D. ADDENDUM TO LECTURE 6 (G AND EXERCISES 5 & 6)

Let G be a sufficiently saturated pseudofinite group, and suppose A C G is definable
and NIP. Let B be the Boolean algebra generated by the collection {gAh : g,h € G} of
bi-translates of A. In Lecture 6, we defined the stabilizer subgroup

Stab”(A) ={g € G : u(gAr A) =0}

(where, as usual, u denotes the normalized pseudofinite counting measure on definable sub-
sets of G). We then proved the following result:

Theorem 6.4. Stab*(A) is a countably B-type-definable subgroup of index at most 2%°.
As it may not be the case that Stab”(A) is normal in G, we defined:
GY = Nyeq 9 Stabt(A)g.
Then I sketched the proof of the following corollary (and here I give more details).
Corollary 6.6. G% is a countably B-type-definable normal subgroup of index at most 2%°.

Proof. By construction, G% is a normal subgroup. We first observe that it is B-type-definable
of bounded index. Indeed, if I C G is a set of left coset representatives for Stab/(A), then
1] < 2% and G = Nger 9 Stab*(A)g™. Since Stab”(A) is an intersection of countably many
sets in B, and B is bi-invariant, it follows that G% is an intersection of at most 2™ sets in
B. Also, since any conjugate of Stab*(A) still has index at most 2%, it follows that G% has
index at most 22°°.

Next, we prove that G% is C-invariant for some countable set C' C G, i.e., o(GY) = GY
for any (model-theoretic) automorphism o of G that fixes C' pointwise. To see this, recall
that Stab”(A) is an intersection of countably many definable sets, and so we may let C' be the
collection of all parameters used in the formulas defining these sets. So C'is countable. Now
suppose ¢ is an automorphism of GG that fixes C pointwise. Then o fixes any C-definable
set setwise, and thus fixes Stab”(A) setwise. Now,

o(GY) = Nyeq o (g Stab*(A)g™) = N,eq o(9) Stab* (A)o(g)" = GF

(note that o is, in particular, a group-theoretic automorphism of G).

We now know that G is type-definable and C-invariant. It follows from Exercise 5(d) that
G is type-definable over C. Without loss of generality, we can assume we are working in a
finite language (since G is B-type-definable, we only need the group language and enough
symbols to define A). So there are only countably many formulas with parameters from C,
and thus only countably many C-definable subsets of G. So G% is countably type-definable.
Since G% has bounded index, it follows from Exercise 6(c) that [G : GY] < 2%,

The final issue is that we don’t yet have countable type-definability using sets in B (in
general, Exercise 5(d) introduces quantifiers). But this can be fixed with a very useful
saturation trick. In particular, we have two representations of G%, namely, as a countably
type-definable set and a B-type-definable set. So let G = (2, X,, where each X,, is
definable; and let G = (.., Y; where [ is small and each Y; is in B. For any n > 0, we have

ﬂz’eIYi = G(f)xo C Xn,
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and so by saturation (specifically, Exercise 5(a)), there is some finite I, C I such that
Zy = ﬂiefn Y; C X,,. Note that Z,, € B for any n > 0. By construction,

G%o = ﬂing' c ﬂff;o Zn © ﬂqiozo Xn = G?qu
Therefore G = (2, Z, is countably B-type-definable. O

FURTHER READING

Since Exercises 5 and 6 are a little more involved than some of the other basic saturation
exercises, I have included proofs (of the relevant parts) below.

We work with types (i.e. finitely consistent collections of formulas), and follow the con-
vention of listing free variables, e.g., p(Z) denotes a type consisting of formulas with free
variables lying in the tuple z. Note that since types can contain infinitely many formulas,
Z might be infinite. We also say that a type p is over a set A if all parameters used in the
formulas in p come from A. See Notes on Model Theory for more details.

Exercise 5. Let M be a sufficiently saturated structure.

(c) Let p(Z,y) be a type over a small set A C M, where T and § are tuples of variables of
bounded length. Then the set

X :={a € M*:p(a,b) holds for some b € MY}

is type-definable over A.
(d) Suppose X C M7 is type-definable and A-invariant over some small set A C M, where
T has bounded length. Then X is type-definable over A.

Proof. Part (¢). Without loss of generality, we may assume that p is closed under finite
conjunctions. Let ¢(Z) be the collection of formulas of the form 3o (z, y) where ¢(Z, ) is a
formula in p(z, 7). (We are abusing notation since any formula in p uses only finitely many
variables in z,7.) So ¢ is a type over A. Note also that ¢ contains only boundedly many
formulas (in particular, p contains only boundedly many formulas since A, Z, and gy are
bounded). We show that X = ¢(M), and thus X is type-definable over A.

First, if @ € X, then there is some b € M? such that p(a,b) holds. So b witnesses that
Jyé(a, y) holds for any ¢(z,y) in p. So ¢g(a) holds. Conversely, suppose a ¢ X. Consider the
type p(a,y) (which is now a type in the free variables § and with parameters from AU a).
Then p(a,y) is inconsistent. By saturation, there is some finite subset of p(a,y) that is
inconsistent. So there is a formula ¢(z,y) € p such that ¢(a,y) is inconsistent, i.e., a does
not realize 3y¢(z,y). So a does not realize q.

Part (d). Since X is type-definable, we may fix a type r(Z, 7) over (), where 7 has bounded
length, such that X = r(M,¢) for some ¢ € MY. Let q(y) be the complete type of ¢ over A.
Let p(z,y) = r(Z,y) U q(y), and note that p is a type over A. We show that

X = {a € M" : p(a,b) holds for some b € MY},

and so X is type-definable over A by part (a).
The left-to-right containment is clear, since if @ € X then p(a,¢) holds. Conversely, fix
a € M7 such that p(a, b) holds for some b € MY. Since ¢(b) holds, it follows that b and ¢ have
the same complete type over A. Since M is strongly homogeneous, there is an automorphism
o of M fixing A pointwise such that o(b) = €. Since r(a, b) holds, it follows that r(c(a), ¢)
holds, and so o(a) € X. So a € X since X is A-invariant. O
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Exercise 6. Let G be a sufficiently saturated structure expanding a group, and suppose I' is

a type-definable subgroup of G.

(a) Suppose I' = (\,c; Xi where I is small, each X; is definable, and {X; : i € I} is closed
under finite intersections. Then for any i € I there is j € I such that Xj? C X;.

(b) Suppose I has bounded index and X is a definable set containing I'. Then X is left and
right generic.

(¢) Suppose T' has bounded index and is an intersection of A definable sets, where X is small.
Then T’ has index at most 20,

Proof. Part (a). Fori € I, let ¢;(x) be a formula defining X;. Fix i € I and suppose there is
no such j. Then the following type (in two singleton variables x and y) is finitely consistent:

p(z,y) :=A{0;(x) A oj(y) N =gi(z-y) - j € J}.
By saturation, there are a,b € G such that p(a,b) holds. Then a,b € (1;; X; = T', while
ab ¢ X;. This is a contradiction since I' is a subgroup contained in X;.

Part (b). Suppose first that X is not left generic. Let A be a cardinal which is larger than
the index of I', but still bounded. Let Z be a tuple of variables of length A and let ¢(z) be
a formula defining X. Consider the type

p(7) = {~o(x;' - x;) 1i < j €N
We claim that p(z) is finitely satisfiable. Specifically, we fix n > 1 and find a4,...,a, € G
such that a;'a; ¢ X for all i < j < n. Choose a; € G arbitrarily and, given k < n and
ai,...,ag, choose agi1 € a; X U...UapX (such an element exists by assumption on X).

Now, by saturation p(z) is realized in G, and so we have (a;);<) such that a;'a; € X for
all i < j < \. In particular, a;'a; € T for all i < j < A, which contradicts the choice of \.

The proof that X is right generic is similar. Or note that X! is a definable set containing
I'. So X! is left generic, i.e., X is right generic.

Part (c¢). (Given parts (a) and (b), the proof is very similar to the proof that Stab"(A)
has index at most 2%.) Let I' = (,., X;, where each X is definable. After replacing each
X; with X; N X;!, we can assume that each X; is symmetric. Without loss of generality, we
may also assume A is infinite and {X; : i € A} is closed under finite intersections.

By part (b), each X; is left generic, and so we may fix a set £ C G, with |E| < A, such
that G = EX; for all i € \. Given a € G, set I, = {(g,7) € E x A :a € gX;}. We show that
if a,b € G are such that I, = I, then a'b € I', and thus G has index at most 2*.

So suppose we have a,b € G with I, = I,. We show a'b € X, for alli € I. So fix i € I.
By part (a) there is some j € I such that Xj2 C X;. Since G = EXj there is some g €
such that a € gXj, ie., (g,)) € Io. So (9,j) € I, i.e., b€ gX;. Soa'be X7 C X;. O



