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Abstract. We address an erroneous claim in [1] about the behavior of Bohr

neighborhoods.

Let G be a group. For convenience, we call an arbitrary subset X of G normal
(in G) if gXg-1 = X for all g ∈ G.

Let Tr denote the r-dimensional torus, with additive group structure from (R/Z)r.
We equip Tr with the product of the arclength metric (normalized to one).

Given an integer r ≥ 1, and a real number δ > 0, we say that B ⊆ G is a
(δ, r)-Bohr neighborhood in G if there is a homomorphism τ : G → Tr such
that B = τ -1(U), where U ⊆ Tr is the open identity neighborhood of radius δ.
In this case, U is normal in Tr, and thus B is normal in G since, given g ∈ G,
we have gBg-1 = τ -1(τ(g)Uτ(g)-1) = τ -1(U) = B. In [1, Proposition 4.9(a)], we
further claimed that if H is a normal subgroup of G, then a Bohr neighborhood
in H is still normal in G. However this is false, and need not even hold when the
Bohr neighborhood in question is actually a subgroup of H. In particular, this is
due to the fact that normality of subgroups can fail to be transitive. The following
example provides some further details.

Example 1. First, we note that if H is a group and B ≤ H is a normal subgroup
of finite index n ≥ 1, with H/B abelian, then B is a (δ, r)-Bohr neighborhood
in H with r, δ-1 ≤ On(1). To see this, we first apply the classification of finite
abelian groups to write H/B ∼= (Z/p1Z) × . . . × (Z/prZ) for some prime powers
p1, . . . , pr. Note that r ≤ log2 n. Then via this isomorphism we can embed H/B
into Tr using the standard embedding of a cyclic group Z/pZ into the unit circle
via pth roots of unity. Finally, we precompose the embedding of H/B to Tr with
the canonical projection from H to H/B to obtain a homomorphism τ : H → Tr. If
δ = min{1/p1, . . . , 1/pr}, and U ⊆ Tr is the open identity neighborhood of radius
δ, then U ∩ τ(H) = {0}, and thus B = τ -1(U). Note also that δ ≥ 1/n.

By the above paragraph, it follows that whenever we have a group G, a normal
subgroup H of G, and a normal subgroup B of H such that B is not normal in G and
H/B is finite abelian, then B is a counterexample to the erroneous claim made in [1,
Proposition 4.9(a)]. For a specific example of this situation, let G be the alternating
group A4, let H be the Klein-4 subgroup {id, (12)(34), (13)(24), (14)(23)} of G, and
let B the the two element subgroup {id, (12)(34)}.

At this point, it is worth emphasizing that this false claim from [1] is not used
anywhere in the proofs of the main results (or anywhere else in the paper at all).
The main result from [1] is a structural theorem for a k-NIP set A in a finite group
G. Roughly speaking, we prove that A can be approximated by a union of translates
of a Bohr neighborhood B of bounded complexity in a normal subgroup H ≤ G
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of bounded index. The proof deals with left translates of B, and so the purpose
of the (false) claim was only to provide an aesthetic observation that one need not
worry about left versus right translates of B. Nevertheless, here we show how one
can in fact assume B is normal in G in the previous structure theorem for A. The
following is the key proposition that makes this work.

Proposition 2. Let G be a group, and let H be normal subgroup of G of finite
index m. Suppose B is a (δ, r)-Bohr neighborhood in H, and let B′ =

⋂
g∈G gBg

-1.

Then B′ is a (δ, rm)-Bohr neighborhood in H.

Proof. Let g1, . . . , gm ∈ G be coset representatives for H in G. We first observe
that B′ =

⋂m
i=1 giBg

-1
i . In particular, given g ∈ G, we can write g = gih for some

1 ≤ i ≤ m and h ∈ H, whence gBg-1 = gihBh
-1g-1i = giBg

-1
i (recall that B is

normal in H).
Now fix τ : H → Tr such that B = τ -1(U), where U ⊆ Tr is the open identity

neighborhood of radius δ. Since H is normal in G, it follows that for any g ∈ G,
the map τg : H → Tr such that τg(x) = τ(g-1xg) is a well-defined homomorphism.
Moreover, τ -1g (U) = gBg-1. Identify Trm as (Tr)m, and define τ̂ : H → Trm such
that

τ̂(x) = (τg1(x), . . . , τgm(x)).

Then τ̂ -1(Um) =
⋂m
i=1 τ

-1
gi (U) =

⋂m
i=1 giBg

-1
i = B′. Since Um is the open identity

neighborhood of radius δ in Trm, we conclude that B′ is a (δ, rm)-Bohr neighbor-
hood in H. �

Now we prove a modified version of the key lemma from [1].

Lemma 3. For any k ≥ 1 and ε >, and any function γ : (Z+)2 × (0, 1] → R+,
there is n = n(k, ε, γ) such that the following holds. Suppose G is a finite group
and A ⊆ G is k-NIP. Then there are

∗ a normal subgroup H ≤ G of index m ≤ n,
∗ a (δ, r)-Bohr neighborhood B in H, which is normal in G, and with r ≤ n and

1
n ≤ δ ≤ 1, and

∗ a set Z ⊆ G, with |Z| < ε|G|,
such that for any g ∈ G\Z, either |gB∩A| < γ(m, r, δ)|B| or |gB\A| < γ(m, r, δ)|B|.

Proof. If one removes the requirement that B is normal in G, then the statement
follows immediately from [1, Lemma 5.6] (that result also includes an “approximate
Bohr set” Y containing B, which we do not need to mention here). So, with k, ε,
and γ fixed, define γ0 : (Z+)2 × (0, 1] → R+ such that γ0(x, y, z) = zxyγ(x, xy, z),
and let n0 = n(k, ε, γ0) be given by [1, Lemma 5.6]. Now fix a group G and a
k-NIP set A ⊆ G. Then we have a normal subgroup H ≤ G of index m ≤ n0, a
(δ, r0)-Bohr neighborhood B0 in H, with r0 ≤ n0 and 1

n0
≤ δ ≤ 1, and a set Z ⊆ G,

with |Z| < ε|G|, such that for any g ∈ G\Z, either |gB0 ∩ A| < γ0(m, r0, δ)|B0| or
|gB0\A| < γ0(m, r0, δ)|B0|.

Set r = r0m, n = n20, and B =
⋂
g∈G gB0g

-1. By Proposition 2, B is a (δ, r)-Bohr
neighborhood in H, which is normal in G, and we have r ≤ n. So to finish the
proof, we fix g ∈ G\Z and show that either |gB ∩ A| < γ(m, r, δ)|B| or |gB\A| <
γ(m, r, δ)|B|. Since B ⊆ B0 we have |gB ∩A| ≤ |gB0 ∩A| and |gB\A| ≤ |gB0\A|.
So it suffices to show that γ0(m, r0, δ)|B0| ≤ γ(m, r, δ)|B|. By [1, Proposition 4.5],
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we have |B| ≥ δr|H| ≥ δr|B0|. Therefore

γ0(m, r0, δ)|B0| ≤ δ-rγ0(m, r0, δ)|B| = δ-rδr0mγ(m, r0m, δ)|B| = γ(m, r, δ)|B|,
as desired. �

Using the previous lemma in place of [1, Lemma 5.6], one can now follow the
proof of [1, Theorem 5.7] essentially verbatim to obtain a stronger version in which
the Bohr neighborhood B in the statement is also normal in G. However, we will
repeat the proof here in detail both for completeness and also to officially show that
one can obtain “functional” control on the error in regular translates of B. (This
is evident from [1, Lemma 5.6], but was not made explicit in [1, Theorem 5.7].)

Theorem 4. For any k ≥ 1 and ε > 0, and any function γ : (Z+)2 × (0, 1]→ R+,
there is n = n(k, ε, γ) such that the following holds. Suppose G is a finite group
and A ⊆ G is k-NIP. Then there are

∗ a normal subgroup H ≤ G of index m ≤ n,
∗ a (δ, r)-Bohr neighborhood B in H, which is normal in G, with r ≤ n and

1
n ≤ δ ≤ 1, and

∗ a subset Z ⊆ G, with |Z| < ε|G|,
satisfying the following properties.

(i) (structure) There is a set D ⊆ G, which is a union of at most m( 2
δ )r translates

of B, such that |(A4D)\Z| < γ(m, r, δ)|B|.
(ii) (regularity) For any g ∈ G\Z, either |gB ∩ A| < γ(m, r, δ)|B| or |gB\A| <

γ(m, r, δ)|B|.

Proof. Fix k ≥ 1, ε > 0, and γ : (Z+)2×(0, 1]→ R+. Define γ∗ : (Z+)2×(0, 1]→ R+

such that γ∗(x, y, z) = γ(x, y, z)x-1( z2 )y. Let n = n(k, ε, γ∗) be given by Lemma 3.
Fix a finite group G and a k-NIP suset A ⊆ G. By Lemma 3 there are

∗ a normal subset H ≤ G of index m ≤ n,
∗ a (δ, r)-Bohr neighborhood B in H, which is normal in G, with r ≤ n and

1
n ≤ δ ≤ 1, and

∗ a set Z ⊆ G, with |Z| < ε|G|,
such that for any g ∈ G\Z, either |gB∩A| < γ∗(m, r, δ)|B| or |gB\A| < γ∗(m, r, δ)|B|.
Since γ∗(m, r, δ) ≤ γ(m, r, δ), this immediately yields condition (ii).

For condition (i), we argue as follows. First, by [1, Proposition 4.9(b)], there
is a set F ⊆ G\Z such that |F | ≤ m( 2

δ )r and G\Z ⊆ FB. Let I = {g ∈ F :
|gB\A| < γ∗(m, r, δ)|B|}, and note that if g ∈ F\I then |gB ∩A| < γ∗(m, r, δ)|B|.
Let D = IB. Since G ⊆ Z ⊆ FB, we have

A4D ⊆ Z ∪
⋃
g∈I

(gB\A) ∪
⋃

g∈F\I

(gB ∩A), and so

|(A4D)\Z| ≤
∑
g∈I
|gB\A|+

∑
g∈F\I

|gB ∩A| < |F |γ∗(m, r, δ)|B| ≤ γ(m, r, δ)|B|. �
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