on g, and hence on ∧Ng, by the adjoint action.

Let

Ye = ∧α>0 ∧iα Xα,iα .

This is one of our canonical basis vectors. Similarly, for any w ∈W , let

Yw = ∧α>0 ∧iwα
Xwα,iwα

.

For any g ∈ G define cw(g) to be the coefficient of Yw in the expansion of
Ad(g)Ye in our chosen basis for ∧Ng. Since the adjoint action is k-rational,
this is a well defined rational function of g. Note that Ad(w)Ye = cw(w)Yw

with cw(w) 6= 0.

From the relation [gα, gβ ] ⊂ gα+β it follows that for u ∈ U we have
Ad(u)Ye = ce(u)Ye with ce(u) 6= 0. Then for t ∈ T we also have Ad(t)Ye =
ce(t)Ye with ce(t) 6= 0 being essentially the modulus character of t. As
noted above, for w ∈ W we have Ad(w)Ye = cw(w)Yw by definition. Fi-
nally, if u ∈ U we have Ad(u)Yw = cYw + “higher order terms”, with re-
spect to the ordering given by sums of positive roots, with c 6= 0. Thus
Ad(BwB)Ye ⊂ k×Yw + “higher order terms”, i.e., cw is non-vanishing on the
Bruhat cell BwB. Then the proof of Theorem 23 of Steinberg [17] (p.127)
gives the following result.
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Proposition 8.1. Let w,w′ ∈ W . Then the following three conditions are
equivalent:

(i) Bw′B ⊂ BwB;

(ii) w′ ≤ w;

(iii) cw′(g) is not identically zero on BwB.

Note that as a consequence of this, we see that for w = w` the long Weyl
element we have that cw`

is non-vanishing precisely on the big Bruhat cell
C(w`). Moreover, Lemma 52 of Steinberg [17] (p.123), generalized to the
quasi-split situation, gives that ce is non-vanishing precisely on the translated
large cell U−TU = w−1

` C(w`). To compute the support of the other coefficient
functions, we have the following lemma.

Lemma 8.2. For any w ∈W ,

cw(wg) = ce(g)cw(w).

Proof: This is an elementary calculation. On the one hand, by definition we
have Ad(wg)Ye = cw(wg)Yw + · · · . On the other hand,

Ad(wg)Ye = Ad(w)Ad(g)Ye = Ad(w)(ce(g)Ye + · · · )
= ce(g)cw(w)Yw + · · ·

Thus cw(wg) = ce(g)cw(w). �

An equivalent formulation is that cw(g) = ce(w−1g)cw(w). Thus we have
cw(g) 6= 0 iff ce(w−1g) 6= 0 iff w−1g ∈ U−B iff g ∈ wU−B = ww−1

` Uw`B.Thus
we have the following generalization of the above statements.

Proposition 8.3. cw(g) is non-vanishing precisely on wU−B.

The above lemma also lets us explicitly evaluate the Steinberg coefficients.
First recall that for t ∈ T we have the modulus character δ(t) = δB(t) =
det(Ad(t)|U). Then we see that by definition ce(t) = δ(t). Hence on the
Bruhat cell C(e) = B we have ce(tu) = δ(t) 6= 0, as claimed. Next consider cw
as a function on C(w) If we write g ∈ C(w) as g = u1wtu2 we see that

Ad(u1wtu2)Ye = Ad(u1wt)Ye = Ad(u1w)ce(t)Ye

= ce(t)Ad(u1)cw(w)Yw = ce(t)cw(w)Yw + “higher order terms”

since u1 ∈ U(k). Thus cw(u1wtu2) = δ(t)cw(w).
For our purposes, a more useful formula will be cw(u1twu2) = cw(w)δ(w−1tw).
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Let us set δw(t) = δ(w−1tw) = det(Ad(t)|wUw−1) the modulus character as-
sociated to the conjugate Borel Bw = wBw−1.

Proposition 8.4. Let w ∈ W and let S(wt) denote the slice U(k)wtU(k) of
the Bruhat cell C(w). Then cw is constant on this slice and cw(S(tw)) =
δ(t)cw(w). Moreover, cw is constant on the slice S(tw) of C(w) and on this
slice cw(S(tw)) = δw(t)cw(w).

8.2. The convergence of Jπ,w(a) We now return to the situation of Sections
2 and 3.

Proposition 8.5. Let v ∈ Vπ such that Wv(e) = 1. For any compact open
subgroup U0 ⊂ U(k) let v0 = vU0 be the associated approximate Whittaker
vector in Vπ. Let w ∈ W , w 6= e. For t ∈ T(k) consider the slice S(tw) =
U(k)twU(k) = U(k)twU−

w of the Bruhat cell C(w) = BwU−
w . Then there is an

open compact subgroup K′
0 such that the restriction of Wv0 to S(tw) vanishes

on S(tw) ∩ BK′
0.

Proof: Let W0 = Wv0 and let K0 = Stab(v0). If K′ is any subgroup of K0

then as in the proof of the Proposition 3.1 we have that Supp(W0)∩B(k)K′ ⊂
U(k)TU0K

′. Hence the proposition will follow if, given w 6= e and t ∈ T(k),
we can find an open neighborhood K′

0 of e such that S(tw)∩U(k)TU0K
′
0 = ∅.

Taking inverses, it suffices to find a K′
0 such that S(w−1t−1)∩K′

0TU0U(k) = ∅.
Recall from Section 8.1 that to any w ∈ W there is associated a rational

(hence continuous) function cw(g) such that C(w) ⊂ C(w′) iff cw(g) is not
identically zero on C(w′). In particular, for w 6= e we have cw(b) = 0 for all
b ∈ B(k) = C(e). On the other hand, we have seen that cw(g) is a non-zero
constant on either of the slices S(wt) = U(k)wtU(k) or S(tw).

Now consider the restriction of cw−1 to the open set K′TU0U(k). Then for
k′t′u ∈ K′TU0U(k) we have Ad(k′t′u)Ye = ce(t′)Ad(k′)Ye so that cw−1(k′t′u) =
ce(t′)cw−1(k′). Since t′ ∈ TU0 satisfies ψ(u0) = ψ(Ad(t′)u0) for all u0 in the
compact open subgroup U0 and ce(t′) is defined by the adjoint action of t′

on Ye, we see that |ce(t′)| is bounded above and below on TU0 . On the other
hand, cw−1 is continuous and cw−1(e) = 0. Hence given any L > 0 we can
find a compact open neighborhood K′

0 of e such that for k′ ∈ K′
0 we have

|cw−1(k′)| ≤ q−L. In particular, we can choose K′
0 such that for all t′ ∈ TU0

and k′ ∈ K′
0 we have |ce(t′)cw−1(k′)| < |cw−1(t−1)|.

Hence, for this K′
0 we have that K′

0TU0U(k) and S(w−1t−1) are separated by
the values taken by cw−1 . �
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Proposition 8.6. Suppose that w ∈ W does not support a Bessel function.
Let Y ⊂ U−

w be open and compact. Then for every sufficiently large open
compact subset U0 ⊂ U(k) there exists a compact open subgroup K0 ⊂ G(k)
such that if v0 = vU0 we have the restriction of Wv0 to B(k)wYK0 vanishes
identically.

Proof: For U0 any compact open subgroup of U(k) let U+
0,w = U0 ∩ U+

w and
U−

0,w = U0 ∩U−
w . By enlarging U0 if necessary, we may assume that

(i) U0 = U+
0,wU−

0,w,

(ii) Y ⊂ U−
0,w

Let K0 = Stab(v0) and W0 = Wv0 . Then if bwyk ∈ B(k)wYK0 with b = ut ∈
U(k)T(k) then W0(utwyk) = ψ(u)Wv0(tw)ψ(y).

For any u+
0 ∈ U+

0 we have

ψ(u+
0 )W0(tw) = W0(twu+

0 ) = ψ(Ad(t)wu+
0 w

−1)W0(tw).

Since w does not support a Bessel function, there is a simple root α such that
wα is positive but not simple. Hence for U0 sufficiently large we can find
u+

0 ∈ U+
0,w lying in the root subgroup corresponding to α such that ψ(u+

0 ) 6= 1
but ψ(Ad(t)wu+

0 w
−1) ≡ 1 independent of t. Hence W0(tw) ≡ 0. �

We now consider w ∈ W a minimal Weyl element supporting a Bessel
function. Let Sw = {w′ ∈W | w′ ≤ w} and let s = sw = |Sw|. Enumerate the
elements of Sw so that w′1 = e, w′s = w and if w′i ≤ w′j then i ≤ j. Recall that
we have defined a canonical exhaustive sequence of open compact subgroup
UfM

⊂ U(k) in Section 1.1 indexed by positive integers M . In order to simplify
the notation, we will now denote this subgroup by U(M) = UfM

. Similarly,
we will set vM = vU(M) and WM = WvM

.

Proposition 8.7. Let w be a minimal Weyl element which supports a Bessel
function as above. Fix a slice S(tw) = U(k)twU(k) of the Bruhat cell C(w).
For every sufficiently large open compact subgroup U(M) ⊂ U(k) there is a
compact open subgroup K(M) ⊂ G(k) such that the restriction of WM to the
slice S(tw) vanishes on S(tw)∩(∪s−1

i=1C(w′i)K(M)), where C(w′i) is the Bruhat
cell B(k)w′iU

−
w′

i
.

Proof: We will prove this by induction on j. More precisely, we prove that
for each j < s there exists a compact open subgroup of the form U(Mj)
such that for every compact open subgroup U(M) ⊃ U(Mj) there is an
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open compact subgroup Kj(M) ⊂ G(k) such that WM vanishes on S(tw) ∩
(∪j

i=1C(w′i)Kj(M)). Then the U(M) and K(M) of the theorem will be those
associated to j = s− 1.

If j = 1 then w′j = e and we may take M1 = 1 and U(M) and K1(M) to
be those from Proposition 8.5.

We now assume the statement for j, that is, there exists Mj such that for
all U(M) ⊃ U(Mj) there exists Kj(M) such that we have that WM vanishes
on S(tw) ∩ (∪j

i=1C(w′i)Kj(M)).

For simplicity, let us write Vj(M) = ∪j
i=1C(w′i)Kj(M) and let Vj = Vj(Mj).

Consider C(w′j+1). Then Vj is a neighborhood of ∂C(w′j+1) = C(w′j+1) −
C(w′j+1). Then there exists an open compact Yj+1 ⊂ U−

w′
j+1

such that

B(k)w′j+1Yj+1 ⊃ C(w′j+1)− Vj .

Now take N sufficiently large so that U(N)−w′
j+1

⊃ Yj+1 and let Mj+1 =
max(N,Mj).

Assume that M ′ ≥Mj+1, i.e., U(M ′) ⊃ U(Mj+1). Let

V ′
j (M ′) =

⋂
u∈U(M ′)

Vju.

Since (U(M ′) ∩ Kj(Mj))\U(M ′) is finite, this is actually a finite intersection
and V ′

j (M ′) is open and still contains ∂C(w′j+1) = ∪j
i=1C(w′j). In fact, if we

let

K′
j(M

′) =
⋂

u∈U(M ′)

u−1Kj(Mj)u

then

V ′
j (M ′) =

j⋃
i=1

C(w′i)K
′
j(M

′).

Now C(w′j+1)− Vj ⊂ B(k)w′j+1U(N)−w′
j+1

so that for all u ∈ U(M ′) we have

C(w′j+1)− Vju = (C(w′j+1)− Vj)u ⊂ B(k)w′j+1U(N)−w′
j+1
u

and hence

C(w′j+1)− V ′
j (M ′) ⊂

⋃
u∈U(M ′)

B(k)w′j+1U(N)−w′
j+1
u

= B(k)w′j+1U(M ′)

= B(k)w′j+1U(M ′)−w′
j+1
.
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Take for Kj+1(M ′) any compact open subgroup of K′
j(M

′)∩Stab(vM ′) and
let Vj+1(M ′) = ∪j+1

i=1C(w′i)Kj+1(M ′). Note that

Vj+1(M ′) ⊂ (V ′
j (M ′) ∪ B(k)w′j+1U(M ′)−w′

j−1
Stab(vM ′)).

Now consider the restriction of WM ′ to S(tw)∩Vj+1(M ′). Let g ∈ S(tw)∩
Vj+1(M ′). If g ∈ V ′

j (M ′) then we write

WM ′(g) =
1

Vol(U(M ′))

∫
U(M ′)

WMj (gu)ψ
−1(u) du.

Since g ∈ V ′
j (M ′), then gu ∈ V ′

j (M ′)u ⊂ Vj . Since WMj vanishes on S(tw)∩Vj

we have WM ′(g) = 0 in this case. On the other hand, if instead g ∈ S(tw) ∩
B(k)w′j+1U(M)−w′

j+1
Stab(vM ′), then

WM ′(g) = WM ′(utw′j+1u
−
j+1k) = ψ(u)W0(tw′j+1)ψ(u−j+1).

But since w′j+1 does not support a Bessel function, we see thatWM ′(tw′j+1) = 0
as in the proof of Proposition 8.6.

ThereforeWM ′ vanishes on S(tw)∩Vj+1(M ′). This completes the induction
and thereby the proof of the proposition. �

This proposition then leads to the existence of Jπ,w for w a minimal Weyl
element that supports a Bessel function. To see this, consider

Jπ,w(a) =
∫

U−
w

Wv(awu)ψ−1(u) du

for a ∈ Aw and v ∈ Vπ with Wv(e) = 1. Note that for any M we have by an
elementary change of variables that∫

U−
w

Wv(awu)ψ−1(u) du =
∫

U−
w

WvM
(awu)ψ−1(u) du

in the notation of Proposition 8.7. Fixing a ∈ Aw, by Proposition 8.7 there
exists an M ′ such that WvM′ vanishes on S(aw)∩(∪s−1

i=1 B(k)C(w′j)K(M ′), that
is, WvM′ (awu), as a function of u ∈ U−

w , is compactly supported. Hence this
integral converges and Jπ,w(a) exists.

Theorem 8.8. If π is a generic representation of G(k) and w is a minimal
Weyl element that supports a Bessel function, then the associated (full) Bessel
function Jπ,w(a) exists as a function on Aw.
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