REMARKS ON RANKIN-SELBERG CONVOLUTIONS

J.W. COGDELL AND II. PIATETSKI-SHAPIRO

Dedicated to Joe Shalika

In this paper we would like to present two types of results on the theory of Rankin-
Selberg convolution L-functions for GL, x GL,,. Both families of results are based on the
foundational work of Shalika with Jacquet and the second author of this paper [10, 11, 12, 13]
on the analysis of these L-functions via the theory of integral representations.

In the first section we present results on the local archimedean Rankin-Selberg convolu-
tions. This section was written in response to a question of D. Ramakrishnan as to whether
the local L-function as defined by Jacquet and Shalika in [13] was indeed the “correct” factor
in the sense that it is precisely the standard archimedean Euler factor which is determined
by the poles of the family of local integrals using either K-finite data or smooth data (i.e.,
without passing to the Casselman-Wallach completion). In Section 1 we answer this affir-
matively as a consequence of showing that the ratio of the local integral divided by the
L-function is continuous in the appropriate topology, uniformly on compact subsets of C.
As a consequence we establish a non-vanishing result for this ratio which is necessary for the
completion of the global theory of Rankin-Selberg convolutions.

In the second section we complete global theory of Rankin-Selberg convolutions from the
point of view of integral representations. This section was motivated by the comment of
Jacquet that, although known to the experts, this completion had never appeared in print.
Most of the necessary results can be found in the paper [12] by Jacquet and Shalika, though
not always explicitly stated. One missing ingredient was the non-vanishing result for the
archimedean Rankin-Selberg integrals alluded to above. With this in hand, in Section 2 we
combine the global results of [10, 12] with the local results of [11, 13] and Section 1 of this
paper to give a proof of the fact that the global L-functions L(s, 7 x 7') are nice, in the
sense that they have meromorphic continuation, are bounded in vertical strips, and satisfy
a global functional equation, within the context of integral representations. Actually, we
are only able to establish the boundedness in vertical strips within the method for m = n
and m = n — 1. Outside of these cases we must rely on the results of Gelbart and Shahidi
[6]. In addition we establish the location of poles for these L-functions, giving the proof of
Jacquet, Piatetski-Shapiro, and Shalika of these results alluded to in the appendix of [14]. If
one combines these results with the strong multiplicity one results of [12] and the converse
theorems [2, 3] we can consider the basic global theory of Rankin-Selberg convolutions via
integral representations to now be essentially complete, with the exception of the cases of
boundedness in vertical strips alluded to above.
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We would like to thank D. Ramakrishnan for asking us the question which led to the first
part of this paper. We would like to thank H. Jacquet for pointing out the need for the
second part of this paper and for providing us with the sketch of his proof with Shalika of
Theorem 1.3.

1. ARCHIMEDEAN RANKIN SELBERG CONVOLUTIONS

This section complements the material in the paper of Jacquet and Shalika [13] and is
meant to show that indeed the results there are enough for most applications. Unless other-
wise noted, the notation is as in [13].

1.1. An extension of Dixmier—Malliavin. Let F be a Fréchet space, G a real Lie group,
g its complexified Lie algebra, and 7 a continuous representation of G on E. Let {p;} be a
set of semi-norms on E defining the topology on E.

Let E* be the smooth vectors of E. Let U(g) be the universal enveloping algebra of
g and let {u;} be a basis of U(g). The the topology on E* is defined by the seminorms
;&) = pj(m(u;)€) for & € E>. With this topology, E* is again a Fréchet space [1]. For
convenience, reindex the family {¢g; ;} by a single index {¢;}.

Let & — & be a convergent sequence in £°°. The purpose of this section is to prove the
following extension of Theorem 3.3 of [4]. Our proof is a variation of that in [4] which we
follow.

Proposition 1.1. There exists a finite set of functions f; € CX(G) and a collection of
vectors & ; € B> such that & = Y 7(f;)&,; for all k > 0 and such that for each j, &, ;
converge to & ; in £

Proof: Since E* is linear, it suffices to consider the case & = 0.

Let {X;,...,X,,} be a basis of g with the property that under the map
(t1, ... ty) P> €15 gtmXm

from R™ to G the open set (—1,1)™ is mapped diffeomorphically onto an open set € of G.

Lemma 1.1. For each choice of seminorm q; and non-negative integer n the set of real
numbers {q;(m(X1)*"&)} is bounded.

Proof: Since m(X1)?" acts continuously and the seminorm ¢; is continuous, the sequence
q; (m(X1)*"&,) converges to g;(m(X1)?"0) = 0. Hence the sequence of real numbers g; (7 (X1)*"&,)
is bounded. (]

Let M, ; be an upper bound for {g;(m(X1)**&)}.
Lemma 1.2. There ezist positive real numbers (3, such that the sum ) 3, M, ; is convergent

for all 1. !
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Proof: For each 7 there are positive numbers f3,,; such that > 3, M, ; converges. Let 5,(;“) =
n

min 3, ; and set 3, = B,(z"). Then

1<i<k

n<i n>i
For n > i, B, = min B,; < f,,. So
1<j<n
ZﬁnMn,l S Zﬁn,iMn,i < 00.
n>1 n>i

0]

Now let € € (0,3]. Then by Lemma 2.5 and Remark 2.6 of [4] there is a sequence of
positive numbers «, and functions ¢(¢) and h(t) in C>°(R), supported in (—¢, €) such that

Z a,M, ; < oo for all ¢

and
P

Z(—l)"anéé%) xg—0g+h

n=0
in the space &'(R) of compactly supported distributions on R. dy is the Dirac measure
supported at the origin of R.

The measures ¢(t)dt and h(t)dt induce measures p; and v; on G under the map R — G
given by t — ¢/X1. Then

p p

[y * Z(—l)”aan” = Z(—l)”aan” % [y — 0 + 1y

n=0 n=0
in the space £'(G) of compactly supported distributions on G and

p

(1) Z(_l)nanW(X1)2nfk — &+ ()&

n=0

in the weak topology on E.

oC
However, by our choice of a,,, Y. q;(a,m(X;)?"&,) < oo for each seminorm ¢;. Therefore
n=0
P
S (1), m(X;)?"E converges to a vector 1, in E*. Therefore we have
n=0

§e = m(p1)me — (1)

for each &;.

Lemma 1.3. The sequence 1 converges to 0 in E*°.
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Proof: By continuity of the seminorms,

(7716) < hm Z(anl Xl 2n§k < Zan% Xl)ank)

Since the sum Zanqi(w(Xl)ank) is absolutely convergent, we can interchange limit and
summation to obtain

lim Zanqz Xl 2n£k)

k—oo

Therefore klim qi(nk) = 0 for all g;. Hence e — 0 in B, O
— 00

Now apply the same process for X5 through X,,. In this way we obtain a finite collection of
measures {/; ; }, where each y; ; is the image of a measure g; ;(¢;)dt; under the map t; — e’
as above, and sequences & ; such that

E =Y g % % )&k
J
for each k with limy_,o §;r = 0 for each j.

The measure g * -+« * (i, ; on G is then the image of the measure on R™ given by
G (t1) - G (tm)dty -+ dbp. 16 gi(t1, -+ tm) = g1(t1) G j(tm) then g; is smooth with
compact support in (—¢,€)™. Hence by our choice of basis on g the image of the measure
gj(t)dt on R™ will be of the form f;(¢g)dg on G with f; € C*(G).

Hence we now have a finite collection of f; € C°(G) and & ; € E* such that

k= Zﬂ—(fj)gk,j
J
with the sequence ¢ ; now converging to 0 in E* for each j.

This completes the proof of the proposition. O

1.2. Continuity of the archimedean local integral. Let F' be either R or C. Let ¢ be
a non-trivial additive character of F. Let GL, = GL,(F). Let (m,V) be a finitely generated
admissible smooth representation of moderate growth of GL,, as in [1, 13]. Let V, denote
the space of K,—finite vectors, i.e., the underlying Harish-Chandra module. Similarly, let
(0, E) be a finitely generated admissible smooth representation of moderate growth of GL,,,
and E, its underlying Harish-Chandra module. Note that both V' and E are Fréchet spaces
and equal to their spaces of smooth vectors.

We further assume that 7 and o are of Whittaker type as in [13], with continuous Whittaker
functionals A\, with respect to 1 and A, with respect to 1.

We will let (7 ® 0,V ® E) denote the algebraic tensor product of (7, V) and (o, E). We
let (7®0, V®E) denote the (projective) topological tensor product. Then (7®c, VRE) is
the again an admissible smooth representation of moderate growth of GL, x GL,, and is in
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fact the Casselman-Wallach completion of the algebraic tensor product [1, 13]. (Note: This
notation is slightly different from that of [13] where they use ® for the topological tensor
product.)

The linear functional u = A\; ® A\, is a continuous Whittaker functional on V' ® E and
extends to a Whittaker functional on V®FE [13]. For each v € VQE let

Wy(g,9") = u(m(g)®a(g')v)

and let W(n®o,1) be the spaced spanned by all such functions. Then W(r®0,v) D
W(r, ¢) @ W(o, ¢ ").

As in [13], define for W € W(r®0,1) and ® € S(F™)

Vs W0) = [ Wlg.g)bleng) detl) dg ifn=m

Nu\GLn
U(s; W) = / w <<g I > ,g) [det(g)|*~ ™™/ dg ifn>m
Nin\GLm o
g
U(s; W, j) = / /W r I Lg || det(g) P~ "™ 2dzdg  if n > m
Ny \GLm X s

where j + k =n —m — 1. These are all absolutely convergent for Re(s) >> 0.

Define W(g,g') = W(w,g", w,,g"), where w, is the long Weyl element and
1

1 is the outer automorphism of GL,, namely ¢ — ¢* ='¢g~'. Then W is in the Whittaker
model of V'®E" = (V®FE)". Then we have the functional equation:

V(1 —s;W, D) = w,(—1)" (s, x 0,)U(s; W, ®) if n=m
V(1 = s; plwnm)W, j) = wo (=1)" (s, m x 0, ) W(s; W, k) ifn>m

where j +k =n—m — 1 and

e(s,m x o,¢)L(1 — s, X o)
L(s,m x o)

v(s,mx 0,1) =

Note that here L(s,m x ) is as in [13], i.e., it is the factor attached to the pair (7,0) by the
(arithmetic) Langlands classification.

The purpose of this section is to prove the following result.
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Theorem 1.1. Let A,, respectively Ay s, be the linear functional on VRE defined by

U(s; W,) ,
A(v) = — 5 o)
0 = B s
\II(S;W’UJq)) .
A = | — A
0 (v) L(s,m X 0) ifn=m

for v € V®E. Then A, respectively Ay e, is continuous on VRE, uniformly for s in a
compact set.

Note that we claim the continuity for all s, not just for those s for which the local integral
is absolutely convergent.

We begin by recalling the following result of [13].

Lemma 1.4. Let f € C®(GL, x GL,,). Then there exists a semi-norm 3 on VRFE and a
gauge & on GL, x GL,, depending only on f such that

()W, (g,9") < B(v)E(g, 9)

for allv € VRE.

Proof: The proof is word for word the same as the proof of Proposition 2.1 in [13]. O

We will prove the theorem in the case n > m. The proof in the case n = m is the same,
with the obvious modifications.

Proposition 1.2. For s in the half plane of absolute convergence, the functional v —
U (s; W,) is continuous on VQE, uniformly for s in a compact set.

Proof: Since the functional is evidently linear, it is enough to show that the sequence
U(s; W,,) converges to 0 whenever v, — 0 in V&®FE, uniformly for s in a compact set.

By Proposition 1.1, there exists a finite collection of functions f; € C2°*(GL,, x GL,,) and

sequences vy ; in VQF such that vy = Y 7®c(fj)vr,; for each k and vy, ; — 0 for each j.

J
Then we have

W, (9,9") pr] s (9,9)

so that by Lemma 1.4

W (9,9 < Bi(0n)é5(9. 9)
j
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for seminorms f3; and gauges §; depending only on f;. Then

< / W, ((g Inm> ,g> | det(g)| ) (/2 dg

<Y Biloky) /fy‘ <<g ]nm> ,9> | det(g)|Fee)=(rmm)/2 g,
j

In this last expression, each integral involving a gauge §; is absolutely convergent for
Re(s) >> 0, uniformly for s in compact sets. Since the seminorms j; are continuous on
V®E and since each sequence v;; — 0 as k — oo we have |W(s;W,,)| converges to 0 as
k — oc uniformly for s in a compact set. (]

Corollary . For s in the realm of absolute convergence of the local integrals, the functional
Ay(v) = U(s; W,)/L(s, 7 x o) is continuous on VRE, uniformly for s in a compact set.

Repeating the proof we also obtain the following.

Corollary . For s in the realm of absolute convergence of the local integrals, the functional
As;(v) = W(s; Wy, 5)/L(s, 7 x o) is continuous on VQE, uniformly for s in a compact set.

From this we obtain:

Corollary . The functional Ay j(v) = U(1 — 8; p(wn.m) Wy, 7)/L(1 — 5,7 X 0*) is continuous
on VRE, uniformly for s in a compact set, in the domain Re(s) << 0.

We are now ready to prove the theorem.

Proof:[Proof of Theorem 1.1] By the first Corollary, we have that the functional A4(v) is
continuous in a domain Re(s) > B’ uniformly for s in a compact set. If we let A’(v) =
Ay(v)e®” then A, will also be continuous in this domain with the same uniformity.

Let B > B'. Then on the line Re(s) = B we have a uniform estimate |Al(v)| <
cgV(B;|W,]). To see this, write

S2

€

(AL (v)| = \‘I’(S;Wumm

On the line Re(s) = B, the function e(PT%’L(B + it,m x ¢)~' is rapidly decreasing as
|t| — co. Hence there is a constant ¢z so that [eB+0°L(B 4 it,m x ¢)"'| < ¢g. On the
other hand, it is elementary that |W(s; W)| < W(|W|B;). This gives the estimate.



8 J.W. COGDELL AND I.I. PIATETSKI-SHAPIRO

By the functional equation, we have
W(s; W)e*
A (p) = 5 V)e
+(0) L(s,m x o)
LU 8 p(wa )W, n —m — 1)e”
L(1— s, x ot)

= wo(—1)" (s, X 0, 1))

- A’s,nfmfl(v)'
It follows from the third Corollary that A, ., is continuous in a halfplane Re(s) < A',
hence so are A’ (v) and A,(v) = A (v)e™*", with uniformity on compact subsets of Re(s) < A'.

Arguing as above, if A < A" we have a uniform bound on the line Re(s) = A of the form

IAL(v)] = |A! (V)] < ea®(1 — A; | p(w,m)W],n —m — 1).

s,n—m—1

Consider now the behavior of Al (v) in the strip A < Re(s) < B. The function A (v), as
a function of s, grows sufficiently slowly that we may apply Phragmen Lindel6f to the strip
A < Re(s) < B and we obtain the estimate

A ()] < max(epW (B; [Wol), caW(1 = A [p(wnm) W —m — 1))

in this strip. Now suppose that v, is a sequence converging to 0 in VQE. Then the proof of
Proposition 1.2 shows that both the contributions W(B; |W,, |) and W(1—A; | p(wpm) W, |, n—
m — 1)) go to 0 as k — oc. Hence A’(vg) converges to 0 in the strip, uniformly for all s.
Hence A is continuous for s in the strip, and uniformly so. Then A,(v) = A’(v)e~*" will be
continuous on this strip, uniformly for s in a compact set.

This completes the proof of the theorem. O

1.3. Applications. In this section we would like to present our applications to the ana-
lytic properties of the local Rankin-Selberg convolutions, which it turn are needed for the
completion of the global theory of Rankin-Selberg convolutions in the following section.

We keep the notation of Section 1.2. Recall that V, and E, are the underlying Harish-
Chandra modules of V and E. Let W,(m,1) be the subspace of W(w, 1) spanned by the
Whittaker functions associated to vectors in V,, and similarly for W, (o, v ").

Theorem 1.2. (i) For each W € W,(m,¢) and W' € W,(0,¢~") the ratio
W(s; W, W'
e(s; W, W') = V(s W, W)
L(s,m x 0)
15 an entire function of s.

(ii) For every sy € C there is a choice of Wy € W,(m,v) and W§ € W,(o,¢~ ") such that
6(80; WOa W[;) 7& 0.

Proof: We have that V, is dense in V and F, is dense in E. The Casselman-Wallach
completion of the Harish-Chandra module V, ® E, is VQE. Hence V, ® E, is dense in VRE.
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Statement (i) now follows from Theorem 11.1 of [13].

Statement (ii) follows from Theorem 11.1 of [13] and Theorem 2.1 above. By Theorem 11.1
of [13] we know that L(s,7 x o) is obtained by ¥(s; W) for some W = W, with v € VQE.
For this v, Ag(v) = W(s; W,)/L(s,m x o) = 1. Since V, ® E, is dense, there will be a vector
v €V, ® E, for which A, (0) is close to 1 and in particular is non-zero. Writing ¢ as a sum
of decomposable tensors, we find a vector vy ® v, such that Ay (vo ® vj) # 0. But
\IJ(SU; Wvoa Wz’;f])

L(sg, m X 0)
Hence (ii). O

Agy(v0 ® v) = = e(s0; Wy, Wzi;))

The same proof yields the following Corollary.

Corollary . (i) For each pair W € W(r, ) and W' € W(o,1 1) the ratio
U (s; W, W'

el Wy = T

L(s,m x o)

15 an entire function of s.

(ii) For every so € C there is a choice of Wy € W(m, ) and W§ € W(o, ") such that
6(80; WOa W[;) 7& 0.

These results show that the L-function L(s, 7 X o) as defined in [13] not only cancels all
poles of the local integrals, but also dividing by it introduces no extraneous zeros. Hence
this is the minimal standard Euler factor which cancels all poles in the local integrals, even
for the K-finite vectors, as in the non-archimedean case [11].

The continuity of the local integrals also plays a role in proving the following result of
Stade [16, 17] and Jacquet and Shalika (unpublished).

Theorem 1.3. In the cases m =n and m = n — 1 there exist a finite collection of K—finite
functions W; € W,(mt, 1)), W! € W,(o,%™1), and ®; € S(F™) if necessary such that

L(s,mx0)= Z\Il(s; Wi, W/) or L(s,mxo0)= Z\Il(s; Wi, W/, ;).

In the case where both m and o are unramified, Stade shows that one obtains the L-function
exactly with the K-invariant Whittaker functions (and Schwartz function if necessary). Our
results are not needed in this case.

In the general case, Jacquet has provided us with a sketch of his argument with Shalika.
First one proves that the integrals involving K finite functions are equal to the product of
a polynomial and the L-factor. It suffices to prove this for principal series, since the other
representations embed into principal series. For principal series one proceeds by an induction
argument on n, however one must prove the m = n and m = n —1 cases simultaneously. The
(essentially formal) arguments needed are to be found in the published papers of Jacquet
and Shalika. The polynomials in question then form an ideal and the point now is to show
this ideal is the full polynomial ring. This is then implied by Theorem 1.2 (ii) above.
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2. GLOBAL RANKIN SELBERG CONVOLUTIONS

It was recently pointed out to us by Jacquet that the global theory of Rankin Selberg
convolutions via integral representations has never appeared in print. We would like to
take this opportunity to at least partially correct this situation. All of the necessary global
foundational material can be found in [10] and [12] and the necessarily local results are in
[11] and [13] with the addition of the material in Section 1 above.

Let k be a global field, A its ring of adeles, and fix a non-trivial continuous additive
character ¥ = ®1, of A trivial on k.

Let (7, V) be a unitary cuspidal representation of GL, (A) and (7', V) a unitary cuspidal
representation of GL,,(A). Since they are irreducible we have restricted tensor product
decompositions 7 ~ ®'m, and 7' ~ ®'m, with (m,, V) and (7, V) irreducible admissible
smooth generic unitary representations of GL,(k,) and GL,(k,) [5, 7, 8]. Let w = ®'w, and
w' = ®'w] be their central characters. These are both continuous characters of £\ A*.

2.1. Global Eulerian Integrals for GL, x GL,,. Let us first assume that m < n. Then
the results we need can be found in Part IT of [12]. Let ¢ € V; and ¢’ € V» be two cusp
forms. The integral representations in this situation are of Hecke type and essentially involve
the integration of these cusp forms against a factor of |det |®, that is, a type of generalized
Mellin transform.

In GL,, let P, denote the mirabolic subgroup, that is, the stabilizer of the row vector
(0,...,0,1). Let N, be the subgroup of upper triangular unipotent matrices, that is, the
unipotent radical of the standard Borel subgroup. In the usual way, the additive character v
defines a non-degenerate character of NN, through its abelianization. Let Y, ,,, be the unipo-
tent radical of the standard parabolic subgroup attached to the partition (m + 1,1,...,1).
Then 1) defines a character of Y, ,,(A) trivial on Y;, ,, (k) since Y, C Ny. The group Yy, ., is
normalized by GL,,.; C GL, and the mirabolic subgroup P, .1 C GL,,. is the stabilizer
in GL,, 1 of the character 1.

Definition . If ¢(g) is a cusp form on GL,(A) define the projection operator P7. from cusp
forms on GL, (A) to cuspidal functions on Py.1(A) by

n—m—1
P o(p) = |det(p)| ("2 ) / - (y <p ) )) i) dy
Yo, m (K)\ Yn,m (A) n—m—1
for p € Pnii(A).

This function P, ¢ is essentially the same as the function denoted V,,,, in Part II of [12].
As the integration is over a compact domain, the integral is absolutely convergent. We first
analyze the behavior on P,,;1(A). From Section 3.1 of Part II of [12] we find the proofs of
the following Lemmas

Lemma 2.1. The function P* o(p) is a cuspidal function on Pyi1(A).
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Lemma 2.2. Let ¢ be a cusp form on GL,(A). Then for h € GL,,(A), P" ¢ (h 1) has

the Fourier expansion

b (h 1) —jaey )Y W, <<g ]n0m> (h Inm>>

VE N (k)\ GLm (k)
with convergence absolute and uniform on compact subsets.

We now have the prerequisites for writing down a family of Eulerian integrals for cusp
forms ¢ on GL, twisted by automorphic forms on GL,, for m < n. Let ¢ € V, be a cusp
form on GL,(A) and ¢’ € V,» a cusp form on GL,,(A). (Actually, we could take ¢’ to be an
arbitrary automorphic form on GL,,(A).) Consider the integrals

! n h 0 ! s—
Hsigd) = | P () ¢/l detle 2 an
G L (k)\ G L (A)

The integral I(s;p, ') is absolutely convergent for all values of the complex parameter s,
uniformly in compact subsets, since the cusp forms are rapidly decreasing. Hence it is entire
and bounded in any vertical strip.

Let us now investigate the Eulerian properties of these integrals. We first replace P}, ¢ by
its Fourier expansion.

(h 0 .
M) = | Imw< , )wwn@wm 2 g
G L (k)\ GLum (A) n—m

— Y 0 > <h 0 )) ! s—(n—m)/2
- W o' (h)| det (h dh.
/GLm(k)\GLm(A) Z 7 <<0 Ly 0 Lo ( )‘ ( )‘

YENm (k)\ GLm (k)

Since ¢'(h) is automorphic on GL,,(A) and | det(v)| = 1 for v € GL,,(k) we may interchange
the order of summation and integration for Re(s) >> 0 and then recombine to obtain

h 0 s—(n—m
Hoipd) = [ W (§ ") dentn e an
Nm (k)\ GLm (4) n-—m

This integral is absolutely convergent for Re(s) >> 0 by the gauge estimates of [10, Section
13] and this justifies the interchange.
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Let us now integrate first over N, (k)\ N (A). Recall that for n € N,(A) C N,(A) we
have W, (ng) = ¢(n)W,(g). Hence we have

I(s;0,¢) =

/ / e <<g I : ) (g I | )) ¢'(nh) dn | det(h)|*"™)/% qp
N (A)\ GLm (A) J Non (k)\ Nim (A) n-m -

:/ Wnp <g [0 )/ w(n)(p’(nh) dn |det(h)|sf(n—m)/2 dh
Non (A1) Glom (1) 111/ S Ny (k)\ Now (A)
h 0 . o
-/ W (1" ) W dert o an
N (A)\ GL (A) n—m

= U (s; W, W)

where W/, (h) is the ¢y~ '-Whittaker function on G'L,,(A) associated to ¢/, i.e.,

Wy = [ ¢ (nh)ib(n) dn,
N (K)\ Nen (4)
and we retain absolute convergence for Re(s) >> 0.

From this point, the fact that the integrals are Eulerian is a consequence of the unique-
ness of the Whittaker model for GL, [9, 15]. Take ¢ a smooth cusp form in a cuspidal
representation 7 of GL,, (A). Assume in addition that ¢ is factorizable, i.e., in the decompo-
sition m = ®'m, of m into a restricted tensor product of local representations, ¢ = ®, is a
pure tensor. Then there is a choice of local Whittaker models so that W, (g) = [[ W, (94)-
Similarly for decomposable ¢' we have the factorization W, (h) = [T W, (h,).

If we substitute these factorizations into our integral expression, then since the domain of
integration factors N, (A)\ GL,,(A) =[] Nm(k,)\ GL.,(k,) we see that our integral factors
into a product of local integrals

h”U 0 s—(n—m
Wt W) =TL o W (500, ) Wt a0 an,

If we denote the local integrals by

5 W W) = W (' 0 ) Wl dert) e an,
m (kv)\ G L (ko) n—m

which converges for Re(s) >> 0 by the gauge estimate of [10, Proposition 2.3.6], we see that
we now have a family of Eulerian integrals.

Now let us return to the question of a functional equation. The functional equation is
essentially a consequence of the existence of the outer automorphism g — 1(g) = ¢* =g *

of GL,. If we define the action of this automorphism on automorphic forms by setting
o(g) = ¢(9") = p(w,g') and let P! = 1 o P o then our integrals naturally satisfy the
functional equation

I(s;0,¢") =1(1 50,0
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where

e .
T = | B (")) 0l sl an
GLpm (k)\ GLm (A)

We have established the following result.

Theorem 2.1. Let ¢ € V, be a cusp form on GL,(A) and ¢’ € Vi a cusp form on GL,,(A)
with m < n. Then the family of integrals 1(s; ¢, ¢") define entire functions of s, bounded in
vertical strips, and satisfy the functional equation

I(S %‘PI) = I(]- -5 COJ, Cél)

Moreover the integrals are Eulerian and if ¢ and @' are factorizable, we have
I(sip.¢) = [ [ Wols; W, W),)
v
with convergence absolute and uniform for Re(s) >> 0.

The integrals occurring in the right hand side of our functional equation are again Eulerian.
One can unfold the definitions to find first that

I(1=50,¢) =V = s plwnm) W, W)
where the unfolded global integral is

h
W(s; W, W) ://W z Iy om1 dr W' (h)| det(R)[*~ =™/ g
1

with the h integral over Ny, (A)\ GL,,(A) and the z integral over M,,_,,_1,,(A), the space of
(n —m — 1) x m matrices, p denoting right translation, and w,, ,, the Weyl element w;, , =
1
(]m w ) with w,_,, = the standard long Weyl element in GL,,_,,. Also,
n—m 1

for W € W(r, 1) we set W(g) = W(wng') € W(F,)"1). The extra unipotent integration
is the remnant of P . As before, W(s; W, W") is absolutely convergent for Re(s) >> 0. For
¢ and ¢’ factorizable as before, these integrals W(s; W, W;,) will factor as well. Hence we
have

U(s; Wy, W) = [ Wols; Wy, W)

where
- hey
B, (5: W, W) = / / Wy |50 Loows | day WiR)| det(hy)[ @ ™72 dh,
1
where now with the h, integral is over Ny,(k,)\ GL,(k,) and the x, integral is over the

matrix space M,,_,,—1.m(ky). Thus, coming back to our functional equation, we find that the
right hand side is Eulerian and factors as

Il —=50,0") = V(1 = 53 p(Wp,m) Wy, W) = H Wy (1 = 85 p(Wn,m)We,, Wi ).
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Now consider the case of . = n. Then the results we need can essentially be found in
Part I of [12]. Let (m, V) and (7', V) be two unitary cuspidal representations of G L, (A).
Let ¢ € V, and ¢' € V., be two cusp forms. The integral representation in this situation is
an honest Rankin—Selberg integral and will involve the integration of the cusp forms ¢ and
¢' against a particular type of Eisenstein series on GL,,(A).

To construct the Eisenstein series as in Part I of [12] we observe that p, \ GL,, ~ k™ —{0}.
If we let S(A”) denote the Schwartz—Bruhat functions on A”, then each ® € S defines a
smooth function on GL, (A), left invariant by P,(A), by g — ®((0,...,0,1)g) = ®(e,g). Let
n be a unitary idele class character. (For our application n will be determined by the central
characters of m and 7'.) Consider the function

Flg,®;5,1) = | det(g)|" / B(acag)|a"n(a) d*a.
AX

If we let P! = Z, P, be the parabolic of GL, associated to the partition (n — 1,1) then one

checks that for p’ = <g d) € P.(A) with h € GL,, 1(A) and d € A* we have,

F(p'g, ®;s,m) = |det(h)|]*|d| " Dn(d) " F(g, ®;5,m) = 63 ()0 ' (d)F(g, B; 5.m),

with the integral absolutely convergent for Re(s) > 1/n, so that if we extend 7 to a character
of P! by n(p') = n(d) in the above notation we have that F'(g, ®;s,n) is a smooth section of
the normalized induced representation Indg,f&()& (6;71/277’1)

(5153, V21 of P! (A) is invariant under P! (k) we may form Eisenstein series from this family

of sectlons by

. Since the inducing character

E(g,®;5.m)= Y, Fl(yg.9;s7).

veP(k)\ GLy (k)

If we replace F in this sum by its definition we can rewrite this Eisenstein series as

Blg o) = ldetlo)” [ ST alatg)al o) da

gekr—{0}

= |det(g)]® O (a, g9)lal"*n(a) d*a
kX \AX

and this first expression is convergent absolutely for Re(s) > 1 [12].

The second expression essentially gives the Eisenstein series as the Mellin transform of the
Theta series

Oula,g) = 3 B(aty).

gekn
where in the above we have written

Oyla,g) = Y ®(aly) = Os(a,g) — @(0).

gekm—{0}
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This allows us to obtain the analytic properties of the Eisenstein series from the Poisson
summation formula for G4, namely

Os(a, g) = Z (alg) = Z Do g

gekn gekn
=3By () =D lal " det(g)] ' B(a gl )
gekn gekn

= la| "[det(g)| 'O4(a g ")
where the Fourier transform ® on S(A") is defined by

be) = [ )ity dy
AX
This allows us to write the Eisenstein series as

E(g, ®,s,n) = |det(g)[* O%(a.g)lal"*n(a) d*a

la[>1

+ [ det(g)|*" O% (alg ]al"" I~ (a) d*a + (s)
la|>1
where
if 1 is ramified

0
(5 — s—1 .
(5) {—cq)(O) [t | o (0) 2Ll if () = |a/™” with o € R

s+io s—14io
with ¢ a non-zero constant. From this we derive easily the basic properties of our Eisenstein
series [12, Part I, Section 4].

Proposition 2.1. The Eisenstein series E(g, ®;s,1m) has a meromorphic continuation to
all of C with at most simple poles at s = —io,1 — ioc when n is unramified of the form
n(a) = |a|™. As a function of g it is smooth of moderate growth and as a function of s it
is bounded in vertical strips (away from the possible poles), uniformly for g in compact sets.
Moreover, we have the functional equation

E(g,®;5,m) = E(g", ;1 — s, ")
where ¢* = g7 L.

Note that under the center the Eisenstein series transforms by the central character ',

Now let us return to our Eulerian integrals. Let m and 7’ be our irreducible cuspidal
representations. Let their central characters be w and w’. Set n = ww’. Then for each pair
of cusp forms ¢ € V; and ¢’ € Vv and each Schwartz-Bruhat function ® € S(A") set

Isio6. @) = | o(0)¢'(0) By, ®:5,1) do.
Zn(B) GLn (K)\ GLn (A)

Since the two cusp forms are rapidly decreasing on Z,(A) GL,(k)\ GL,(A) and the Eisenstein
is only of moderate growth, we see that the integral converges absolutely for all s away from
the poles of the Eisenstein series and is hence meromorphic. It will be bounded in vertical
strips away from the poles and satisfies the functional equation

I(s:p ¢, ®) = I(1 - 5.7, ),
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coming from the functional equation of the Eisenstein series, where we still have p(g) =
0(g") = p(wng') € Vz and similarly for &'.

These integrals will be entire unless we have 7(a) = w(a)w'(a) = |a|"™? is unramified. In

that case, the residue at s = —io will be
Res 1(si0,¢'.0) = ~c0(0) [ o(0)¢/(9) det(g)] ™ dg
e (A) (AN GLn(A)

and at s = 1 — 40 we can write the residue as

Res I(5:0,¢,8) = cb(0) [ F(9)7(9) | det(g) dg.

s=1—i Zn(A) GLy (k)\ GLn (A)

Therefore these residues define GL, (A) invariant pairings between 7 and 7’ ® | det|™* or
equivalently between 7 and 7’ ® |det [“. Hence a residues can be non-zero only if 7 ~
7' @ |det |" and in this case we can find ¢, ¢’, and @ such that indeed the residue does not
vanish.

We have yet to check that our integrals are Eulerian. To this end we take the integral,
replace the Eisenstein series by its definition, and unfold:

I(s;p. ¢, @) = / ©(9)¢'(9)E(g, ®;s,m) dg
Zn(8) GLn (k)\ GLn (A)

_ / 2(9)0(9)F (g, ®; 5,1) dg
n (&) P} (k)\ GLn(A)

-/ P()¢'(9) det()* [ @lacug)lan(a) da dy
in (A) Pr(k)\ GLn(A) AX
-/ o9)¢(9)0(eng) | det(g) " dg.
(k)\ GLn(A)
We next replace ¢ by its Fourier expansion in the form

elg)= Y. W)

YE N, (k)\ Pn(k)
and unfold to find

1(s:0, / - or W @0 et do

/ W, (9) / o (ng)(n) dn B(eng)| det(g)|* dg
Nn(A)\ GLn (A (k)\ Nn(A)

-/ W@(gm,(g)@(eng)\ det(g)* dg
N (A)\ GLn(A)
= U(s; W, W,,, ®).
This expression converges for Re(s) >> 0 by the gauge estimates as before.

To continue, we assume that ¢, ¢' and ® are decomposable tensors under the isomorphisms

T~ ®'m, ™ =~ &', and S(A") ~ &'S(k}}) so that we have W, (g) = [, Wy, (g.), W (9) =
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[I, W, (9,) and ®(g) = [], ®»(g,). Then, since the domain of integration also naturally
factors we can decompose this last integral into an Euler product and now write

U(s; W, Wi, ®) = [ [ u(s; W, W, , @),

where
W, (5 W, W/, . @,) = / Wi (00 W (90) @ (nge)| det(g,)]* da,
(kv)\ GLn (kv)

still with convergence for Re(s) >> 0 by the local gauge estimates. We have now established
the following result.

Theorem 2.2. Let ¢ € V; and ¢' € Vo cusp forms on GL,(A) and let ® € S(A™). Then
the family of integrals I(s; @, ¢, ®) define meromorphic functions of s, bounded in vertical
strips away from the poles. The only possible poles are simple and occur iff m ~ 7 @ | det |"
with o real and are then at s = —i0 and s = 1 — i0 with residues as above. They satisfy the
functional equation

I(s;0,¢,®)=1(1— s;Ww,fW/&, d).

Moreover, for ¢, ¢, and ® factorizable we have that the integrals are Eulerian and we have

I(s;0,¢,®) = H\I’ 5 W, W, , @)
with convergence absolute and uniform for Re(s) >> 0.

We remark in passing that the right hand side of the functional equation also unfolds as

11— 5.8.) = / W (o) (9)(eng) | det(g)]* dg
(A)\ GLn(A)
= H (1 — s Wy, W,,, P)

with convergence for Re(s) << 0.

2.2. The Global L-function. Let S be the finite set of places of k, containing the archimedean
places Sy, such that for all v ¢ S we have that 7, 7}, and 9, are unramified.

For each place v of k local factors L(s,m, x 7)) and (s, 7, X 7, ,1,) have been defined
through the local theory of Rankin-Selberg convolutions in [11] for non-archimedean v and
in [13] for archimedean v. Then we can at least formally define

L(s,mx7") HLSﬂ'vXﬂ' and 5(8,7r><7r'):H5(5,7rv><7r;,z/)v).
v

We need to discuss convergence of these products. Let us first consider the convergence
of L(s,m x «"). For those v ¢ S, so m,, n,, and 1), are unramified, Jacquet and Shalika have
explicitly computed the local factor in [12, Part I, Section 2; Part II, Section 1]. They show

L(s,m, x m) =det(I — q,*Ay, ® Ap )"
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where A, and A are the associated Satake parameters, and that the eigenvalues of A,

and Ay are all of absolute value less than q;/Q (12, Part I, Corollary 2.5]. Thus, as in [12,
Theorem 5.3|, the partial (or incomplete) L-function

L?(s,m x 7') HLSﬂ'vXﬂ' Hdet([—q;SAM@Aﬂ)*l
vg¢S ¢S

is absolutely convergent for Re(s) >> 0. Thus the same is true for L(s, 7 x 7).

Remark: The local calculation alluded to above is actually the computation of the local
integral with the unramified Whittaker functions. For v ¢ S, in the Whittaker models there
will be unique normalized K = GL(o0,)-fixed Whittaker functions, W € W(m,, ¢,) and
W) e W(r!l, v, 1), normalized by W2 (e) = W/°(e) = 1. When when n = m let ® = ®¢ be
the characteristic function of the lattice 0,” C k;. What Jacquet and Shalika show is that

U(s; Wy, Wre L < n
det([ o q;sAﬂv ® Aﬂl )71 — (97 TERAR)) ) m n
v U(s; W, We d) m=n
and hence det(/ — ¢, *A,, ® A ) divides L(s,m, x 7). To see that this actually calculates
the L-function, one needs to combine this calculation with Proposition 9.4 of [11].)

For the ¢ factor, it follows from the local calculation cited above and the local functional
equation [11, Theorem 2.7 (iii)] that (s, 7, x 7,,) = 1 for v ¢ S so that the product is
in fact a finite product and there is no problem with convergence. The fact that (s, 7 x ')
is independent of ¢ can either be checked by analyzing how the local e-factors vary as you
vary 1, as is done in [2, Lemma 2.1|, or it will follow from the global functional equation
presented below.

2.3. The basic analytic properties. Our first goal is to show that these L-functions have
nice analytic properties.

Theorem 2.3. The global L—functions L(s,m x ©') are nice in the sense that

(1) L(s,m x ©') has a meromorphic continuation to all of C,
(2) the extended function is bounded in vertical strips (away from its poles),
(3) they satisfy the functional equation

L(s,m x7')=¢e(s,m x 7')L(1 — s, 7 x 7).

To do so, we relate the L-functions to the global integrals.

Let us begin with continuation. In the case m < n for every ¢ € V, and ¢’ € V. we know
the integral I(s; ¢, ¢") converges absolutely for all s. From the unfolding in Section 2.1 and
the local calculation mentioned above we know that for Re(s) >> 0 and for appropriate
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choices of ¢ and ¢’ we have

](S; @, 30’) - H \Ijv(s; W(pva Wnpg,)

v

— H\IIU(S; W%,W%)> L% (s,m x ')

vES

L(s,m, x 7))

_ H\IIU(S;WWU’WW;;)> L(S 7TX7T,)

vES

= H ey(s; W, W%)) L(s,mx7")

vES

We know that each e,(s; W,, W/) is entire. For non-archimedean v this follows from [11,
Theorem 2.3] and for archimedean v this follows from Theorem 1.2 above and its Corollary.
Hence L(s, 7 x 7') has a meromorphic continuation. If m = n then for appropriate ¢ € V,
¢ €V, and ® € S(A") we again have

I(s;0,¢,®) = (H eo (85 W, Wi, @U)) L(s,m x 7).

veS

Once again, since each e, (s; W,,, W, ®,) is entire, L(s, 7 x 7') has a meromorphic continua-
tion.

Let us next turn to the functional equation. This will follow from the functional equation
for the global integrals given above and the local functional equations [11, Theorem 2.7 (iii)]
and [13, Theorem 5.1 (ii)]. We will consider only the case where m < n since the other case
is entirely analogous. The functional equation for the global integrals is simply

I(S %90’) = IN(]- 5 SAOJ, 6’)

Once again we have for appropriate ¢ and ¢’

I(s;0,¢") = (H en(s; W%,W;g,)> L(s,m x ')

vES
while on the other side

i(l —5¢,0) = (H En(1 —s; p(wn,M)W%aﬁZIp;)) L1 —s,7x 7).

vES
However, by the local functional equations, for each v € S we have

) — V(1 s p(w) W, W)
: 1 . / _ 3 , Y v
Cy (1L — 83 p(wn,m) Wy, Wy) L(1—s,7x7)

U(s; W,, W)
L(s,m x 7')
= wy(=1)"""e(s, m X 7, by ey (s, Wy, W)

[

= w;(il)nilg(sa Ty X W:}, wv)
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Combining these, we have

L(s,m x7") (Hw (s 7rv><7r'v,wv)) L(1—s,mx7).

vES

Now, for v ¢ S we know that 7, is unramified, so w,(—1) = 1, and also that (s, 7, x 7, 1,) =
1. Therefore

Hw (s, my X 0, y) Hw e(s,my X 7, 1,)

veES
= W' (=1)" te(s, m x 7)
=e(s,m x ')

and we indeed have
L(s,m x7')=¢e(s,m x 7' )L(1 — s, 7 x 7).

Note that this implies that (s, 7 x 7') is independent of ¢ as well.

Let us now turn to the boundedness in vertical strips. For the global integrals I(s; ¢, ')
or 1(s; ¢, p, ®) this simply follows from the absolute convergence. For the L-function itself,
the paradigm is the following. For every finite place v € S, by the definition of the local L-
function as the generator of the fractional ideal spanned by the local integrals [11, Theorem
2.7 (ii)] we know that there is a choice of finite collections W, ;, W, ;, and if necessary &,
such that

L(s,wvxwz):Z\Dsz,W’) or L(s,wvxwz):Z\IJGWM,W'

v'is

Dyi).

If m = n—1 or m = n then by the results of Stade [16, 17] or the unpublished work of Jacquet
and Shalika presented in Theorem 1.3 above we know that we have similar statements for
v € Soo. Hence if m = n —1 or m = n there are finite global choices ¢;, ¢}, and if necessary
®; such that

L(s,m x 7" lecpl,goz or L(s,mx) Z[sgpz,goz, ;).

Then the boundedness in vertical strips for the L-functions follows from that of the global
integrals.

However, if m < n — 1 then all we know at those v € S, is that there is a function
W, € W(m,&7!,1,) = W(m,, 1, )@W(x! 1, !) or a finite collection of such functions W,
and of ®,; such that

L(s,myx ) =I(s;W,) or L(s,m xm) =Y I(s:W,;,®y).

To make the above paradigm work for m < n — 1 one possibility would be to rework the
theory of global Eulerian integrals for cusp forms in V,®V,.. This is naturally the space
of smooth vectors in an irreducible unitary cuspidal representation of GL,(A) x GL,,(A).
So we would need extend the global theory of integrals parallel to Jacquet and Shalika’s
extension of the local integrals in the archimedean theory. There seems to be no obstruction
to carrying this out, and then we would obtain boundedness in vertical strips for L(s, 7 x 7’)
in general within the context of integral representations. However, if one approaches these
L-function by the method of constant terms and Fourier coefficients of Eisenstein series, then
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Gelbart and Shahidi have shown a wide class of automorphic L-functions, including ours, to
be bounded in vertical strips [6]. Thus the boundedness in vertical strips is true, even if we
must go “outside the method” for this fact at this point.

2.4. Poles of L-functions. Let us determine where the global L-functions can have poles.
The poles of the L-functions will be related to the poles of the global integrals. Recall from
Section 2.2 that in the case of m < n we have that the global integrals I(s; ¢, ¢') are entire
and that when m = n then I(s; ¢, ¢',®) can have at most simple poles and they occur at
s = —io and s = 1 — o for o real when 7 ~ 7' ®| det [*°. As we have noted above, the global
integrals and global L-functions are related, for appropriate ¢, ¢', and ®, by

I(s;0,¢") = (H ey(s; W, , Wé;)) L(s,m x 1)
veS
or

I(s;0,¢,®) = (H eo (85 W, Wer s (I)v)) L(s,m x 7).
veS

On the other hand, for any s, € C and any v there is a choice of local W,,, W/, and ®,, such
that the local factors e, (so; W,,, W) # 0 or e,(so; W,,, W/, ®,) # 0. For archimedean v this
is Theorem 1.2 (ii) and its Corollary. For non-archimedean v this follows from the definition
of the L-function as the generator of the fractional ideal spanned by the local integrals. As
noted above this implies that there are finite collections W, ;, ;yi, and @, ; if necessary such
that

L(s,my x ) =Y U(s;W, i, W) or  L(s,my xm) = U(s; Wy Wi, 0y5)

v
which is equivalent to
1= Z e(s; Wy, W,,;) or 1= Z e(s; Wais Wi, @y i)

Hence for any choice of sy € C one of the e(so; W, ;, W/,.) or e(so; Wi, W), @,,;) must be
non-vanishing. So as we vary ¢, ¢’ and ® at the places v € S we see that division by
these factors can introduce no extraneous poles in L(s, 7 x '), that is, in keeping with
the local characterization of the L-factor in terms of poles of local integrals, globally the
poles of L(s,m x ©') are precisely the poles of the family of global integrals {I(s; y, ¢’)} or

{I(s;¢,¢",®)}. Hence from Theorems 2.1 and 2.2 we have.

Theorem 2.4. If m < n then L(s,m x 7') is entire. If m = n, then L(s,m x ©') has at most
simple poles and they occur iff m ~ 7' @ | det |" with o real and are then at s = —io and
s=1-—10.

If we apply this with 7’ = 7 we obtain the following corollary.

Corollary . L(s,m x ) has simple poles at s =0 and s = 1.

Since a general, not necessarily unitary, cuspidal representation 7 is always of the form
m=7"® |det|” with 7" unitary cuspidal, these results extend in a straightforward way to
all cuspidal representations. In particular, this gives the proof of Jacquet, Piatetski-Shapiro,
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and Shalika of these results which was alluded to in the appendix of [14], where these results
were proven using the technique of Eisenstein series.
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