
REMARKS ON RANKIN-SELBERG CONVOLUTIONSJ.W. COGDELL AND I.I. PIATETSKI-SHAPIRODediated to Joe ShalikaIn this paper we would like to present two types of results on the theory of Rankin-Selberg onvolution L-funtions for GLn�GLm. Both families of results are based on thefoundational work of Shalika with Jaquet and the seond author of this paper [10, 11, 12, 13℄on the analysis of these L-funtions via the theory of integral representations.In the �rst setion we present results on the loal arhimedean Rankin-Selberg onvolu-tions. This setion was written in response to a question of D. Ramakrishnan as to whetherthe loal L-funtion as de�ned by Jaquet and Shalika in [13℄ was indeed the \orret" fatorin the sense that it is preisely the standard arhimedean Euler fator whih is determinedby the poles of the family of loal integrals using either K-�nite data or smooth data (i.e.,without passing to the Casselman-Wallah ompletion). In Setion 1 we answer this aÆr-matively as a onsequene of showing that the ratio of the loal integral divided by theL-funtion is ontinuous in the appropriate topology, uniformly on ompat subsets of C .As a onsequene we establish a non-vanishing result for this ratio whih is neessary for theompletion of the global theory of Rankin-Selberg onvolutions.In the seond setion we omplete global theory of Rankin-Selberg onvolutions from thepoint of view of integral representations. This setion was motivated by the omment ofJaquet that, although known to the experts, this ompletion had never appeared in print.Most of the neessary results an be found in the paper [12℄ by Jaquet and Shalika, thoughnot always expliitly stated. One missing ingredient was the non-vanishing result for thearhimedean Rankin-Selberg integrals alluded to above. With this in hand, in Setion 2 weombine the global results of [10, 12℄ with the loal results of [11, 13℄ and Setion 1 of thispaper to give a proof of the fat that the global L-funtions L(s; � � �0) are nie, in thesense that they have meromorphi ontinuation, are bounded in vertial strips, and satisfya global funtional equation, within the ontext of integral representations. Atually, weare only able to establish the boundedness in vertial strips within the method for m = nand m = n � 1. Outside of these ases we must rely on the results of Gelbart and Shahidi[6℄. In addition we establish the loation of poles for these L-funtions, giving the proof ofJaquet, Piatetski-Shapiro, and Shalika of these results alluded to in the appendix of [14℄. Ifone ombines these results with the strong multipliity one results of [12℄ and the onversetheorems [2, 3℄ we an onsider the basi global theory of Rankin-Selberg onvolutions viaintegral representations to now be essentially omplete, with the exeption of the ases ofboundedness in vertial strips alluded to above.JWC was partially supported by the NSA. IIPS was partially supported by the NSF.1



2 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROWe would like to thank D. Ramakrishnan for asking us the question whih led to the �rstpart of this paper. We would like to thank H. Jaquet for pointing out the need for theseond part of this paper and for providing us with the sketh of his proof with Shalika ofTheorem 1.3. 1. Arhimedean Rankin{Selberg ConvolutionsThis setion omplements the material in the paper of Jaquet and Shalika [13℄ and ismeant to show that indeed the results there are enough for most appliations. Unless other-wise noted, the notation is as in [13℄.1.1. An extension of Dixmier{Malliavin. Let E be a Fr�ehet spae, G a real Lie group,g its omplexi�ed Lie algebra, and � a ontinuous representation of G on E. Let fpjg be aset of semi-norms on E de�ning the topology on E.Let E1 be the smooth vetors of E. Let U(g) be the universal enveloping algebra ofg and let fuig be a basis of U(g). The the topology on E1 is de�ned by the seminormsqi;j(�) = pj(�(ui)�) for � 2 E1. With this topology, E1 is again a Fr�ehet spae [1℄. Foronveniene, reindex the family fqi;jg by a single index fqig.Let �k ! �0 be a onvergent sequene in E1. The purpose of this setion is to prove thefollowing extension of Theorem 3.3 of [4℄. Our proof is a variation of that in [4℄ whih wefollow.Proposition 1.1. There exists a �nite set of funtions fj 2 C1 (G) and a olletion ofvetors �k;j 2 E1 suh that �k = P �(fj)�k;j for all k � 0 and suh that for eah j, �k;jonverge to �0;j in E1.Proof: Sine E1 is linear, it suÆes to onsider the ase �0 = 0.Let fX1; : : : ; Xmg be a basis of g with the property that under the map(t1; : : : ; tm) 7! et1X1 � � � etmXmfrom Rm to G the open set (�1; 1)m is mapped di�eomorphially onto an open set 
 of G.Lemma 1.1. For eah hoie of seminorm qi and non-negative integer n the set of realnumbers fqi(�(X1)2n�k)g is bounded.Proof: Sine �(X1)2n ats ontinuously and the seminorm qi is ontinuous, the sequeneqi(�(X1)2n�k) onverges to qi(�(X1)2n0) = 0. Hene the sequene of real numbers qi(�(X1)2n�k)is bounded. �Let Mn;i be an upper bound for fqi(�(X1)2n�k)g.Lemma 1.2. There exist positive real numbers �n suh that the sumPn �nMn;i is onvergentfor all i.



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 3Proof: For eah i there are positive numbers �n;i suh thatPn �n;iMn;i onverges. Let �(k)n =min1�i�k �n;i and set �n = �(n)n . ThenXn �nMn;i =Xn�i �nMn;i +Xn>i �nMn;i:For n > i, �n = min1�j�n�n;j � �n;i. SoXn>i �nMn;i �Xn>i �n;iMn;i <1: �Now let � 2 (0; 12 ℄. Then by Lemma 2.5 and Remark 2.6 of [4℄ there is a sequene ofpositive numbers �n and funtions g(t) and h(t) in C1 (R), supported in (��; �) suh thatXn �nMn;i <1 for all iand pXn=0(�1)n�nÆ(2n)0 � g ! Æ0 + hin the spae E 0(R) of ompatly supported distributions on R. Æ0 is the Dira measuresupported at the origin of R.The measures g(t)dt and h(t)dt indue measures �1 and �1 on G under the map R ! Ggiven by t 7! etX1 . Then�1 � pXn=0(�1)n�nX2n1 = pXn=0(�1)n�nX2n1 � �1 ! Æe + �1in the spae E 0(G) of ompatly supported distributions on G and�(�1) pXn=0(�1)n�n�(X1)2n�k ! �k + �(�1)�kin the weak topology on E.However, by our hoie of �n, 1Pn=0 qi(�n�(X1)2n�k) < 1 for eah seminorm qi. ThereforepPn=0(�1)n�n�(X1)2n�k onverges to a vetor �k in E1. Therefore we have�k = �(�1)�k � �(�1)�kfor eah �k.Lemma 1.3. The sequene �k onverges to 0 in E1.



4 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROProof: By ontinuity of the seminorms,qi(�k) � limp!1 pXn=0 �nqi(�(X1)2n�k) � 1Xn=0 �nqi(�(X1)2n�k):Sine the sum P�nqi(�(X1)2n�k) is absolutely onvergent, we an interhange limit andsummation to obtain limk!1 1Xn=0 �nqi(�(X1)2n�k) = 0:Therefore limk!1 qi(�k) = 0 for all qi. Hene �k ! 0 in E1. �Now apply the same proess forX2 through Xm. In this way we obtain a �nite olletion ofmeasures f�i;jg, where eah �i;j is the image of a measure gi;j(ti)dti under the map ti 7! etiXias above, and sequenes �k;j suh that�k =Xj �(�1;j � � � � � �m;j)�j;kfor eah k with limk!1 �j;k = 0 for eah j.The measure �1;j � � � � � �m;j on G is then the image of the measure on Rm given byg1;j(t1) � � �gm;j(tm)dt1 � � �dtm. If gj(t1; � � � ; tm) = g1;j(t1) � � � gm;j(tm) then gj is smooth withompat support in (��; �)m. Hene by our hoie of basis on g the image of the measuregj(t)dt on Rm will be of the form fj(g)dg on G with fj 2 C1 (G).Hene we now have a �nite olletion of fj 2 C1 (G) and �k;j 2 E1 suh that�k =Xj �(fj)�k;jwith the sequene �k;j now onverging to 0 in E1 for eah j.This ompletes the proof of the proposition. �1.2. Continuity of the arhimedean loal integral. Let F be either R or C . Let  bea non-trivial additive harater of F . Let GLr = GLr(F ). Let (�; V ) be a �nitely generatedadmissible smooth representation of moderate growth of GLn, as in [1, 13℄. Let Vo denotethe spae of Kn{�nite vetors, i.e., the underlying Harish-Chandra module. Similarly, let(�; E) be a �nitely generated admissible smooth representation of moderate growth of GLm,and Eo its underlying Harish-Chandra module. Note that both V and E are Fr�ehet spaesand equal to their spaes of smooth vetors.We further assume that � and � are of Whittaker type as in [13℄, with ontinuous Whittakerfuntionals �� with respet to  and �� with respet to  �1.We will let (� 
 �; V 
 E) denote the algebrai tensor produt of (�; V ) and (�; E). Welet (�
̂�; V 
̂E) denote the (projetive) topologial tensor produt. Then (�
̂�; V 
̂E) isthe again an admissible smooth representation of moderate growth of GLn �GLm and is in



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 5fat the Casselman-Wallah ompletion of the algebrai tensor produt [1, 13℄. (Note: Thisnotation is slightly di�erent from that of [13℄ where they use 
 for the topologial tensorprodut.)The linear funtional � = �� 
 �� is a ontinuous Whittaker funtional on V 
 E andextends to a Whittaker funtional on V 
̂E [13℄. For eah v 2 V 
̂E letWv(g; g0) = �(�(g)
̂�(g0)v)and let W(�
̂�;  ) be the spaed spanned by all suh funtions. Then W(�
̂�;  ) �W(�;  )
W(�;  �1).As in [13℄, de�ne for W 2 W(�
̂�;  ) and � 2 S(F n)	(s;W;�) = ZNnnGLn W (g; g)�(eng)j det(g)js dg if n = m	(s;W ) = ZNmnGLm W ��g In�m� ; g� j det(g)js�(n�m)=2 dg if n > m	(s;W; j) = ZNmnGLm ZX W 0�0�gx Ij Ik+11A ; g1Aj det(g)js�(n�m)=2dxdg if n > mwhere j + k = n�m� 1. These are all absolutely onvergent for Re(s) >> 0.De�ne ~W (g; g0) = W (wng�; wmg0�), where wr is the long Weyl element 0� 1. . .1 1A and� is the outer automorphism of GLr, namely g 7! g� =t g�1. Then ~W is in the Whittakermodel of V �
̂E� = (V 
̂E)�. Then we have the funtional equation:	(1� s; ~W; �̂) = !�(�1)n�1(s; � � �;  )	(s;W;�) if n = m	(1� s; �(wn;m) ~W; j) = !�(�1)n�1(s; � � �;  )	(s;W; k) if n > mwhere j + k = n�m� 1 and(s; � � �;  ) = "(s; � � �;  )L(1� s; �� � ��)L(s; � � �) :Note that here L(s; �� �) is as in [13℄, i.e., it is the fator attahed to the pair (�; �) by the(arithmeti) Langlands lassi�ation.The purpose of this setion is to prove the following result.



6 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROTheorem 1.1. Let �s, respetively �s;�, be the linear funtional on V 
̂E de�ned by�s(v) = 	(s;Wv)L(s; � � �) if n > m�s;�(v) = 	(s;Wv;�)L(s; � � �) if n = mfor v 2 V 
̂E. Then �s, respetively �s;�, is ontinuous on V 
̂E, uniformly for s in aompat set.Note that we laim the ontinuity for all s, not just for those s for whih the loal integralis absolutely onvergent.We begin by realling the following result of [13℄.Lemma 1.4. Let f 2 C1 (GLn � GLm). Then there exists a semi-norm � on V 
̂E and agauge � on GLn �GLm depending only on f suh thatj�(f)Wv(g; g0)j � �(v)�(g; g0)for all v 2 V 
̂E.Proof: The proof is word for word the same as the proof of Proposition 2.1 in [13℄. �We will prove the theorem in the ase n > m. The proof in the ase n = m is the same,with the obvious modi�ations.Proposition 1.2. For s in the half plane of absolute onvergene, the funtional v 7!	(s;Wv) is ontinuous on V 
̂E, uniformly for s in a ompat set.Proof: Sine the funtional is evidently linear, it is enough to show that the sequene	(s;Wvk) onverges to 0 whenever vk ! 0 in V 
̂E, uniformly for s in a ompat set.By Proposition 1.1, there exists a �nite olletion of funtions fj 2 C1 (GLn�GLm) andsequenes vk;j in V 
̂E suh that vk = Pj �
̂�(fj)vk;j for eah k and vk;j ! 0 for eah j.Then we have Wvk(g; g0) =Xj �(fj)Wvk;j (g; g0)so that by Lemma 1.4 jWvk(g; g0)j �Xj �j(vk;j)�j(g; g0)



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 7for seminorms �j and gauges �j depending only on fj. Thenj	(s;Wvk)j = �� Z Wvk ��g In�m� ; g� j det(g)js�(n�m)=2 dg��� Z ��Wvk ��g In�m� ; g� ��j det(g)jRe(s)�(n�m)=2 dg�Xj �j(vk;j) Z �j ��g In�m� ; g� j det(g)jRe(s)�(n�m)=2 dg:
In this last expression, eah integral involving a gauge �j is absolutely onvergent forRe(s) >> 0, uniformly for s in ompat sets. Sine the seminorms �j are ontinuous onV 
̂E and sine eah sequene vk;j ! 0 as k ! 1 we have j	(s;Wvk)j onverges to 0 ask !1 uniformly for s in a ompat set. �Corollary . For s in the realm of absolute onvergene of the loal integrals, the funtional�s(v) = 	(s;Wv)=L(s; � � �) is ontinuous on V 
̂E, uniformly for s in a ompat set.Repeating the proof we also obtain the following.Corollary . For s in the realm of absolute onvergene of the loal integrals, the funtional�s;j(v) = 	(s;Wv; j)=L(s; � � �) is ontinuous on V 
̂E, uniformly for s in a ompat set.From this we obtain:Corollary . The funtional ~�s;j(v) = 	(1� s; �(wn;m) ~Wv; j)=L(1� s; ��� ��) is ontinuouson V 
̂E, uniformly for s in a ompat set, in the domain Re(s) << 0.We are now ready to prove the theorem.Proof:[Proof of Theorem 1.1℄ By the �rst Corollary, we have that the funtional �s(v) isontinuous in a domain Re(s) > B0, uniformly for s in a ompat set. If we let �0s(v) =�s(v)es2 then �0s will also be ontinuous in this domain with the same uniformity.Let B > B0. Then on the line Re(s) = B we have a uniform estimate j�0s(v)j �B	(B; jWvj). To see this, writej�0s(v)j = j	(s;Wv)j�� es2L(s; � � �) ��:On the line Re(s) = B, the funtion e(B+it)2L(B + it; � � �)�1 is rapidly dereasing asjtj ! 1. Hene there is a onstant B so that je(B+it)2L(B + it; � � �)�1j � B. On theother hand, it is elementary that j	(s;W )j � 	(jW jB; ). This gives the estimate.



8 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROBy the funtional equation, we have�0s(v) = 	(s;W )es2L(s; � � �)= !�(�1)n�1"(s; � � �;  )�1	(1� s; �(wn;m) ~W;n�m� 1)es2L(1� s; �� � ��)= ~�0s;n�m�1(v):It follows from the third Corollary that �s;n�m�1 is ontinuous in a halfplane Re(s) < A0,hene so are �0s(v) and �s(v) = �0s(v)e�s2, with uniformity on ompat subsets of Re(s) < A0.Arguing as above, if A < A0 we have a uniform bound on the line Re(s) = A of the formj�0s(v)j = j~�0s;n�m�1(v)j � A	(1� A; j�(wn;m) ~W j; n�m� 1).Consider now the behavior of �0s(v) in the strip A � Re(s) � B. The funtion �0s(v), asa funtion of s, grows suÆiently slowly that we may apply Phragmen{Lindel�of to the stripA � Re(s) � B and we obtain the estimatej�0s(v)j � max(B	(B; jWvj); A	(1� A; j�(wn;m) ~W j; n�m� 1))in this strip. Now suppose that vk is a sequene onverging to 0 in V 
̂E. Then the proof ofProposition 1.2 shows that both the ontributions 	(B; jWvk j) and 	(1�A; j�(wn;m) ~Wvk j; n�m � 1)) go to 0 as k ! 1. Hene �0s(vk) onverges to 0 in the strip, uniformly for all s.Hene �0s is ontinuous for s in the strip, and uniformly so. Then �s(v) = �0s(v)e�s2 will beontinuous on this strip, uniformly for s in a ompat set.This ompletes the proof of the theorem. �1.3. Appliations. In this setion we would like to present our appliations to the ana-lyti properties of the loal Rankin-Selberg onvolutions, whih it turn are needed for theompletion of the global theory of Rankin-Selberg onvolutions in the following setion.We keep the notation of Setion 1.2. Reall that Vo and Eo are the underlying Harish-Chandra modules of V and E. Let Wo(�;  ) be the subspae of W(�;  ) spanned by theWhittaker funtions assoiated to vetors in Vo, and similarly for Wo(�;  �1).Theorem 1.2. (i) For eah W 2 Wo(�;  ) and W 0 2 Wo(�;  �1) the ratioe(s;W;W 0) = 	(s;W;W 0)L(s; � � �)is an entire funtion of s.(ii) For every s0 2 C there is a hoie of W0 2 Wo(�;  ) and W 00 2 Wo(�;  �1) suh thate(s0;W0;W 00) 6= 0.Proof: We have that Vo is dense in V and Eo is dense in E. The Casselman-Wallahompletion of the Harish-Chandra module Vo
Eo is V 
̂E. Hene Vo
Eo is dense in V 
̂E.



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 9Statement (i) now follows from Theorem 11.1 of [13℄.Statement (ii) follows from Theorem 11.1 of [13℄ and Theorem 2.1 above. By Theorem 11.1of [13℄ we know that L(s; � � �) is obtained by 	(s;W ) for some W = Wv with v 2 V 
̂E.For this v, �s(v) = 	(s;Wv)=L(s; � � �) = 1. Sine Vo 
 Eo is dense, there will be a vetor~v 2 Vo 
 Eo for whih �s0(~v) is lose to 1 and in partiular is non-zero. Writing ~v as a sumof deomposable tensors, we �nd a vetor v0 
 v00 suh that �s0(v0 
 v00) 6= 0. But�s0(v0 
 v00) = 	(s0;Wv0 ;W 0v00)L(s0; � � �) = e(s0;Wv0 ;W 0v00):Hene (ii). �The same proof yields the following Corollary.Corollary . (i) For eah pair W 2 W(�;  ) and W 0 2 W(�;  �1) the ratioe(s;W;W 0) = 	(s;W;W 0)L(s; � � �)is an entire funtion of s.(ii) For every s0 2 C there is a hoie of W0 2 W(�;  ) and W 00 2 W(�;  �1)suh thate(s0;W0;W 00) 6= 0.These results show that the L-funtion L(s; � � �) as de�ned in [13℄ not only anels allpoles of the loal integrals, but also dividing by it introdues no extraneous zeros. Henethis is the minimal standard Euler fator whih anels all poles in the loal integrals, evenfor the K-�nite vetors, as in the non-arhimedean ase [11℄.The ontinuity of the loal integrals also plays a role in proving the following result ofStade [16, 17℄ and Jaquet and Shalika (unpublished).Theorem 1.3. In the ases m = n and m = n� 1 there exist a �nite olletion of K{�nitefuntions Wi 2 Wo(�;  ), W 0i 2 Wo(�;  �1), and �i 2 S(F n) if neessary suh thatL(s; � � �) =X	(s;Wi;W 0i ) or L(s; � � �) =X	(s;Wi;W 0i ;�i):In the ase where both � and � are unrami�ed, Stade shows that one obtains the L-funtionexatly with the K{invariant Whittaker funtions (and Shwartz funtion if neessary). Ourresults are not needed in this ase.In the general ase, Jaquet has provided us with a sketh of his argument with Shalika.First one proves that the integrals involving K{�nite funtions are equal to the produt ofa polynomial and the L-fator. It suÆes to prove this for prinipal series, sine the otherrepresentations embed into prinipal series. For prinipal series one proeeds by an indutionargument on n, however one must prove the m = n and m = n�1 ases simultaneously. The(essentially formal) arguments needed are to be found in the published papers of Jaquetand Shalika. The polynomials in question then form an ideal and the point now is to showthis ideal is the full polynomial ring. This is then implied by Theorem 1.2 (ii) above.



10 J.W. COGDELL AND I.I. PIATETSKI-SHAPIRO2. Global Rankin{Selberg ConvolutionsIt was reently pointed out to us by Jaquet that the global theory of Rankin{Selbergonvolutions via integral representations has never appeared in print. We would like totake this opportunity to at least partially orret this situation. All of the neessary globalfoundational material an be found in [10℄ and [12℄ and the neessarily loal results are in[11℄ and [13℄ with the addition of the material in Setion 1 above.Let k be a global �eld, A its ring of adeles, and �x a non-trivial ontinuous additiveharater  = 
 v of A trivial on k.Let (�; V�) be a unitary uspidal representation of GLn(A ) and (�0; V�0) a unitary uspidalrepresentation of GLm(A ). Sine they are irreduible we have restrited tensor produtdeompositions � ' 
0�v and �0 ' 
0�0v with (�v; V�v) and (�0v; V�0v) irreduible admissiblesmooth generi unitary representations of GLn(kv) and GLm(kv) [5, 7, 8℄. Let ! = 
0!v and!0 = 
0!0v be their entral haraters. These are both ontinuous haraters of k�nA � .2.1. Global Eulerian Integrals for GLn�GLm. Let us �rst assume that m < n. Thenthe results we need an be found in Part II of [12℄. Let ' 2 V� and '0 2 V�0 be two uspforms. The integral representations in this situation are of Heke type and essentially involvethe integration of these usp forms against a fator of j det js, that is, a type of generalizedMellin transform.In GLn, let Pn denote the miraboli subgroup, that is, the stabilizer of the row vetor(0; : : : ; 0; 1). Let Nn be the subgroup of upper triangular unipotent matries, that is, theunipotent radial of the standard Borel subgroup. In the usual way, the additive harater  de�nes a non-degenerate harater of Nn through its abelianization. Let Yn;m be the unipo-tent radial of the standard paraboli subgroup attahed to the partition (m + 1; 1; : : : ; 1).Then  de�nes a harater of Yn;m(A ) trivial on Yn;m(k) sine Yn;m � Nn. The group Yn;m isnormalized by GLm+1 � GLn and the miraboli subgroup Pm+1 � GLm+1 is the stabilizerin GLm+1 of the harater  .De�nition . If '(g) is a usp form on GLn(A ) de�ne the projetion operator Pnm from uspforms on GLn(A ) to uspidal funtions on Pm+1(A ) byPnm'(p) = j det(p)j��n�m�12 � ZYn;m(k)n Yn;m(A ) '�y�p In�m�1�� �1(y) dyfor p 2 Pm+1(A ).This funtion Pnm' is essentially the same as the funtion denoted V';m in Part II of [12℄.As the integration is over a ompat domain, the integral is absolutely onvergent. We �rstanalyze the behavior on Pm+1(A ). From Setion 3.1 of Part II of [12℄ we �nd the proofs ofthe following LemmasLemma 2.1. The funtion Pnm'(p) is a uspidal funtion on Pm+1(A ).



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 11Lemma 2.2. Let ' be a usp form on GLn(A ). Then for h 2 GLm(A ), Pnm'�h 1� hasthe Fourier expansionPnm'�h 1� = j det(h)j��n�m�12 � X2Nm(k)nGLm(k)W'�� 00 In�m��h In�m��with onvergene absolute and uniform on ompat subsets.We now have the prerequisites for writing down a family of Eulerian integrals for uspforms ' on GLn twisted by automorphi forms on GLm for m < n. Let ' 2 V� be a uspform on GLn(A ) and '0 2 V�0 a usp form on GLm(A ). (Atually, we ould take '0 to be anarbitrary automorphi form on GLm(A ).) Consider the integralsI(s;'; '0) = ZGLm(k)nGLm(A ) Pnm'�h 00 1�'0(h)j det(h)js�1=2 dh:The integral I(s;'; '0) is absolutely onvergent for all values of the omplex parameter s,uniformly in ompat subsets, sine the usp forms are rapidly dereasing. Hene it is entireand bounded in any vertial strip.Let us now investigate the Eulerian properties of these integrals. We �rst replae Pnm' byits Fourier expansion.I(s;'; '0) = ZGLm(k)nGLm(A ) Pnm'�h 00 In�m�'0(h)j det(h)js�1=2 dh= ZGLm(k)nGLm(A ) X2Nm(k)nGLm(k)W'�� 00 In�m��h 00 In�m��'0(h)j det(h)js�(n�m)=2 dh:Sine '0(h) is automorphi on GLm(A ) and j det()j = 1 for  2 GLm(k) we may interhangethe order of summation and integration for Re(s) >> 0 and then reombine to obtainI(s;'; '0) = ZNm(k)nGLm(A ) W'�h 00 In�m�'0(h)j det(h)js�(n�m)=2 dh:This integral is absolutely onvergent for Re(s) >> 0 by the gauge estimates of [10, Setion13℄ and this justi�es the interhange.



12 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROLet us now integrate �rst over Nm(k)nNm(A ). Reall that for n 2 Nm(A ) � Nn(A ) wehave W'(ng) =  (n)W'(g). Hene we haveI(s;'; '0) =ZNm(A )n GLm(A ) ZNm(k)nNm(A ) W'��n 00 In�m��h 00 In�m��'0(nh) dn j det(h)js�(n�m)=2 dh= ZNm(A )n GLm(A ) W'�h 00 In�m�ZNm(k)nNm(A )  (n)'0(nh) dn j det(h)js�(n�m)=2 dh= ZNm(A )n GLm(A ) W'�h 00 In�m�W 0'0(h)j det(h)js�(n�m)=2 dh= 	(s;W';W 0'0)where W 0'0(h) is the  �1-Whittaker funtion on GLm(A ) assoiated to '0, i.e.,W 0'0(h) = ZNm(k)nNm(A ) '0(nh) (n) dn;and we retain absolute onvergene for Re(s) >> 0.From this point, the fat that the integrals are Eulerian is a onsequene of the unique-ness of the Whittaker model for GLn [9, 15℄. Take ' a smooth usp form in a uspidalrepresentation � of GLn(A ). Assume in addition that ' is fatorizable, i.e., in the deompo-sition � = 
0�v of � into a restrited tensor produt of loal representations, ' = 
'v is apure tensor. Then there is a hoie of loal Whittaker models so that W'(g) = QW'v(gv).Similarly for deomposable '0 we have the fatorization W 0'0(h) =QW 0'0v(hv).If we substitute these fatorizations into our integral expression, then sine the domain ofintegration fators Nm(A )nGLm(A ) = QNm(kv)nGLm(kv) we see that our integral fatorsinto a produt of loal integrals	(s;W';W 0'0) =Yv ZNm(kv)nGLm(kv)W'v �hv 00 In�m�W 0'0v(hv)j det(hv)js�(n�m)=2v dhv:If we denote the loal integrals by	v(s;W'v ;W 0'0v) = ZNm(kv)nGLm(kv)W'v �hv 00 In�m�W 0'0v(hv)j det(hv)js�(n�m)=2v dhv;whih onverges for Re(s) >> 0 by the gauge estimate of [10, Proposition 2.3.6℄, we see thatwe now have a family of Eulerian integrals.Now let us return to the question of a funtional equation. The funtional equation isessentially a onsequene of the existene of the outer automorphism g 7! �(g) = g� = tg�1of GLn. If we de�ne the ation of this automorphism on automorphi forms by settinge'(g) = '(g�) = '(wng�) and let ePnm = � Æ Pnm Æ � then our integrals naturally satisfy thefuntional equation I(s;'; '0) = eI(1� s; e'; e'0)



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 13where eI(s;'; '0) = ZGLm(k)nGLm(A ) ePnm'�h 1�'0(h)j det(h)js�1=2 dh:We have established the following result.Theorem 2.1. Let ' 2 V� be a usp form on GLn(A ) and '0 2 V�0 a usp form on GLm(A )with m < n. Then the family of integrals I(s;'; '0) de�ne entire funtions of s, bounded invertial strips, and satisfy the funtional equationI(s;'; '0) = eI(1� s; e'; e'0):Moreover the integrals are Eulerian and if ' and '0 are fatorizable, we haveI(s;'; '0) =Yv 	v(s;W'v ;W 0'0v)with onvergene absolute and uniform for Re(s) >> 0.The integrals ourring in the right hand side of our funtional equation are again Eulerian.One an unfold the de�nitions to �nd �rst thateI(1� s; e'; e'0) = e	(1� s; �(wn;m)fW';fW 0'0)where the unfolded global integral ise	(s;W;W 0) = Z Z W 0�hx In�m�1 11A dx W 0(h)j det(h)js�(n�m)=2 dhwith the h integral over Nm(A )nGLm(A ) and the x integral over Mn�m�1;m(A ), the spae of(n�m� 1)�m matries, � denoting right translation, and wn;m the Weyl element wn;m =�Im wn�m� with wn�m = 0� 1. . .1 1A the standard long Weyl element in GLn�m. Also,for W 2 W(�;  ) we set fW (g) = W (wng�) 2 W(e�;  �1). The extra unipotent integrationis the remnant of ePnm. As before, e	(s;W;W 0) is absolutely onvergent for Re(s) >> 0. For' and '0 fatorizable as before, these integrals e	(s;W';W 0'0) will fator as well. Hene wehave e	(s;W';W 0'0) =Yv e	v(s;W'v ;W 0'0v)where e	v(s;Wv;W 0v) = Z Z Wv0�hvxv In�m�1 11A dxv W 0v(hv)j det(hv)js�(n�m)=2 dhvwhere now with the hv integral is over Nm(kv)nGLm(kv) and the xv integral is over thematrix spae Mn�m�1;m(kv). Thus, oming bak to our funtional equation, we �nd that theright hand side is Eulerian and fators aseI(1� s; e'; e'0) = e	(1� s; �(wn;m)fW';fW 0'0) =Yv e	v(1� s; �(wn;m)fW'v ;fW 0'0v):



14 J.W. COGDELL AND I.I. PIATETSKI-SHAPIRONow onsider the ase of m = n. Then the results we need an essentially be found inPart I of [12℄. Let (�; V�) and (�0; V�0) be two unitary uspidal representations of GLn(A ).Let ' 2 V� and '0 2 V�0 be two usp forms. The integral representation in this situation isan honest Rankin{Selberg integral and will involve the integration of the usp forms ' and'0 against a partiular type of Eisenstein series on GLn(A ).To onstrut the Eisenstein series as in Part I of [12℄ we observe that Pn nGLn ' kn�f0g.If we let S(A n) denote the Shwartz{Bruhat funtions on A n , then eah � 2 S de�nes asmooth funtion on GLn(A ), left invariant by Pn(A ), by g 7! �((0; : : : ; 0; 1)g) = �(eng). Let� be a unitary idele lass harater. (For our appliation � will be determined by the entralharaters of � and �0.) Consider the funtionF (g;�; s; �) = j det(g)js ZA� �(aeng)jajns�(a) d�a:If we let P 0n = Zn Pn be the paraboli of GLn assoiated to the partition (n� 1; 1) then oneheks that for p0 = �h y0 d� 2 P 0n(A ) with h 2 GLn�1(A ) and d 2 A � we have,F (p0g;�; s; �) = j det(h)jsjdj�(n�1)s�(d)�1F (g;�; s; �) = ÆsP 0n(p0)��1(d)F (g;�; s; �);with the integral absolutely onvergent for Re(s) > 1=n, so that if we extend � to a haraterof P 0n by �(p0) = �(d) in the above notation we have that F (g;�; s; �) is a smooth setion ofthe normalized indued representation IndGLn(A )P 0n(A ) (Æs�1=2P 0n ��1). Sine the induing haraterÆs�1=2P 0n ��1 of P 0n(A ) is invariant under P 0n(k) we may form Eisenstein series from this familyof setions by E(g;�; s; �) = X2P 0n(k)nGLn(k)F (g;�; s; �):If we replae F in this sum by its de�nition we an rewrite this Eisenstein series asE(g;�; s; �) = j det(g)js Zk�nA� X�2kn�f0g�(a�g)jajns�(a) d�a= j det(g)js Zk�nA� �0�(a; g)jajns�(a) d�aand this �rst expression is onvergent absolutely for Re(s) > 1 [12℄.The seond expression essentially gives the Eisenstein series as the Mellin transform of theTheta series ��(a; g) = X�2kn�(a�g);where in the above we have written�0�(a; g) = X�2kn�f0g�(a�g) = ��(a; g)� �(0):



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 15This allows us to obtain the analyti properties of the Eisenstein series from the Poissonsummation formula for ��, namely��(a; g) = X�2kn�(a�g) = X�2kn �a;g(�)= X�2kn d�a;g(�) = X�2kn jaj�nj det(g)j�1b�(a�1�tg�1)= jaj�nj det(g)j�1��̂(a�1;tg�1)where the Fourier transform �̂ on S(A n) is de�ned by�̂(x) = ZA� �(y) (ytx) dy:This allows us to write the Eisenstein series asE(g;�; s; �) = j det(g)js Zjaj�1�0�(a; g)jajns�(a) d�a+ j det(g)js�1 Zjaj�1�0̂�(a;tg�1)jajn(1�s)��1(a) d�a+ Æ(s)where Æ(s) = (0 if � is rami�ed��(0) j det(g)jss+i� + �̂(0) jdet(g)js�1s�1+i� if �(a) = jajin� with � 2 Rwith  a non-zero onstant. From this we derive easily the basi properties of our Eisensteinseries [12, Part I, Setion 4℄.Proposition 2.1. The Eisenstein series E(g;�; s; �) has a meromorphi ontinuation toall of C with at most simple poles at s = �i�; 1 � i� when � is unrami�ed of the form�(a) = jajin�. As a funtion of g it is smooth of moderate growth and as a funtion of s itis bounded in vertial strips (away from the possible poles), uniformly for g in ompat sets.Moreover, we have the funtional equationE(g;�; s; �) = E(g�; �̂; 1� s; ��1)where g� = tg�1.Note that under the enter the Eisenstein series transforms by the entral harater ��1.Now let us return to our Eulerian integrals. Let � and �0 be our irreduible uspidalrepresentations. Let their entral haraters be ! and !0. Set � = !!0. Then for eah pairof usp forms ' 2 V� and '0 2 V�0 and eah Shwartz-Bruhat funtion � 2 S(A n) setI(s;'; '0;�) = ZZn(A ) GLn(k)nGLn(A ) '(g)'0(g)E(g;�; s; �) dg:Sine the two usp forms are rapidly dereasing on Zn(A )GLn(k)nGLn(A ) and the Eisensteinis only of moderate growth, we see that the integral onverges absolutely for all s away fromthe poles of the Eisenstein series and is hene meromorphi. It will be bounded in vertialstrips away from the poles and satis�es the funtional equationI(s;'; '0;�) = I(1� s; e'; e'0; �̂);



16 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROoming from the funtional equation of the Eisenstein series, where we still have e'(g) ='(g�) = '(wng�) 2 Ve� and similarly for e'0.These integrals will be entire unless we have �(a) = !(a)!0(a) = jajin� is unrami�ed. Inthat ase, the residue at s = �i� will beRess=�i� I(s;'; '0;�) = ��(0) ZZn(A ) GLn(A )n GLn(A ) '(g)'0(g)j det(g)j�i� dgand at s = 1� i� we an write the residue asRess=1�i� I(s;'; '0;�) = �̂(0) ZZn(A ) GLn(k)nGLn(A ) e'(g)e'0(g)j det(g)ji� dg:Therefore these residues de�ne GLn(A ) invariant pairings between � and �0 
 j det j�i� orequivalently between e� and e�0 
 j det ji�. Hene a residues an be non-zero only if � 'e�0 
 j det ji� and in this ase we an �nd ', '0, and � suh that indeed the residue does notvanish.We have yet to hek that our integrals are Eulerian. To this end we take the integral,replae the Eisenstein series by its de�nition, and unfold:I(s;'; '0;�) = ZZn(A ) GLn(k)nGLn(A ) '(g)'0(g)E(g;�; s; �) dg= ZZn(A ) P 0n(k)nGLn(A ) '(g)'0(g)F (g;�; s; �) dg= ZZn(A ) Pn(k)nGLn(A ) '(g)'0(g)j det(g)js ZA� �(aeng)jajns�(a) da dg= ZPn(k)nGLn(A ) '(g)'0(g)�(eng)j det(g)js dg:We next replae ' by its Fourier expansion in the form'(g) = X2Nn(k)nPn(k)W'(g)and unfold to �ndI(s;'; '0;�) = ZNn(k)nGLn(A ) W'(g)'0(g)�(eng)j det(g)js dg= ZNn(A )n GLn(A ) W'(g) ZNn(k)nNn(A ) '0(ng) (n) dn �(eng)j det(g)js dg= ZNn(A )n GLn(A ) W'(g)W 0'0(g)�(eng)j det(g)js dg= 	(s;W';W 0'0 ;�):This expression onverges for Re(s) >> 0 by the gauge estimates as before.To ontinue, we assume that ', '0 and � are deomposable tensors under the isomorphisms� ' 
0�v, �0 ' 
0�0v, and S(A n) ' 
0S(knv ) so that we have W'(g) =QvW'v(gv), W 0'0(g) =



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 17QvW 0'0v(gv) and �(g) = Qv �v(gv). Then, sine the domain of integration also naturallyfators we an deompose this last integral into an Euler produt and now write	(s;W';W 0'0;�) =Yv 	v(s;W'v ;W 0'0v ;�v);where 	v(s;W'v ;W 0'0v ;�v) = ZNn(kv)nGLn(kv)W'v(gv)W 0'0v(gv)�v(engv)j det(gv)js dgv;still with onvergene for Re(s) >> 0 by the loal gauge estimates. We have now establishedthe following result.Theorem 2.2. Let ' 2 V� and '0 2 V�0 usp forms on GLn(A ) and let � 2 S(A n). Thenthe family of integrals I(s;'; '0;�) de�ne meromorphi funtions of s, bounded in vertialstrips away from the poles. The only possible poles are simple and our i� � ' e�0 
 j det ji�with � real and are then at s = �i� and s = 1� i� with residues as above. They satisfy thefuntional equation I(s;'; '0;�) = I(1� s;fW';fW 0'0; �̂):Moreover, for ', '0, and � fatorizable we have that the integrals are Eulerian and we haveI(s;'; '0;�) =Yv 	v(s;W'v ;W 0'0v ;�v)with onvergene absolute and uniform for Re(s) >> 0.We remark in passing that the right hand side of the funtional equation also unfolds asI(1� s; e'; e'0; �̂) = ZNn(A )n GLn(A ) fW'(g)fW 0'0(g)�̂(eng)j det(g)j1�s dg=Yv 	v(1� s;fW'v ;fW 0'0v ; �̂)with onvergene for Re(s) << 0.2.2. The Global L-funtion. Let S be the �nite set of plaes of k, ontaining the arhimedeanplaes S1, suh that for all v =2 S we have that �v, �0v, and  v are unrami�ed.For eah plae v of k loal fators L(s; �v � �0v) and "(s; �v � �0v;  v) have been de�nedthrough the loal theory of Rankin-Selberg onvolutions in [11℄ for non-arhimedean v andin [13℄ for arhimedean v. Then we an at least formally de�neL(s; � � �0) =Yv L(s; �v � �0v) and "(s; � � �0) =Yv "(s; �v � �0v;  v):We need to disuss onvergene of these produts. Let us �rst onsider the onvergeneof L(s; �� �0). For those v =2 S, so �v, �0v, and  v are unrami�ed, Jaquet and Shalika haveexpliitly omputed the loal fator in [12, Part I, Setion 2; Part II, Setion 1℄. They showL(s; �v � �0v) = det(I � q�sv A�v 
 A�0v)�1



18 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROwhere A�v and A�0v are the assoiated Satake parameters, and that the eigenvalues of A�vand A�0v are all of absolute value less than q1=2v [12, Part I, Corollary 2.5℄. Thus, as in [12,Theorem 5.3℄, the partial (or inomplete) L-funtionLS(s; � � �0) =Yv=2S L(s; �v � �0v) =Yv=2S det(I � q�sv A�v 
 A�0v)�1is absolutely onvergent for Re(s) >> 0. Thus the same is true for L(s; � � �0).Remark: The loal alulation alluded to above is atually the omputation of the loalintegral with the unrami�ed Whittaker funtions. For v =2 S, in the Whittaker models therewill be unique normalized K = GL(ov){�xed Whittaker funtions, W Æv 2 W(�v;  v) andW 0Æv 2 W(�0v;  �1v ), normalized by W Æv (e) = W 0Æv (e) = 1. When when n = m let � = �Æv bethe harateristi funtion of the lattie ovn � knv . What Jaquet and Shalika show is thatdet(I � q�sv A�v 
 A�0v)�1 = (	(s;W Æv ;W 0Æv ) m < n	(s;W Æv ;W 0Æv ;�Æv) m = nand hene det(I� q�sv A�v 
A�0v) divides L(s; �v��0v)�1. To see that this atually alulatesthe L-funtion, one needs to ombine this alulation with Proposition 9.4 of [11℄.)For the "{fator, it follows from the loal alulation ited above and the loal funtionalequation [11, Theorem 2.7 (iii)℄ that "(s; �v � �0v;  v) � 1 for v =2 S so that the produt isin fat a �nite produt and there is no problem with onvergene. The fat that "(s; �� �0)is independent of  an either be heked by analyzing how the loal "{fators vary as youvary  , as is done in [2, Lemma 2.1℄, or it will follow from the global funtional equationpresented below.2.3. The basi analyti properties. Our �rst goal is to show that these L-funtions havenie analyti properties.Theorem 2.3. The global L{funtions L(s; � � �0) are nie in the sense that(1) L(s; � � �0) has a meromorphi ontinuation to all of C ,(2) the extended funtion is bounded in vertial strips (away from its poles),(3) they satisfy the funtional equationL(s; � � �0) = "(s; � � �0)L(1� s; e� � e�0):To do so, we relate the L-funtions to the global integrals.Let us begin with ontinuation. In the ase m < n for every ' 2 V� and '0 2 V�0 we knowthe integral I(s;'; '0) onverges absolutely for all s. From the unfolding in Setion 2.1 andthe loal alulation mentioned above we know that for Re(s) >> 0 and for appropriate



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 19hoies of ' and '0 we haveI(s;'; '0) =Yv 	v(s;W'v ;W'0v)=  Yv2S	v(s;W'v ;W'0v)!LS(s; � � �0)=  Yv2S 	v(s;W'v ;W'0v)L(s; �v � �0v) !L(s; � � �0)=  Yv2S ev(s;W'v ;W'0v)!L(s; � � �0)We know that eah ev(s;Wv;W 0v) is entire. For non-arhimedean v this follows from [11,Theorem 2.3℄ and for arhimedean v this follows from Theorem 1.2 above and its Corollary.Hene L(s; � � �0) has a meromorphi ontinuation. If m = n then for appropriate ' 2 V�,'0 2 V�0, and � 2 S(A n) we again haveI(s;'; '0;�) =  Yv2S ev(s;W'v ;W 0'0v ;�v)!L(s; � � �0):One again, sine eah ev(s;Wv;W 0v;�v) is entire, L(s; � � �0) has a meromorphi ontinua-tion.Let us next turn to the funtional equation. This will follow from the funtional equationfor the global integrals given above and the loal funtional equations [11, Theorem 2.7 (iii)℄and [13, Theorem 5.1 (ii)℄. We will onsider only the ase where m < n sine the other aseis entirely analogous. The funtional equation for the global integrals is simplyI(s;'; '0) = ~I(1� s; e'; e'0):One again we have for appropriate ' and '0I(s;'; '0) =  Yv2S ev(s;W'v ;W 0'0v)!L(s; � � �0)while on the other side~I(1� s; e'; e'0) =  Yv2S ~ev(1� s; �(wn;m)fW'v ;fW 0'0v)!L(1� s; e� � e�0):However, by the loal funtional equations, for eah v 2 S we have~ev(1� s; �(wn;m)fWv;fW 0v) = e	(1� s; �(wn;m)fWv;fW 0v)L(1� s; e� � e�0)= !0v(�1)n�1"(s; �v � �0v;  v)	(s;Wv;W 0v)L(s; � � �0)= !0v(�1)n�1"(s; �v � �0v;  v)ev(s;Wv;W 0v)



20 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROCombining these, we haveL(s; � � �0) =  Yv2S !0v(�1)n�1"(s; �v � �0v;  v)!L(1� s; e� � e�0):Now, for v =2 S we know that �0v is unrami�ed, so !0v(�1) = 1, and also that "(s; �v��0v;  v) �1. Therefore Yv2S !0v(�1)n�1"(s; �v � �0v;  v) =Yv !0v(�1)n�1"(s; �v � �0v;  v)= !0(�1)n�1"(s; � � �0)= "(s; � � �0)and we indeed have L(s; � � �0) = "(s; � � �0)L(1� s; e� � e�0):Note that this implies that "(s; � � �0) is independent of  as well.Let us now turn to the boundedness in vertial strips. For the global integrals I(s;'; '0)or I(s;'; ';�) this simply follows from the absolute onvergene. For the L-funtion itself,the paradigm is the following. For every �nite plae v 2 S, by the de�nition of the loal L-funtion as the generator of the frational ideal spanned by the loal integrals [11, Theorem2.7 (ii)℄ we know that there is a hoie of �nite olletions Wv;i, W 0v;i, and if neessary �v;isuh thatL(s; �v � �0v) =X	(s;Wv;i;W 0v0i) or L(s; �v � �0v) =X	(s;Wv;i;W 0v0i;�v;i):Ifm = n�1 orm = n then by the results of Stade [16, 17℄ or the unpublished work of Jaquetand Shalika presented in Theorem 1.3 above we know that we have similar statements forv 2 S1. Hene if m = n� 1 or m = n there are �nite global hoies 'i, '0i, and if neessary�i suh thatL(s; � � �0) =X I(s;'i; '0i) or L(s; � � �0) =X I(s;'i; '0i;�i):Then the boundedness in vertial strips for the L-funtions follows from that of the globalintegrals.However, if m < n � 1 then all we know at those v 2 S1 is that there is a funtionWv 2 W(�v
̂�0v;  v) = W(�v;  v)
̂W(�0v;  �1v ) or a �nite olletion of suh funtions Wv;iand of �v;i suh thatL(s; �v � �0v) = I(s;Wv) or L(s; �v � �0v) =X I(s;Wv;i;�v;i):To make the above paradigm work for m < n � 1 one possibility would be to rework thetheory of global Eulerian integrals for usp forms in V�
̂V�0. This is naturally the spaeof smooth vetors in an irreduible unitary uspidal representation of GLn(A ) � GLm(A ).So we would need extend the global theory of integrals parallel to Jaquet and Shalika'sextension of the loal integrals in the arhimedean theory. There seems to be no obstrutionto arrying this out, and then we would obtain boundedness in vertial strips for L(s; ���0)in general within the ontext of integral representations. However, if one approahes theseL-funtion by the method of onstant terms and Fourier oeÆients of Eisenstein series, then



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 21Gelbart and Shahidi have shown a wide lass of automorphi L-funtions, inluding ours, tobe bounded in vertial strips [6℄. Thus the boundedness in vertial strips is true, even if wemust go \outside the method" for this fat at this point.2.4. Poles of L-funtions. Let us determine where the global L-funtions an have poles.The poles of the L-funtions will be related to the poles of the global integrals. Reall fromSetion 2.2 that in the ase of m < n we have that the global integrals I(s;'; '0) are entireand that when m = n then I(s;'; '0;�) an have at most simple poles and they our ats = �i� and s = 1� i� for � real when � ' e�0
j det ji�. As we have noted above, the globalintegrals and global L-funtions are related, for appropriate ', '0, and �, byI(s;'; '0) =  Yv2S ev(s;W'v ;W 0'0v)!L(s; � � �0)or I(s;'; '0;�) =  Yv2S ev(s;W'v ;W 0'0v ;�v)!L(s; � � �0):On the other hand, for any s0 2 C and any v there is a hoie of loal Wv, W 0v, and �v suhthat the loal fators ev(s0;Wv;W 0v) 6= 0 or ev(s0;Wv;W 0v;�v) 6= 0. For arhimedean v thisis Theorem 1.2 (ii) and its Corollary. For non-arhimedean v this follows from the de�nitionof the L-funtion as the generator of the frational ideal spanned by the loal integrals. Asnoted above this implies that there are �nite olletionsWv;i, W 0v;i, and �v;i if neessary suhthatL(s; �v � �0v) =X	(s;Wv;i;W 0v0i) or L(s; �v � �0v) =X	(s;Wv;i;W 0v0i;�v;i)whih is equivalent to1 =X e(s;Wv;i;W 0v0i) or 1 =X e(s;Wv;i;W 0v0i;�v;i):Hene for any hoie of s0 2 C one of the e(s0;Wv;i;W 0v0i) or e(s0;Wv;i;W 0v0i;�v;i) must benon-vanishing. So as we vary ', '0 and � at the plaes v 2 S we see that division bythese fators an introdue no extraneous poles in L(s; � � �0), that is, in keeping withthe loal haraterization of the L-fator in terms of poles of loal integrals, globally thepoles of L(s; � � �0) are preisely the poles of the family of global integrals fI(s;'; '0)g orfI(s;'; '0;�)g. Hene from Theorems 2.1 and 2.2 we have.Theorem 2.4. If m < n then L(s; �� �0) is entire. If m = n, then L(s; �� �0) has at mostsimple poles and they our i� � ' e�0 
 j det ji� with � real and are then at s = �i� ands = 1� i�.If we apply this with �0 = e� we obtain the following orollary.Corollary . L(s; � � e�) has simple poles at s = 0 and s = 1.Sine a general, not neessarily unitary, uspidal representation � is always of the form� = �u 
 j det jr with �u unitary uspidal, these results extend in a straightforward way toall uspidal representations. In partiular, this gives the proof of Jaquet, Piatetski-Shapiro,
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