D. ADDENDUM TO LECTURE 6 (G_A^{00} AND EXERCISES 5 & 6)

Let G be a sufficiently saturated pseudofinite group, and suppose $A \subseteq G$ is definable and NIP. Let \mathcal{B} be the Boolean algebra generated by the collection $\{gAh : g, h \in G\}$ of bi-translates of A. In Lecture 6, we defined the stabilizer subgroup

$$\operatorname{Stab}^{\mu}(A) = \{ g \in G : \mu(gA \triangle A) = 0 \}$$

(where, as usual, μ denotes the normalized pseudofinite counting measure on definable subsets of G). We then proved the following result:

Theorem 6.4. Stab^{μ}(A) is a countably \mathcal{B} -type-definable subgroup of index at most 2^{\aleph_0} .

As it may not be the case that $\operatorname{Stab}^{\mu}(A)$ is *normal* in G, we defined:

$$G_A^{00} := \bigcap_{g \in G} g \operatorname{Stab}^{\mu}(A) g^{-1}.$$

Then I sketched the proof of the following corollary (and here I give more details).

Corollary 6.6. G_A^{00} is a countably \mathcal{B} -type-definable normal subgroup of index at most 2^{\aleph_0} .

Proof. By construction, G_A^{00} is a normal subgroup. We first observe that it is \mathcal{B} -type-definable of bounded index. Indeed, if $I \subseteq G$ is a set of left coset representatives for $\operatorname{Stab}^{\mu}(A)$, then $|I| \leq 2^{\aleph_0}$ and $G_A^{00} = \bigcap_{g \in I} g \operatorname{Stab}^{\mu}(A) g^{-1}$. Since $\operatorname{Stab}^{\mu}(A)$ is an intersection of countably many sets in \mathcal{B} , and \mathcal{B} is bi-invariant, it follows that G_A^{00} is an intersection of at most 2^{\aleph_0} sets in \mathcal{B} . Also, since any conjugate of $\operatorname{Stab}^{\mu}(A)$ still has index at most 2^{\aleph_0} , it follows that G_A^{00} has index at most $2^{2^{\aleph_0}}$.

Next, we prove that G_A^{00} is *C*-invariant for some countable set $C \subseteq G$, i.e., $\sigma(G_A^{00}) = G_A^{00}$ for any (model-theoretic) automorphism σ of *G* that fixes *C* pointwise. To see this, recall that $\operatorname{Stab}^{\mu}(A)$ is an intersection of countably many definable sets, and so we may let *C* be the collection of all parameters used in the formulas defining these sets. So *C* is countable. Now suppose σ is an automorphism of *G* that fixes *C* pointwise. Then σ fixes any *C*-definable set setwise, and thus fixes $\operatorname{Stab}^{\mu}(A)$ setwise. Now,

$$\sigma(G_A^{00}) = \bigcap_{g \in G} \sigma(g \operatorname{Stab}^{\mu}(A)g^{-1}) = \bigcap_{g \in G} \sigma(g) \operatorname{Stab}^{\mu}(A)\sigma(g)^{-1} = G_A^{00}$$

(note that σ is, in particular, a group-theoretic automorphism of G).

We now know that G_A^{00} is type-definable and *C*-invariant. It follows from Exercise 5(d) that G_A^{00} is type-definable over *C*. Without loss of generality, we can assume we are working in a finite language (since G_A^{00} is \mathcal{B} -type-definable, we only need the group language and enough symbols to define *A*). So there are only countably many formulas with parameters from *C*, and thus only countably many *C*-definable subsets of *G*. So G_A^{00} is *countably* type-definable. Since G_A^{00} has bounded index, it follows from Exercise 6(c) that $[G:G_A^{00}] \leq 2^{\aleph_0}$.

The final issue is that we don't yet have countable type-definability using sets in \mathcal{B} (in general, Exercise 5(d) introduces quantifiers). But this can be fixed with a very useful saturation trick. In particular, we have two representations of G_A^{00} , namely, as a countably type-definable set and a \mathcal{B} -type-definable set. So let $G_A^{00} = \bigcap_{n=0}^{\infty} X_n$, where each X_n is definable; and let $G_A^{00} = \bigcap_{i \in I} Y_i$ where I is small and each Y_i is in \mathcal{B} . For any $n \geq 0$, we have

$$\bigcap_{i \in I} Y_i = \underset{1}{G_A^{00}} \subseteq X_n,$$

and so by saturation (specifically, Exercise 5(a)), there is some finite $I_n \subseteq I$ such that $Z_n := \bigcap_{i \in I_n} Y_i \subseteq X_n$. Note that $Z_n \in \mathcal{B}$ for any $n \ge 0$. By construction,

$$G_A^{00} = \bigcap_{i \in I} Y_i \subseteq \bigcap_{n=0}^{\infty} Z_n \subseteq \bigcap_{n=0}^{\infty} X_n = G_A^{00}$$

Therefore $G_A^{00} = \bigcap_{n=0}^{\infty} Z_n$ is countably \mathcal{B} -type-definable.

FURTHER READING

Since Exercises 5 and 6 are a little more involved than some of the other basic saturation exercises, I have included proofs (of the relevant parts) below.

We work with types (i.e. finitely consistent collections of formulas), and follow the convention of listing free variables, e.g., $p(\bar{x})$ denotes a type consisting of formulas with free variables lying in the tuple \bar{x} . Note that since types can contain infinitely many formulas, \bar{x} might be infinite. We also say that a type p is over a set A if all parameters used in the formulas in p come from A. See Notes on Model Theory for more details.

Exercise 5. Let \mathcal{M} be a sufficiently saturated structure.

(c) Let $p(\bar{x}, \bar{y})$ be a type over a small set $A \subseteq \mathcal{M}$, where \bar{x} and \bar{y} are tuples of variables of bounded length. Then the set

 $X := \{ \bar{a} \in \mathcal{M}^{\bar{x}} : p(\bar{a}, \bar{b}) \text{ holds for some } \bar{b} \in \mathcal{M}^{\bar{y}} \}$

is type-definable over A.

(d) Suppose $X \subseteq \mathcal{M}^{\bar{x}}$ is type-definable and A-invariant over some small set $A \subseteq \mathcal{M}$, where \bar{x} has bounded length. Then X is type-definable over A.

Proof. Part (c). Without loss of generality, we may assume that p is closed under finite conjunctions. Let $q(\bar{x})$ be the collection of formulas of the form $\exists \bar{y}\phi(\bar{x},\bar{y})$ where $\phi(\bar{x},\bar{y})$ is a formula in $p(\bar{x},\bar{y})$. (We are abusing notation since any formula in p uses only finitely many variables in \bar{x}, \bar{y} .) So q is a type over A. Note also that q contains only boundedly many formulas (in particular, p contains only boundedly many formulas since A, \bar{x} , and \bar{y} are bounded). We show that $X = q(\mathcal{M})$, and thus X is type-definable over A.

First, if $\bar{a} \in X$, then there is some $b \in \mathcal{M}^{\bar{y}}$ such that $p(\bar{a}, b)$ holds. So b witnesses that $\exists \bar{y}\phi(\bar{a}, \bar{y})$ holds for any $\phi(\bar{x}, \bar{y})$ in p. So $q(\bar{a})$ holds. Conversely, suppose $\bar{a} \notin X$. Consider the type $p(\bar{a}, \bar{y})$ (which is now a type in the free variables \bar{y} and with parameters from $A \cup \bar{a}$). Then $p(\bar{a}, \bar{y})$ is inconsistent. By saturation, there is some finite subset of $p(\bar{a}, \bar{y})$ that is inconsistent. So there is a formula $\phi(\bar{x}, \bar{y}) \in p$ such that $\phi(\bar{a}, \bar{y})$ is inconsistent, i.e., \bar{a} does not realize $\exists \bar{y}\phi(\bar{x}, \bar{y})$. So \bar{a} does not realize q.

Part (d). Since X is type-definable, we may fix a type $r(\bar{x}, \bar{y})$ over \emptyset , where \bar{y} has bounded length, such that $X = r(\mathcal{M}, \bar{c})$ for some $\bar{c} \in \mathcal{M}^{\bar{y}}$. Let $q(\bar{y})$ be the complete type of \bar{c} over A. Let $p(\bar{x}, \bar{y}) = r(\bar{x}, \bar{y}) \cup q(\bar{y})$, and note that p is a type over A. We show that

$$X = \{ \bar{a} \in \mathcal{M}^x : p(\bar{a}, b) \text{ holds for some } b \in \mathcal{M}^y \},\$$

and so X is type-definable over A by part (a).

The left-to-right containment is clear, since if $\bar{a} \in X$ then $p(\bar{a}, \bar{c})$ holds. Conversely, fix $\bar{a} \in \mathcal{M}^{\bar{x}}$ such that $p(\bar{a}, \bar{b})$ holds for some $\bar{b} \in \mathcal{M}^{\bar{y}}$. Since $q(\bar{b})$ holds, it follows that \bar{b} and \bar{c} have the same complete type over A. Since \mathcal{M} is strongly homogeneous, there is an automorphism σ of \mathcal{M} fixing A pointwise such that $\sigma(\bar{b}) = \bar{c}$. Since $r(\bar{a}, \bar{b})$ holds, it follows that $r(\sigma(\bar{a}), \bar{c})$ holds, and so $\sigma(\bar{a}) \in X$. So $\bar{a} \in X$ since X is A-invariant.

Exercise 6. Let G be a sufficiently saturated structure expanding a group, and suppose Γ is a type-definable subgroup of G.

- (a) Suppose $\Gamma = \bigcap_{i \in I} X_i$ where I is small, each X_i is definable, and $\{X_i : i \in I\}$ is closed under finite intersections. Then for any $i \in I$ there is $j \in I$ such that $X_i^2 \subseteq X_i$.
- (b) Suppose Γ has bounded index and X is a definable set containing Γ . Then X is left and right generic.
- (c) Suppose Γ has bounded index and is an intersection of λ definable sets, where λ is small. Then Γ has index at most $2^{\lambda+\aleph_0}$.

Proof. Part (a). For $i \in I$, let $\phi_i(x)$ be a formula defining X_i . Fix $i \in I$ and suppose there is no such j. Then the following type (in two singleton variables x and y) is finitely consistent:

$$p(x,y) := \{\phi_j(x) \land \phi_j(y) \land \neg \phi_i(x \cdot y) : j \in J\}.$$

By saturation, there are $a, b \in G$ such that p(a, b) holds. Then $a, b \in \bigcap_{j \in J} X_j = \Gamma$, while $ab \notin X_i$. This is a contradiction since Γ is a subgroup contained in X_i .

Part (b). Suppose first that X is not left generic. Let λ be a cardinal which is larger than the index of Γ , but still bounded. Let \bar{x} be a tuple of variables of length λ and let $\phi(x)$ be a formula defining X. Consider the type

$$p(\bar{x}) := \{\neg \phi(x_i^{-1} \cdot x_j) : i < j \in \lambda\}.$$

We claim that $p(\bar{x})$ is finitely satisfiable. Specifically, we fix $n \ge 1$ and find $a_1, \ldots, a_n \in G$ such that $a_i^{-1}a_j \notin X$ for all $i < j \le n$. Choose $a_1 \in G$ arbitrarily and, given k < n and a_1, \ldots, a_k , choose $a_{k+1} \notin a_1 X \cup \ldots \cup a_k X$ (such an element exists by assumption on X).

Now, by saturation $p(\bar{x})$ is realized in G, and so we have $(a_i)_{i < \lambda}$ such that $a_i^{-1}a_j \notin X$ for all $i < j < \lambda$. In particular, $a_i^{-1}a_i \notin \Gamma$ for all $i < j < \lambda$, which contradicts the choice of λ .

The proof that X is right generic is similar. Or note that X^{-1} is a definable set containing Γ . So X^{-1} is left generic, i.e., X is right generic.

Part (c). (Given parts (a) and (b), the proof is very similar to the proof that $\operatorname{Stab}^{\mu}(A)$ has index at most 2^{\aleph_0} .) Let $\Gamma = \bigcap_{i \in \lambda} X_i$, where each X_i is definable. After replacing each X_i with $X_i \cap X_i^{-1}$, we can assume that each X_i is symmetric. Without loss of generality, we may also assume λ is infinite and $\{X_i : i \in \lambda\}$ is closed under finite intersections.

By part (b), each X_i is left generic, and so we may fix a set $E \subseteq G$, with $|E| \leq \lambda$, such that $G = EX_i$ for all $i \in \lambda$. Given $a \in G$, set $I_a = \{(g, i) \in E \times \lambda : a \in gX_i\}$. We show that if $a, b \in G$ are such that $I_a = I_b$, then $a^{-1}b \in \Gamma$, and thus G has index at most 2^{λ} .

So suppose we have $a, b \in G$ with $I_a = I_b$. We show $a^{-1}b \in X_i$ for all $i \in I$. So fix $i \in I$. By part (a) there is some $j \in I$ such that $X_j^2 \subseteq X_i$. Since $G = EX_j$ there is some $g \in E$ such that $a \in gX_j$, i.e., $(g, j) \in I_a$. So $(g, j) \in I_b$, i.e., $b \in gX_j$. So $a^{-1}b \in X_j^2 \subseteq X_i$.