Sample Proofs

Theorem. There are infinitely many prime numbers.
Proof. Suppose, towards a contradiction, that there are not infinitely many prime numbers. Then there are only finitely many, so we can list them as $p_{1}, p_{2}, \ldots, p_{k}$, for some integer $k \geq 1$. Define

$$
N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k} .
$$

Then the integer $N+1$ is at least 2 , and so must have some prime factor q. By assumption, q divides $N+1$. By definition, q divides N, since it must be one of the primes p_{1}, \ldots, p_{k}. Therefore q divides $N+1-N=1$. But this is a contradiction, since q is prime and 1 is not divisible by any prime number.

Theorem. $\ln 2$ is irrational.
Proof. Suppose, towards a contradiction, that $\ln 2$ is rational. Then $\ln 2$ can be written as $\frac{m}{n}$, where $m, n \in \mathbb{Z}, n \neq 0$, and $m \geq 0$. Note that $m \neq 0$, since otherwise we would have $\ln 2=0$, which is not true. So we may assume $m>0$. Then

$$
\begin{aligned}
\ln 2=\frac{m}{n} & \Rightarrow 2=e^{\frac{m}{n}} \\
& \Rightarrow 2^{n}=e^{m}
\end{aligned}
$$

Therefore e is a root of the polynomial $x^{m}-2^{n}$, which implies that e is an algebraic number. This is a contradiction, since e is known to be transcendental (not algebraic).

