
REMARKS ON RANKIN-SELBERG CONVOLUTIONSJ.W. COGDELL AND I.I. PIATETSKI-SHAPIRODedi
ated to Joe ShalikaIn this paper we would like to present two types of results on the theory of Rankin-Selberg 
onvolution L-fun
tions for GLn�GLm. Both families of results are based on thefoundational work of Shalika with Ja
quet and the se
ond author of this paper [10, 11, 12, 13℄on the analysis of these L-fun
tions via the theory of integral representations.In the �rst se
tion we present results on the lo
al ar
himedean Rankin-Selberg 
onvolu-tions. This se
tion was written in response to a question of D. Ramakrishnan as to whetherthe lo
al L-fun
tion as de�ned by Ja
quet and Shalika in [13℄ was indeed the \
orre
t" fa
torin the sense that it is pre
isely the standard ar
himedean Euler fa
tor whi
h is determinedby the poles of the family of lo
al integrals using either K-�nite data or smooth data (i.e.,without passing to the Casselman-Walla
h 
ompletion). In Se
tion 1 we answer this aÆr-matively as a 
onsequen
e of showing that the ratio of the lo
al integral divided by theL-fun
tion is 
ontinuous in the appropriate topology, uniformly on 
ompa
t subsets of C .As a 
onsequen
e we establish a non-vanishing result for this ratio whi
h is ne
essary for the
ompletion of the global theory of Rankin-Selberg 
onvolutions.In the se
ond se
tion we 
omplete global theory of Rankin-Selberg 
onvolutions from thepoint of view of integral representations. This se
tion was motivated by the 
omment ofJa
quet that, although known to the experts, this 
ompletion had never appeared in print.Most of the ne
essary results 
an be found in the paper [12℄ by Ja
quet and Shalika, thoughnot always expli
itly stated. One missing ingredient was the non-vanishing result for thear
himedean Rankin-Selberg integrals alluded to above. With this in hand, in Se
tion 2 we
ombine the global results of [10, 12℄ with the lo
al results of [11, 13℄ and Se
tion 1 of thispaper to give a proof of the fa
t that the global L-fun
tions L(s; � � �0) are ni
e, in thesense that they have meromorphi
 
ontinuation, are bounded in verti
al strips, and satisfya global fun
tional equation, within the 
ontext of integral representations. A
tually, weare only able to establish the boundedness in verti
al strips within the method for m = nand m = n � 1. Outside of these 
ases we must rely on the results of Gelbart and Shahidi[6℄. In addition we establish the lo
ation of poles for these L-fun
tions, giving the proof ofJa
quet, Piatetski-Shapiro, and Shalika of these results alluded to in the appendix of [14℄. Ifone 
ombines these results with the strong multipli
ity one results of [12℄ and the 
onversetheorems [2, 3℄ we 
an 
onsider the basi
 global theory of Rankin-Selberg 
onvolutions viaintegral representations to now be essentially 
omplete, with the ex
eption of the 
ases ofboundedness in verti
al strips alluded to above.JWC was partially supported by the NSA. IIPS was partially supported by the NSF.1



2 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROWe would like to thank D. Ramakrishnan for asking us the question whi
h led to the �rstpart of this paper. We would like to thank H. Ja
quet for pointing out the need for these
ond part of this paper and for providing us with the sket
h of his proof with Shalika ofTheorem 1.3. 1. Ar
himedean Rankin{Selberg ConvolutionsThis se
tion 
omplements the material in the paper of Ja
quet and Shalika [13℄ and ismeant to show that indeed the results there are enough for most appli
ations. Unless other-wise noted, the notation is as in [13℄.1.1. An extension of Dixmier{Malliavin. Let E be a Fr�e
het spa
e, G a real Lie group,g its 
omplexi�ed Lie algebra, and � a 
ontinuous representation of G on E. Let fpjg be aset of semi-norms on E de�ning the topology on E.Let E1 be the smooth ve
tors of E. Let U(g) be the universal enveloping algebra ofg and let fuig be a basis of U(g). The the topology on E1 is de�ned by the seminormsqi;j(�) = pj(�(ui)�) for � 2 E1. With this topology, E1 is again a Fr�e
het spa
e [1℄. For
onvenien
e, reindex the family fqi;jg by a single index fqig.Let �k ! �0 be a 
onvergent sequen
e in E1. The purpose of this se
tion is to prove thefollowing extension of Theorem 3.3 of [4℄. Our proof is a variation of that in [4℄ whi
h wefollow.Proposition 1.1. There exists a �nite set of fun
tions fj 2 C1
 (G) and a 
olle
tion ofve
tors �k;j 2 E1 su
h that �k = P �(fj)�k;j for all k � 0 and su
h that for ea
h j, �k;j
onverge to �0;j in E1.Proof: Sin
e E1 is linear, it suÆ
es to 
onsider the 
ase �0 = 0.Let fX1; : : : ; Xmg be a basis of g with the property that under the map(t1; : : : ; tm) 7! et1X1 � � � etmXmfrom Rm to G the open set (�1; 1)m is mapped di�eomorphi
ally onto an open set 
 of G.Lemma 1.1. For ea
h 
hoi
e of seminorm qi and non-negative integer n the set of realnumbers fqi(�(X1)2n�k)g is bounded.Proof: Sin
e �(X1)2n a
ts 
ontinuously and the seminorm qi is 
ontinuous, the sequen
eqi(�(X1)2n�k) 
onverges to qi(�(X1)2n0) = 0. Hen
e the sequen
e of real numbers qi(�(X1)2n�k)is bounded. �Let Mn;i be an upper bound for fqi(�(X1)2n�k)g.Lemma 1.2. There exist positive real numbers �n su
h that the sumPn �nMn;i is 
onvergentfor all i.



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 3Proof: For ea
h i there are positive numbers �n;i su
h thatPn �n;iMn;i 
onverges. Let �(k)n =min1�i�k �n;i and set �n = �(n)n . ThenXn �nMn;i =Xn�i �nMn;i +Xn>i �nMn;i:For n > i, �n = min1�j�n�n;j � �n;i. SoXn>i �nMn;i �Xn>i �n;iMn;i <1: �Now let � 2 (0; 12 ℄. Then by Lemma 2.5 and Remark 2.6 of [4℄ there is a sequen
e ofpositive numbers �n and fun
tions g(t) and h(t) in C1
 (R), supported in (��; �) su
h thatXn �nMn;i <1 for all iand pXn=0(�1)n�nÆ(2n)0 � g ! Æ0 + hin the spa
e E 0(R) of 
ompa
tly supported distributions on R. Æ0 is the Dira
 measuresupported at the origin of R.The measures g(t)dt and h(t)dt indu
e measures �1 and �1 on G under the map R ! Ggiven by t 7! etX1 . Then�1 � pXn=0(�1)n�nX2n1 = pXn=0(�1)n�nX2n1 � �1 ! Æe + �1in the spa
e E 0(G) of 
ompa
tly supported distributions on G and�(�1) pXn=0(�1)n�n�(X1)2n�k ! �k + �(�1)�kin the weak topology on E.However, by our 
hoi
e of �n, 1Pn=0 qi(�n�(X1)2n�k) < 1 for ea
h seminorm qi. ThereforepPn=0(�1)n�n�(X1)2n�k 
onverges to a ve
tor �k in E1. Therefore we have�k = �(�1)�k � �(�1)�kfor ea
h �k.Lemma 1.3. The sequen
e �k 
onverges to 0 in E1.



4 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROProof: By 
ontinuity of the seminorms,qi(�k) � limp!1 pXn=0 �nqi(�(X1)2n�k) � 1Xn=0 �nqi(�(X1)2n�k):Sin
e the sum P�nqi(�(X1)2n�k) is absolutely 
onvergent, we 
an inter
hange limit andsummation to obtain limk!1 1Xn=0 �nqi(�(X1)2n�k) = 0:Therefore limk!1 qi(�k) = 0 for all qi. Hen
e �k ! 0 in E1. �Now apply the same pro
ess forX2 through Xm. In this way we obtain a �nite 
olle
tion ofmeasures f�i;jg, where ea
h �i;j is the image of a measure gi;j(ti)dti under the map ti 7! etiXias above, and sequen
es �k;j su
h that�k =Xj �(�1;j � � � � � �m;j)�j;kfor ea
h k with limk!1 �j;k = 0 for ea
h j.The measure �1;j � � � � � �m;j on G is then the image of the measure on Rm given byg1;j(t1) � � �gm;j(tm)dt1 � � �dtm. If gj(t1; � � � ; tm) = g1;j(t1) � � � gm;j(tm) then gj is smooth with
ompa
t support in (��; �)m. Hen
e by our 
hoi
e of basis on g the image of the measuregj(t)dt on Rm will be of the form fj(g)dg on G with fj 2 C1
 (G).Hen
e we now have a �nite 
olle
tion of fj 2 C1
 (G) and �k;j 2 E1 su
h that�k =Xj �(fj)�k;jwith the sequen
e �k;j now 
onverging to 0 in E1 for ea
h j.This 
ompletes the proof of the proposition. �1.2. Continuity of the ar
himedean lo
al integral. Let F be either R or C . Let  bea non-trivial additive 
hara
ter of F . Let GLr = GLr(F ). Let (�; V ) be a �nitely generatedadmissible smooth representation of moderate growth of GLn, as in [1, 13℄. Let Vo denotethe spa
e of Kn{�nite ve
tors, i.e., the underlying Harish-Chandra module. Similarly, let(�; E) be a �nitely generated admissible smooth representation of moderate growth of GLm,and Eo its underlying Harish-Chandra module. Note that both V and E are Fr�e
het spa
esand equal to their spa
es of smooth ve
tors.We further assume that � and � are of Whittaker type as in [13℄, with 
ontinuous Whittakerfun
tionals �� with respe
t to  and �� with respe
t to  �1.We will let (� 
 �; V 
 E) denote the algebrai
 tensor produ
t of (�; V ) and (�; E). Welet (�
̂�; V 
̂E) denote the (proje
tive) topologi
al tensor produ
t. Then (�
̂�; V 
̂E) isthe again an admissible smooth representation of moderate growth of GLn �GLm and is in
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t the Casselman-Walla
h 
ompletion of the algebrai
 tensor produ
t [1, 13℄. (Note: Thisnotation is slightly di�erent from that of [13℄ where they use 
 for the topologi
al tensorprodu
t.)The linear fun
tional � = �� 
 �� is a 
ontinuous Whittaker fun
tional on V 
 E andextends to a Whittaker fun
tional on V 
̂E [13℄. For ea
h v 2 V 
̂E letWv(g; g0) = �(�(g)
̂�(g0)v)and let W(�
̂�;  ) be the spa
ed spanned by all su
h fun
tions. Then W(�
̂�;  ) �W(�;  )
W(�;  �1).As in [13℄, de�ne for W 2 W(�
̂�;  ) and � 2 S(F n)	(s;W;�) = ZNnnGLn W (g; g)�(eng)j det(g)js dg if n = m	(s;W ) = ZNmnGLm W ��g In�m� ; g� j det(g)js�(n�m)=2 dg if n > m	(s;W; j) = ZNmnGLm ZX W 0�0�gx Ij Ik+11A ; g1Aj det(g)js�(n�m)=2dxdg if n > mwhere j + k = n�m� 1. These are all absolutely 
onvergent for Re(s) >> 0.De�ne ~W (g; g0) = W (wng�; wmg0�), where wr is the long Weyl element 0� 1. . .1 1A and� is the outer automorphism of GLr, namely g 7! g� =t g�1. Then ~W is in the Whittakermodel of V �
̂E� = (V 
̂E)�. Then we have the fun
tional equation:	(1� s; ~W; �̂) = !�(�1)n�1
(s; � � �;  )	(s;W;�) if n = m	(1� s; �(wn;m) ~W; j) = !�(�1)n�1
(s; � � �;  )	(s;W; k) if n > mwhere j + k = n�m� 1 and
(s; � � �;  ) = "(s; � � �;  )L(1� s; �� � ��)L(s; � � �) :Note that here L(s; �� �) is as in [13℄, i.e., it is the fa
tor atta
hed to the pair (�; �) by the(arithmeti
) Langlands 
lassi�
ation.The purpose of this se
tion is to prove the following result.



6 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROTheorem 1.1. Let �s, respe
tively �s;�, be the linear fun
tional on V 
̂E de�ned by�s(v) = 	(s;Wv)L(s; � � �) if n > m�s;�(v) = 	(s;Wv;�)L(s; � � �) if n = mfor v 2 V 
̂E. Then �s, respe
tively �s;�, is 
ontinuous on V 
̂E, uniformly for s in a
ompa
t set.Note that we 
laim the 
ontinuity for all s, not just for those s for whi
h the lo
al integralis absolutely 
onvergent.We begin by re
alling the following result of [13℄.Lemma 1.4. Let f 2 C1
 (GLn � GLm). Then there exists a semi-norm � on V 
̂E and agauge � on GLn �GLm depending only on f su
h thatj�(f)Wv(g; g0)j � �(v)�(g; g0)for all v 2 V 
̂E.Proof: The proof is word for word the same as the proof of Proposition 2.1 in [13℄. �We will prove the theorem in the 
ase n > m. The proof in the 
ase n = m is the same,with the obvious modi�
ations.Proposition 1.2. For s in the half plane of absolute 
onvergen
e, the fun
tional v 7!	(s;Wv) is 
ontinuous on V 
̂E, uniformly for s in a 
ompa
t set.Proof: Sin
e the fun
tional is evidently linear, it is enough to show that the sequen
e	(s;Wvk) 
onverges to 0 whenever vk ! 0 in V 
̂E, uniformly for s in a 
ompa
t set.By Proposition 1.1, there exists a �nite 
olle
tion of fun
tions fj 2 C1
 (GLn�GLm) andsequen
es vk;j in V 
̂E su
h that vk = Pj �
̂�(fj)vk;j for ea
h k and vk;j ! 0 for ea
h j.Then we have Wvk(g; g0) =Xj �(fj)Wvk;j (g; g0)so that by Lemma 1.4 jWvk(g; g0)j �Xj �j(vk;j)�j(g; g0)



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 7for seminorms �j and gauges �j depending only on fj. Thenj	(s;Wvk)j = �� Z Wvk ��g In�m� ; g� j det(g)js�(n�m)=2 dg��� Z ��Wvk ��g In�m� ; g� ��j det(g)jRe(s)�(n�m)=2 dg�Xj �j(vk;j) Z �j ��g In�m� ; g� j det(g)jRe(s)�(n�m)=2 dg:
In this last expression, ea
h integral involving a gauge �j is absolutely 
onvergent forRe(s) >> 0, uniformly for s in 
ompa
t sets. Sin
e the seminorms �j are 
ontinuous onV 
̂E and sin
e ea
h sequen
e vk;j ! 0 as k ! 1 we have j	(s;Wvk)j 
onverges to 0 ask !1 uniformly for s in a 
ompa
t set. �Corollary . For s in the realm of absolute 
onvergen
e of the lo
al integrals, the fun
tional�s(v) = 	(s;Wv)=L(s; � � �) is 
ontinuous on V 
̂E, uniformly for s in a 
ompa
t set.Repeating the proof we also obtain the following.Corollary . For s in the realm of absolute 
onvergen
e of the lo
al integrals, the fun
tional�s;j(v) = 	(s;Wv; j)=L(s; � � �) is 
ontinuous on V 
̂E, uniformly for s in a 
ompa
t set.From this we obtain:Corollary . The fun
tional ~�s;j(v) = 	(1� s; �(wn;m) ~Wv; j)=L(1� s; ��� ��) is 
ontinuouson V 
̂E, uniformly for s in a 
ompa
t set, in the domain Re(s) << 0.We are now ready to prove the theorem.Proof:[Proof of Theorem 1.1℄ By the �rst Corollary, we have that the fun
tional �s(v) is
ontinuous in a domain Re(s) > B0, uniformly for s in a 
ompa
t set. If we let �0s(v) =�s(v)es2 then �0s will also be 
ontinuous in this domain with the same uniformity.Let B > B0. Then on the line Re(s) = B we have a uniform estimate j�0s(v)j �
B	(B; jWvj). To see this, writej�0s(v)j = j	(s;Wv)j�� es2L(s; � � �) ��:On the line Re(s) = B, the fun
tion e(B+it)2L(B + it; � � �)�1 is rapidly de
reasing asjtj ! 1. Hen
e there is a 
onstant 
B so that je(B+it)2L(B + it; � � �)�1j � 
B. On theother hand, it is elementary that j	(s;W )j � 	(jW jB; ). This gives the estimate.



8 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROBy the fun
tional equation, we have�0s(v) = 	(s;W )es2L(s; � � �)= !�(�1)n�1"(s; � � �;  )�1	(1� s; �(wn;m) ~W;n�m� 1)es2L(1� s; �� � ��)= ~�0s;n�m�1(v):It follows from the third Corollary that �s;n�m�1 is 
ontinuous in a halfplane Re(s) < A0,hen
e so are �0s(v) and �s(v) = �0s(v)e�s2, with uniformity on 
ompa
t subsets of Re(s) < A0.Arguing as above, if A < A0 we have a uniform bound on the line Re(s) = A of the formj�0s(v)j = j~�0s;n�m�1(v)j � 
A	(1� A; j�(wn;m) ~W j; n�m� 1).Consider now the behavior of �0s(v) in the strip A � Re(s) � B. The fun
tion �0s(v), asa fun
tion of s, grows suÆ
iently slowly that we may apply Phragmen{Lindel�of to the stripA � Re(s) � B and we obtain the estimatej�0s(v)j � max(
B	(B; jWvj); 
A	(1� A; j�(wn;m) ~W j; n�m� 1))in this strip. Now suppose that vk is a sequen
e 
onverging to 0 in V 
̂E. Then the proof ofProposition 1.2 shows that both the 
ontributions 	(B; jWvk j) and 	(1�A; j�(wn;m) ~Wvk j; n�m � 1)) go to 0 as k ! 1. Hen
e �0s(vk) 
onverges to 0 in the strip, uniformly for all s.Hen
e �0s is 
ontinuous for s in the strip, and uniformly so. Then �s(v) = �0s(v)e�s2 will be
ontinuous on this strip, uniformly for s in a 
ompa
t set.This 
ompletes the proof of the theorem. �1.3. Appli
ations. In this se
tion we would like to present our appli
ations to the ana-lyti
 properties of the lo
al Rankin-Selberg 
onvolutions, whi
h it turn are needed for the
ompletion of the global theory of Rankin-Selberg 
onvolutions in the following se
tion.We keep the notation of Se
tion 1.2. Re
all that Vo and Eo are the underlying Harish-Chandra modules of V and E. Let Wo(�;  ) be the subspa
e of W(�;  ) spanned by theWhittaker fun
tions asso
iated to ve
tors in Vo, and similarly for Wo(�;  �1).Theorem 1.2. (i) For ea
h W 2 Wo(�;  ) and W 0 2 Wo(�;  �1) the ratioe(s;W;W 0) = 	(s;W;W 0)L(s; � � �)is an entire fun
tion of s.(ii) For every s0 2 C there is a 
hoi
e of W0 2 Wo(�;  ) and W 00 2 Wo(�;  �1) su
h thate(s0;W0;W 00) 6= 0.Proof: We have that Vo is dense in V and Eo is dense in E. The Casselman-Walla
h
ompletion of the Harish-Chandra module Vo
Eo is V 
̂E. Hen
e Vo
Eo is dense in V 
̂E.



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 9Statement (i) now follows from Theorem 11.1 of [13℄.Statement (ii) follows from Theorem 11.1 of [13℄ and Theorem 2.1 above. By Theorem 11.1of [13℄ we know that L(s; � � �) is obtained by 	(s;W ) for some W = Wv with v 2 V 
̂E.For this v, �s(v) = 	(s;Wv)=L(s; � � �) = 1. Sin
e Vo 
 Eo is dense, there will be a ve
tor~v 2 Vo 
 Eo for whi
h �s0(~v) is 
lose to 1 and in parti
ular is non-zero. Writing ~v as a sumof de
omposable tensors, we �nd a ve
tor v0 
 v00 su
h that �s0(v0 
 v00) 6= 0. But�s0(v0 
 v00) = 	(s0;Wv0 ;W 0v00)L(s0; � � �) = e(s0;Wv0 ;W 0v00):Hen
e (ii). �The same proof yields the following Corollary.Corollary . (i) For ea
h pair W 2 W(�;  ) and W 0 2 W(�;  �1) the ratioe(s;W;W 0) = 	(s;W;W 0)L(s; � � �)is an entire fun
tion of s.(ii) For every s0 2 C there is a 
hoi
e of W0 2 W(�;  ) and W 00 2 W(�;  �1)su
h thate(s0;W0;W 00) 6= 0.These results show that the L-fun
tion L(s; � � �) as de�ned in [13℄ not only 
an
els allpoles of the lo
al integrals, but also dividing by it introdu
es no extraneous zeros. Hen
ethis is the minimal standard Euler fa
tor whi
h 
an
els all poles in the lo
al integrals, evenfor the K-�nite ve
tors, as in the non-ar
himedean 
ase [11℄.The 
ontinuity of the lo
al integrals also plays a role in proving the following result ofStade [16, 17℄ and Ja
quet and Shalika (unpublished).Theorem 1.3. In the 
ases m = n and m = n� 1 there exist a �nite 
olle
tion of K{�nitefun
tions Wi 2 Wo(�;  ), W 0i 2 Wo(�;  �1), and �i 2 S(F n) if ne
essary su
h thatL(s; � � �) =X	(s;Wi;W 0i ) or L(s; � � �) =X	(s;Wi;W 0i ;�i):In the 
ase where both � and � are unrami�ed, Stade shows that one obtains the L-fun
tionexa
tly with the K{invariant Whittaker fun
tions (and S
hwartz fun
tion if ne
essary). Ourresults are not needed in this 
ase.In the general 
ase, Ja
quet has provided us with a sket
h of his argument with Shalika.First one proves that the integrals involving K{�nite fun
tions are equal to the produ
t ofa polynomial and the L-fa
tor. It suÆ
es to prove this for prin
ipal series, sin
e the otherrepresentations embed into prin
ipal series. For prin
ipal series one pro
eeds by an indu
tionargument on n, however one must prove the m = n and m = n�1 
ases simultaneously. The(essentially formal) arguments needed are to be found in the published papers of Ja
quetand Shalika. The polynomials in question then form an ideal and the point now is to showthis ideal is the full polynomial ring. This is then implied by Theorem 1.2 (ii) above.



10 J.W. COGDELL AND I.I. PIATETSKI-SHAPIRO2. Global Rankin{Selberg ConvolutionsIt was re
ently pointed out to us by Ja
quet that the global theory of Rankin{Selberg
onvolutions via integral representations has never appeared in print. We would like totake this opportunity to at least partially 
orre
t this situation. All of the ne
essary globalfoundational material 
an be found in [10℄ and [12℄ and the ne
essarily lo
al results are in[11℄ and [13℄ with the addition of the material in Se
tion 1 above.Let k be a global �eld, A its ring of adeles, and �x a non-trivial 
ontinuous additive
hara
ter  = 
 v of A trivial on k.Let (�; V�) be a unitary 
uspidal representation of GLn(A ) and (�0; V�0) a unitary 
uspidalrepresentation of GLm(A ). Sin
e they are irredu
ible we have restri
ted tensor produ
tde
ompositions � ' 
0�v and �0 ' 
0�0v with (�v; V�v) and (�0v; V�0v) irredu
ible admissiblesmooth generi
 unitary representations of GLn(kv) and GLm(kv) [5, 7, 8℄. Let ! = 
0!v and!0 = 
0!0v be their 
entral 
hara
ters. These are both 
ontinuous 
hara
ters of k�nA � .2.1. Global Eulerian Integrals for GLn�GLm. Let us �rst assume that m < n. Thenthe results we need 
an be found in Part II of [12℄. Let ' 2 V� and '0 2 V�0 be two 
uspforms. The integral representations in this situation are of He
ke type and essentially involvethe integration of these 
usp forms against a fa
tor of j det js, that is, a type of generalizedMellin transform.In GLn, let Pn denote the miraboli
 subgroup, that is, the stabilizer of the row ve
tor(0; : : : ; 0; 1). Let Nn be the subgroup of upper triangular unipotent matri
es, that is, theunipotent radi
al of the standard Borel subgroup. In the usual way, the additive 
hara
ter  de�nes a non-degenerate 
hara
ter of Nn through its abelianization. Let Yn;m be the unipo-tent radi
al of the standard paraboli
 subgroup atta
hed to the partition (m + 1; 1; : : : ; 1).Then  de�nes a 
hara
ter of Yn;m(A ) trivial on Yn;m(k) sin
e Yn;m � Nn. The group Yn;m isnormalized by GLm+1 � GLn and the miraboli
 subgroup Pm+1 � GLm+1 is the stabilizerin GLm+1 of the 
hara
ter  .De�nition . If '(g) is a 
usp form on GLn(A ) de�ne the proje
tion operator Pnm from 
uspforms on GLn(A ) to 
uspidal fun
tions on Pm+1(A ) byPnm'(p) = j det(p)j��n�m�12 � ZYn;m(k)n Yn;m(A ) '�y�p In�m�1�� �1(y) dyfor p 2 Pm+1(A ).This fun
tion Pnm' is essentially the same as the fun
tion denoted V';m in Part II of [12℄.As the integration is over a 
ompa
t domain, the integral is absolutely 
onvergent. We �rstanalyze the behavior on Pm+1(A ). From Se
tion 3.1 of Part II of [12℄ we �nd the proofs ofthe following LemmasLemma 2.1. The fun
tion Pnm'(p) is a 
uspidal fun
tion on Pm+1(A ).



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 11Lemma 2.2. Let ' be a 
usp form on GLn(A ). Then for h 2 GLm(A ), Pnm'�h 1� hasthe Fourier expansionPnm'�h 1� = j det(h)j��n�m�12 � X
2Nm(k)nGLm(k)W'��
 00 In�m��h In�m��with 
onvergen
e absolute and uniform on 
ompa
t subsets.We now have the prerequisites for writing down a family of Eulerian integrals for 
uspforms ' on GLn twisted by automorphi
 forms on GLm for m < n. Let ' 2 V� be a 
uspform on GLn(A ) and '0 2 V�0 a 
usp form on GLm(A ). (A
tually, we 
ould take '0 to be anarbitrary automorphi
 form on GLm(A ).) Consider the integralsI(s;'; '0) = ZGLm(k)nGLm(A ) Pnm'�h 00 1�'0(h)j det(h)js�1=2 dh:The integral I(s;'; '0) is absolutely 
onvergent for all values of the 
omplex parameter s,uniformly in 
ompa
t subsets, sin
e the 
usp forms are rapidly de
reasing. Hen
e it is entireand bounded in any verti
al strip.Let us now investigate the Eulerian properties of these integrals. We �rst repla
e Pnm' byits Fourier expansion.I(s;'; '0) = ZGLm(k)nGLm(A ) Pnm'�h 00 In�m�'0(h)j det(h)js�1=2 dh= ZGLm(k)nGLm(A ) X
2Nm(k)nGLm(k)W'��
 00 In�m��h 00 In�m��'0(h)j det(h)js�(n�m)=2 dh:Sin
e '0(h) is automorphi
 on GLm(A ) and j det(
)j = 1 for 
 2 GLm(k) we may inter
hangethe order of summation and integration for Re(s) >> 0 and then re
ombine to obtainI(s;'; '0) = ZNm(k)nGLm(A ) W'�h 00 In�m�'0(h)j det(h)js�(n�m)=2 dh:This integral is absolutely 
onvergent for Re(s) >> 0 by the gauge estimates of [10, Se
tion13℄ and this justi�es the inter
hange.



12 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROLet us now integrate �rst over Nm(k)nNm(A ). Re
all that for n 2 Nm(A ) � Nn(A ) wehave W'(ng) =  (n)W'(g). Hen
e we haveI(s;'; '0) =ZNm(A )n GLm(A ) ZNm(k)nNm(A ) W'��n 00 In�m��h 00 In�m��'0(nh) dn j det(h)js�(n�m)=2 dh= ZNm(A )n GLm(A ) W'�h 00 In�m�ZNm(k)nNm(A )  (n)'0(nh) dn j det(h)js�(n�m)=2 dh= ZNm(A )n GLm(A ) W'�h 00 In�m�W 0'0(h)j det(h)js�(n�m)=2 dh= 	(s;W';W 0'0)where W 0'0(h) is the  �1-Whittaker fun
tion on GLm(A ) asso
iated to '0, i.e.,W 0'0(h) = ZNm(k)nNm(A ) '0(nh) (n) dn;and we retain absolute 
onvergen
e for Re(s) >> 0.From this point, the fa
t that the integrals are Eulerian is a 
onsequen
e of the unique-ness of the Whittaker model for GLn [9, 15℄. Take ' a smooth 
usp form in a 
uspidalrepresentation � of GLn(A ). Assume in addition that ' is fa
torizable, i.e., in the de
ompo-sition � = 
0�v of � into a restri
ted tensor produ
t of lo
al representations, ' = 
'v is apure tensor. Then there is a 
hoi
e of lo
al Whittaker models so that W'(g) = QW'v(gv).Similarly for de
omposable '0 we have the fa
torization W 0'0(h) =QW 0'0v(hv).If we substitute these fa
torizations into our integral expression, then sin
e the domain ofintegration fa
tors Nm(A )nGLm(A ) = QNm(kv)nGLm(kv) we see that our integral fa
torsinto a produ
t of lo
al integrals	(s;W';W 0'0) =Yv ZNm(kv)nGLm(kv)W'v �hv 00 In�m�W 0'0v(hv)j det(hv)js�(n�m)=2v dhv:If we denote the lo
al integrals by	v(s;W'v ;W 0'0v) = ZNm(kv)nGLm(kv)W'v �hv 00 In�m�W 0'0v(hv)j det(hv)js�(n�m)=2v dhv;whi
h 
onverges for Re(s) >> 0 by the gauge estimate of [10, Proposition 2.3.6℄, we see thatwe now have a family of Eulerian integrals.Now let us return to the question of a fun
tional equation. The fun
tional equation isessentially a 
onsequen
e of the existen
e of the outer automorphism g 7! �(g) = g� = tg�1of GLn. If we de�ne the a
tion of this automorphism on automorphi
 forms by settinge'(g) = '(g�) = '(wng�) and let ePnm = � Æ Pnm Æ � then our integrals naturally satisfy thefun
tional equation I(s;'; '0) = eI(1� s; e'; e'0)



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 13where eI(s;'; '0) = ZGLm(k)nGLm(A ) ePnm'�h 1�'0(h)j det(h)js�1=2 dh:We have established the following result.Theorem 2.1. Let ' 2 V� be a 
usp form on GLn(A ) and '0 2 V�0 a 
usp form on GLm(A )with m < n. Then the family of integrals I(s;'; '0) de�ne entire fun
tions of s, bounded inverti
al strips, and satisfy the fun
tional equationI(s;'; '0) = eI(1� s; e'; e'0):Moreover the integrals are Eulerian and if ' and '0 are fa
torizable, we haveI(s;'; '0) =Yv 	v(s;W'v ;W 0'0v)with 
onvergen
e absolute and uniform for Re(s) >> 0.The integrals o

urring in the right hand side of our fun
tional equation are again Eulerian.One 
an unfold the de�nitions to �nd �rst thateI(1� s; e'; e'0) = e	(1� s; �(wn;m)fW';fW 0'0)where the unfolded global integral ise	(s;W;W 0) = Z Z W 0�hx In�m�1 11A dx W 0(h)j det(h)js�(n�m)=2 dhwith the h integral over Nm(A )nGLm(A ) and the x integral over Mn�m�1;m(A ), the spa
e of(n�m� 1)�m matri
es, � denoting right translation, and wn;m the Weyl element wn;m =�Im wn�m� with wn�m = 0� 1. . .1 1A the standard long Weyl element in GLn�m. Also,for W 2 W(�;  ) we set fW (g) = W (wng�) 2 W(e�;  �1). The extra unipotent integrationis the remnant of ePnm. As before, e	(s;W;W 0) is absolutely 
onvergent for Re(s) >> 0. For' and '0 fa
torizable as before, these integrals e	(s;W';W 0'0) will fa
tor as well. Hen
e wehave e	(s;W';W 0'0) =Yv e	v(s;W'v ;W 0'0v)where e	v(s;Wv;W 0v) = Z Z Wv0�hvxv In�m�1 11A dxv W 0v(hv)j det(hv)js�(n�m)=2 dhvwhere now with the hv integral is over Nm(kv)nGLm(kv) and the xv integral is over thematrix spa
e Mn�m�1;m(kv). Thus, 
oming ba
k to our fun
tional equation, we �nd that theright hand side is Eulerian and fa
tors aseI(1� s; e'; e'0) = e	(1� s; �(wn;m)fW';fW 0'0) =Yv e	v(1� s; �(wn;m)fW'v ;fW 0'0v):



14 J.W. COGDELL AND I.I. PIATETSKI-SHAPIRONow 
onsider the 
ase of m = n. Then the results we need 
an essentially be found inPart I of [12℄. Let (�; V�) and (�0; V�0) be two unitary 
uspidal representations of GLn(A ).Let ' 2 V� and '0 2 V�0 be two 
usp forms. The integral representation in this situation isan honest Rankin{Selberg integral and will involve the integration of the 
usp forms ' and'0 against a parti
ular type of Eisenstein series on GLn(A ).To 
onstru
t the Eisenstein series as in Part I of [12℄ we observe that Pn nGLn ' kn�f0g.If we let S(A n) denote the S
hwartz{Bruhat fun
tions on A n , then ea
h � 2 S de�nes asmooth fun
tion on GLn(A ), left invariant by Pn(A ), by g 7! �((0; : : : ; 0; 1)g) = �(eng). Let� be a unitary idele 
lass 
hara
ter. (For our appli
ation � will be determined by the 
entral
hara
ters of � and �0.) Consider the fun
tionF (g;�; s; �) = j det(g)js ZA� �(aeng)jajns�(a) d�a:If we let P 0n = Zn Pn be the paraboli
 of GLn asso
iated to the partition (n� 1; 1) then one
he
ks that for p0 = �h y0 d� 2 P 0n(A ) with h 2 GLn�1(A ) and d 2 A � we have,F (p0g;�; s; �) = j det(h)jsjdj�(n�1)s�(d)�1F (g;�; s; �) = ÆsP 0n(p0)��1(d)F (g;�; s; �);with the integral absolutely 
onvergent for Re(s) > 1=n, so that if we extend � to a 
hara
terof P 0n by �(p0) = �(d) in the above notation we have that F (g;�; s; �) is a smooth se
tion ofthe normalized indu
ed representation IndGLn(A )P 0n(A ) (Æs�1=2P 0n ��1). Sin
e the indu
ing 
hara
terÆs�1=2P 0n ��1 of P 0n(A ) is invariant under P 0n(k) we may form Eisenstein series from this familyof se
tions by E(g;�; s; �) = X
2P 0n(k)nGLn(k)F (
g;�; s; �):If we repla
e F in this sum by its de�nition we 
an rewrite this Eisenstein series asE(g;�; s; �) = j det(g)js Zk�nA� X�2kn�f0g�(a�g)jajns�(a) d�a= j det(g)js Zk�nA� �0�(a; g)jajns�(a) d�aand this �rst expression is 
onvergent absolutely for Re(s) > 1 [12℄.The se
ond expression essentially gives the Eisenstein series as the Mellin transform of theTheta series ��(a; g) = X�2kn�(a�g);where in the above we have written�0�(a; g) = X�2kn�f0g�(a�g) = ��(a; g)� �(0):



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 15This allows us to obtain the analyti
 properties of the Eisenstein series from the Poissonsummation formula for ��, namely��(a; g) = X�2kn�(a�g) = X�2kn �a;g(�)= X�2kn d�a;g(�) = X�2kn jaj�nj det(g)j�1b�(a�1�tg�1)= jaj�nj det(g)j�1��̂(a�1;tg�1)where the Fourier transform �̂ on S(A n) is de�ned by�̂(x) = ZA� �(y) (ytx) dy:This allows us to write the Eisenstein series asE(g;�; s; �) = j det(g)js Zjaj�1�0�(a; g)jajns�(a) d�a+ j det(g)js�1 Zjaj�1�0̂�(a;tg�1)jajn(1�s)��1(a) d�a+ Æ(s)where Æ(s) = (0 if � is rami�ed�
�(0) j det(g)jss+i� + 
�̂(0) jdet(g)js�1s�1+i� if �(a) = jajin� with � 2 Rwith 
 a non-zero 
onstant. From this we derive easily the basi
 properties of our Eisensteinseries [12, Part I, Se
tion 4℄.Proposition 2.1. The Eisenstein series E(g;�; s; �) has a meromorphi
 
ontinuation toall of C with at most simple poles at s = �i�; 1 � i� when � is unrami�ed of the form�(a) = jajin�. As a fun
tion of g it is smooth of moderate growth and as a fun
tion of s itis bounded in verti
al strips (away from the possible poles), uniformly for g in 
ompa
t sets.Moreover, we have the fun
tional equationE(g;�; s; �) = E(g�; �̂; 1� s; ��1)where g� = tg�1.Note that under the 
enter the Eisenstein series transforms by the 
entral 
hara
ter ��1.Now let us return to our Eulerian integrals. Let � and �0 be our irredu
ible 
uspidalrepresentations. Let their 
entral 
hara
ters be ! and !0. Set � = !!0. Then for ea
h pairof 
usp forms ' 2 V� and '0 2 V�0 and ea
h S
hwartz-Bruhat fun
tion � 2 S(A n) setI(s;'; '0;�) = ZZn(A ) GLn(k)nGLn(A ) '(g)'0(g)E(g;�; s; �) dg:Sin
e the two 
usp forms are rapidly de
reasing on Zn(A )GLn(k)nGLn(A ) and the Eisensteinis only of moderate growth, we see that the integral 
onverges absolutely for all s away fromthe poles of the Eisenstein series and is hen
e meromorphi
. It will be bounded in verti
alstrips away from the poles and satis�es the fun
tional equationI(s;'; '0;�) = I(1� s; e'; e'0; �̂);
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oming from the fun
tional equation of the Eisenstein series, where we still have e'(g) ='(g�) = '(wng�) 2 Ve� and similarly for e'0.These integrals will be entire unless we have �(a) = !(a)!0(a) = jajin� is unrami�ed. Inthat 
ase, the residue at s = �i� will beRess=�i� I(s;'; '0;�) = �
�(0) ZZn(A ) GLn(A )n GLn(A ) '(g)'0(g)j det(g)j�i� dgand at s = 1� i� we 
an write the residue asRess=1�i� I(s;'; '0;�) = 
�̂(0) ZZn(A ) GLn(k)nGLn(A ) e'(g)e'0(g)j det(g)ji� dg:Therefore these residues de�ne GLn(A ) invariant pairings between � and �0 
 j det j�i� orequivalently between e� and e�0 
 j det ji�. Hen
e a residues 
an be non-zero only if � 'e�0 
 j det ji� and in this 
ase we 
an �nd ', '0, and � su
h that indeed the residue does notvanish.We have yet to 
he
k that our integrals are Eulerian. To this end we take the integral,repla
e the Eisenstein series by its de�nition, and unfold:I(s;'; '0;�) = ZZn(A ) GLn(k)nGLn(A ) '(g)'0(g)E(g;�; s; �) dg= ZZn(A ) P 0n(k)nGLn(A ) '(g)'0(g)F (g;�; s; �) dg= ZZn(A ) Pn(k)nGLn(A ) '(g)'0(g)j det(g)js ZA� �(aeng)jajns�(a) da dg= ZPn(k)nGLn(A ) '(g)'0(g)�(eng)j det(g)js dg:We next repla
e ' by its Fourier expansion in the form'(g) = X
2Nn(k)nPn(k)W'(
g)and unfold to �ndI(s;'; '0;�) = ZNn(k)nGLn(A ) W'(g)'0(g)�(eng)j det(g)js dg= ZNn(A )n GLn(A ) W'(g) ZNn(k)nNn(A ) '0(ng) (n) dn �(eng)j det(g)js dg= ZNn(A )n GLn(A ) W'(g)W 0'0(g)�(eng)j det(g)js dg= 	(s;W';W 0'0 ;�):This expression 
onverges for Re(s) >> 0 by the gauge estimates as before.To 
ontinue, we assume that ', '0 and � are de
omposable tensors under the isomorphisms� ' 
0�v, �0 ' 
0�0v, and S(A n) ' 
0S(knv ) so that we have W'(g) =QvW'v(gv), W 0'0(g) =



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 17QvW 0'0v(gv) and �(g) = Qv �v(gv). Then, sin
e the domain of integration also naturallyfa
tors we 
an de
ompose this last integral into an Euler produ
t and now write	(s;W';W 0'0;�) =Yv 	v(s;W'v ;W 0'0v ;�v);where 	v(s;W'v ;W 0'0v ;�v) = ZNn(kv)nGLn(kv)W'v(gv)W 0'0v(gv)�v(engv)j det(gv)js dgv;still with 
onvergen
e for Re(s) >> 0 by the lo
al gauge estimates. We have now establishedthe following result.Theorem 2.2. Let ' 2 V� and '0 2 V�0 
usp forms on GLn(A ) and let � 2 S(A n). Thenthe family of integrals I(s;'; '0;�) de�ne meromorphi
 fun
tions of s, bounded in verti
alstrips away from the poles. The only possible poles are simple and o

ur i� � ' e�0 
 j det ji�with � real and are then at s = �i� and s = 1� i� with residues as above. They satisfy thefun
tional equation I(s;'; '0;�) = I(1� s;fW';fW 0'0; �̂):Moreover, for ', '0, and � fa
torizable we have that the integrals are Eulerian and we haveI(s;'; '0;�) =Yv 	v(s;W'v ;W 0'0v ;�v)with 
onvergen
e absolute and uniform for Re(s) >> 0.We remark in passing that the right hand side of the fun
tional equation also unfolds asI(1� s; e'; e'0; �̂) = ZNn(A )n GLn(A ) fW'(g)fW 0'0(g)�̂(eng)j det(g)j1�s dg=Yv 	v(1� s;fW'v ;fW 0'0v ; �̂)with 
onvergen
e for Re(s) << 0.2.2. The Global L-fun
tion. Let S be the �nite set of pla
es of k, 
ontaining the ar
himedeanpla
es S1, su
h that for all v =2 S we have that �v, �0v, and  v are unrami�ed.For ea
h pla
e v of k lo
al fa
tors L(s; �v � �0v) and "(s; �v � �0v;  v) have been de�nedthrough the lo
al theory of Rankin-Selberg 
onvolutions in [11℄ for non-ar
himedean v andin [13℄ for ar
himedean v. Then we 
an at least formally de�neL(s; � � �0) =Yv L(s; �v � �0v) and "(s; � � �0) =Yv "(s; �v � �0v;  v):We need to dis
uss 
onvergen
e of these produ
ts. Let us �rst 
onsider the 
onvergen
eof L(s; �� �0). For those v =2 S, so �v, �0v, and  v are unrami�ed, Ja
quet and Shalika haveexpli
itly 
omputed the lo
al fa
tor in [12, Part I, Se
tion 2; Part II, Se
tion 1℄. They showL(s; �v � �0v) = det(I � q�sv A�v 
 A�0v)�1



18 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROwhere A�v and A�0v are the asso
iated Satake parameters, and that the eigenvalues of A�vand A�0v are all of absolute value less than q1=2v [12, Part I, Corollary 2.5℄. Thus, as in [12,Theorem 5.3℄, the partial (or in
omplete) L-fun
tionLS(s; � � �0) =Yv=2S L(s; �v � �0v) =Yv=2S det(I � q�sv A�v 
 A�0v)�1is absolutely 
onvergent for Re(s) >> 0. Thus the same is true for L(s; � � �0).Remark: The lo
al 
al
ulation alluded to above is a
tually the 
omputation of the lo
alintegral with the unrami�ed Whittaker fun
tions. For v =2 S, in the Whittaker models therewill be unique normalized K = GL(ov){�xed Whittaker fun
tions, W Æv 2 W(�v;  v) andW 0Æv 2 W(�0v;  �1v ), normalized by W Æv (e) = W 0Æv (e) = 1. When when n = m let � = �Æv bethe 
hara
teristi
 fun
tion of the latti
e ovn � knv . What Ja
quet and Shalika show is thatdet(I � q�sv A�v 
 A�0v)�1 = (	(s;W Æv ;W 0Æv ) m < n	(s;W Æv ;W 0Æv ;�Æv) m = nand hen
e det(I� q�sv A�v 
A�0v) divides L(s; �v��0v)�1. To see that this a
tually 
al
ulatesthe L-fun
tion, one needs to 
ombine this 
al
ulation with Proposition 9.4 of [11℄.)For the "{fa
tor, it follows from the lo
al 
al
ulation 
ited above and the lo
al fun
tionalequation [11, Theorem 2.7 (iii)℄ that "(s; �v � �0v;  v) � 1 for v =2 S so that the produ
t isin fa
t a �nite produ
t and there is no problem with 
onvergen
e. The fa
t that "(s; �� �0)is independent of  
an either be 
he
ked by analyzing how the lo
al "{fa
tors vary as youvary  , as is done in [2, Lemma 2.1℄, or it will follow from the global fun
tional equationpresented below.2.3. The basi
 analyti
 properties. Our �rst goal is to show that these L-fun
tions haveni
e analyti
 properties.Theorem 2.3. The global L{fun
tions L(s; � � �0) are ni
e in the sense that(1) L(s; � � �0) has a meromorphi
 
ontinuation to all of C ,(2) the extended fun
tion is bounded in verti
al strips (away from its poles),(3) they satisfy the fun
tional equationL(s; � � �0) = "(s; � � �0)L(1� s; e� � e�0):To do so, we relate the L-fun
tions to the global integrals.Let us begin with 
ontinuation. In the 
ase m < n for every ' 2 V� and '0 2 V�0 we knowthe integral I(s;'; '0) 
onverges absolutely for all s. From the unfolding in Se
tion 2.1 andthe lo
al 
al
ulation mentioned above we know that for Re(s) >> 0 and for appropriate
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hoi
es of ' and '0 we haveI(s;'; '0) =Yv 	v(s;W'v ;W'0v)=  Yv2S	v(s;W'v ;W'0v)!LS(s; � � �0)=  Yv2S 	v(s;W'v ;W'0v)L(s; �v � �0v) !L(s; � � �0)=  Yv2S ev(s;W'v ;W'0v)!L(s; � � �0)We know that ea
h ev(s;Wv;W 0v) is entire. For non-ar
himedean v this follows from [11,Theorem 2.3℄ and for ar
himedean v this follows from Theorem 1.2 above and its Corollary.Hen
e L(s; � � �0) has a meromorphi
 
ontinuation. If m = n then for appropriate ' 2 V�,'0 2 V�0, and � 2 S(A n) we again haveI(s;'; '0;�) =  Yv2S ev(s;W'v ;W 0'0v ;�v)!L(s; � � �0):On
e again, sin
e ea
h ev(s;Wv;W 0v;�v) is entire, L(s; � � �0) has a meromorphi
 
ontinua-tion.Let us next turn to the fun
tional equation. This will follow from the fun
tional equationfor the global integrals given above and the lo
al fun
tional equations [11, Theorem 2.7 (iii)℄and [13, Theorem 5.1 (ii)℄. We will 
onsider only the 
ase where m < n sin
e the other 
aseis entirely analogous. The fun
tional equation for the global integrals is simplyI(s;'; '0) = ~I(1� s; e'; e'0):On
e again we have for appropriate ' and '0I(s;'; '0) =  Yv2S ev(s;W'v ;W 0'0v)!L(s; � � �0)while on the other side~I(1� s; e'; e'0) =  Yv2S ~ev(1� s; �(wn;m)fW'v ;fW 0'0v)!L(1� s; e� � e�0):However, by the lo
al fun
tional equations, for ea
h v 2 S we have~ev(1� s; �(wn;m)fWv;fW 0v) = e	(1� s; �(wn;m)fWv;fW 0v)L(1� s; e� � e�0)= !0v(�1)n�1"(s; �v � �0v;  v)	(s;Wv;W 0v)L(s; � � �0)= !0v(�1)n�1"(s; �v � �0v;  v)ev(s;Wv;W 0v)



20 J.W. COGDELL AND I.I. PIATETSKI-SHAPIROCombining these, we haveL(s; � � �0) =  Yv2S !0v(�1)n�1"(s; �v � �0v;  v)!L(1� s; e� � e�0):Now, for v =2 S we know that �0v is unrami�ed, so !0v(�1) = 1, and also that "(s; �v��0v;  v) �1. Therefore Yv2S !0v(�1)n�1"(s; �v � �0v;  v) =Yv !0v(�1)n�1"(s; �v � �0v;  v)= !0(�1)n�1"(s; � � �0)= "(s; � � �0)and we indeed have L(s; � � �0) = "(s; � � �0)L(1� s; e� � e�0):Note that this implies that "(s; � � �0) is independent of  as well.Let us now turn to the boundedness in verti
al strips. For the global integrals I(s;'; '0)or I(s;'; ';�) this simply follows from the absolute 
onvergen
e. For the L-fun
tion itself,the paradigm is the following. For every �nite pla
e v 2 S, by the de�nition of the lo
al L-fun
tion as the generator of the fra
tional ideal spanned by the lo
al integrals [11, Theorem2.7 (ii)℄ we know that there is a 
hoi
e of �nite 
olle
tions Wv;i, W 0v;i, and if ne
essary �v;isu
h thatL(s; �v � �0v) =X	(s;Wv;i;W 0v0i) or L(s; �v � �0v) =X	(s;Wv;i;W 0v0i;�v;i):Ifm = n�1 orm = n then by the results of Stade [16, 17℄ or the unpublished work of Ja
quetand Shalika presented in Theorem 1.3 above we know that we have similar statements forv 2 S1. Hen
e if m = n� 1 or m = n there are �nite global 
hoi
es 'i, '0i, and if ne
essary�i su
h thatL(s; � � �0) =X I(s;'i; '0i) or L(s; � � �0) =X I(s;'i; '0i;�i):Then the boundedness in verti
al strips for the L-fun
tions follows from that of the globalintegrals.However, if m < n � 1 then all we know at those v 2 S1 is that there is a fun
tionWv 2 W(�v
̂�0v;  v) = W(�v;  v)
̂W(�0v;  �1v ) or a �nite 
olle
tion of su
h fun
tions Wv;iand of �v;i su
h thatL(s; �v � �0v) = I(s;Wv) or L(s; �v � �0v) =X I(s;Wv;i;�v;i):To make the above paradigm work for m < n � 1 one possibility would be to rework thetheory of global Eulerian integrals for 
usp forms in V�
̂V�0. This is naturally the spa
eof smooth ve
tors in an irredu
ible unitary 
uspidal representation of GLn(A ) � GLm(A ).So we would need extend the global theory of integrals parallel to Ja
quet and Shalika'sextension of the lo
al integrals in the ar
himedean theory. There seems to be no obstru
tionto 
arrying this out, and then we would obtain boundedness in verti
al strips for L(s; ���0)in general within the 
ontext of integral representations. However, if one approa
hes theseL-fun
tion by the method of 
onstant terms and Fourier 
oeÆ
ients of Eisenstein series, then



REMARKS ON RANKIN-SELBERG CONVOLUTIONS 21Gelbart and Shahidi have shown a wide 
lass of automorphi
 L-fun
tions, in
luding ours, tobe bounded in verti
al strips [6℄. Thus the boundedness in verti
al strips is true, even if wemust go \outside the method" for this fa
t at this point.2.4. Poles of L-fun
tions. Let us determine where the global L-fun
tions 
an have poles.The poles of the L-fun
tions will be related to the poles of the global integrals. Re
all fromSe
tion 2.2 that in the 
ase of m < n we have that the global integrals I(s;'; '0) are entireand that when m = n then I(s;'; '0;�) 
an have at most simple poles and they o

ur ats = �i� and s = 1� i� for � real when � ' e�0
j det ji�. As we have noted above, the globalintegrals and global L-fun
tions are related, for appropriate ', '0, and �, byI(s;'; '0) =  Yv2S ev(s;W'v ;W 0'0v)!L(s; � � �0)or I(s;'; '0;�) =  Yv2S ev(s;W'v ;W 0'0v ;�v)!L(s; � � �0):On the other hand, for any s0 2 C and any v there is a 
hoi
e of lo
al Wv, W 0v, and �v su
hthat the lo
al fa
tors ev(s0;Wv;W 0v) 6= 0 or ev(s0;Wv;W 0v;�v) 6= 0. For ar
himedean v thisis Theorem 1.2 (ii) and its Corollary. For non-ar
himedean v this follows from the de�nitionof the L-fun
tion as the generator of the fra
tional ideal spanned by the lo
al integrals. Asnoted above this implies that there are �nite 
olle
tionsWv;i, W 0v;i, and �v;i if ne
essary su
hthatL(s; �v � �0v) =X	(s;Wv;i;W 0v0i) or L(s; �v � �0v) =X	(s;Wv;i;W 0v0i;�v;i)whi
h is equivalent to1 =X e(s;Wv;i;W 0v0i) or 1 =X e(s;Wv;i;W 0v0i;�v;i):Hen
e for any 
hoi
e of s0 2 C one of the e(s0;Wv;i;W 0v0i) or e(s0;Wv;i;W 0v0i;�v;i) must benon-vanishing. So as we vary ', '0 and � at the pla
es v 2 S we see that division bythese fa
tors 
an introdu
e no extraneous poles in L(s; � � �0), that is, in keeping withthe lo
al 
hara
terization of the L-fa
tor in terms of poles of lo
al integrals, globally thepoles of L(s; � � �0) are pre
isely the poles of the family of global integrals fI(s;'; '0)g orfI(s;'; '0;�)g. Hen
e from Theorems 2.1 and 2.2 we have.Theorem 2.4. If m < n then L(s; �� �0) is entire. If m = n, then L(s; �� �0) has at mostsimple poles and they o

ur i� � ' e�0 
 j det ji� with � real and are then at s = �i� ands = 1� i�.If we apply this with �0 = e� we obtain the following 
orollary.Corollary . L(s; � � e�) has simple poles at s = 0 and s = 1.Sin
e a general, not ne
essarily unitary, 
uspidal representation � is always of the form� = �u 
 j det jr with �u unitary 
uspidal, these results extend in a straightforward way toall 
uspidal representations. In parti
ular, this gives the proof of Ja
quet, Piatetski-Shapiro,
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h was alluded to in the appendix of [14℄, where these resultswere proven using the te
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