Applications of Psembosinite Model Theory
lecture 5 (4 May 2020)
Theorem 5.1 (Vaprik-Cheroonnkis)
Suppose X is a finite set, and $A \subseteq P(X)$ with $V C(A)=d$. Then $\forall \varepsilon>0, n \geq 1$

$$
\left\lvert\,\left\{\bar{a} \in X^{n}:\left.\left|A v_{\bar{a}}(S)-|s| /|x| \geq \varepsilon \text { fur some } S \in \mathcal{S}\right\}\left|\leq \frac{O\left(n^{d}\right)}{e^{\varepsilon^{2} n / 32}}\right| X\right|^{n}\right.\right.
$$

Idea: For $\bar{a} \in X^{n}$, consider ats $\left\{a_{1}, \ldots, a_{n}\right\} \cap S$ or $S \in \mathcal{A}$.
Saver-Shelch: If $\bar{a} \in X^{n}$ then) $\left\{\bar{a}_{n} \delta: S \in A\right\} \mid \leqslant O\left(n^{d}\right)$
Corollary 5.2 Suppose X is finite cal $A \leqslant P(X)$ with $V C(A)=d$. Then $\forall \varepsilon>0 \quad \exists \bar{a} \in X^{n}$, wi th $n \leq O_{\varepsilon, d}(1)$, st $\forall s \in A$

$$
\left|A v_{\bar{\varepsilon}}(s)-|s| /|x|\right| \leq \varepsilon .
$$

NIP Formulas in Psendolirite Stacdures
Let μ be an L-structure.
De\& 5.3 A formula $P(\bar{x} ; \bar{y})$ is $\underline{k-N I P}$ if $\bar{p} \bar{a}_{1}, \ldots, \bar{a}_{k} \in M^{\bar{x}}$ all $\left(\bar{b}_{s}\right)_{s \leq\left[k_{k}\right]}$ in $M^{\overline{0}}$ st $\mu_{k} \mathcal{P}\left(\bar{a}_{i}, \bar{b}_{s}\right)$ jiff ices
ie., $\left(M^{\bar{x}}, M^{\bar{y}} ; \varphi\right)$ omits $([k], P([k]) ; \epsilon)$
ie., $V C\left(\left\{\varphi(\mu ; \bar{b}): \bar{b} \in M^{\bar{y}}\right\}\right)<k$. (re Exc $\left.\mathcal{M}(d)\right)$ $\varphi(\bar{x} ; \bar{y})$ is NIP if it is K-NIP for some $k \geq 1$.
Convention: From now on, " μ is psendosinite" means $\mu \geq \pi_{U} M_{i}$ whee cath M_{i} " a finite L-structure and we work in the expanded language \&or μ.

In this caa, μ denotes the normalized peubbifinte counting measure on all definable subsists of M. Given a Formal $P(x ; \bar{y})$ over ϕ and $\bar{b} \in M^{\bar{s}}$

$$
\mu(\varphi(x ; \bar{b}))=s t\left(f_{\varphi}^{\mu}(\bar{b})\right) \quad(\text { Exc. } 4) .
$$

Proposition 5.4 Suppon μ is prudobinite and $\varphi(x ; \bar{y})$ is NIP.
Then $\forall \varepsilon>0 \quad \exists n \geqslant 1+\bar{a} \in \mu^{n}$ st $\bar{b} \in M^{\bar{y}}$,

$$
\left|\operatorname{Av}_{\bar{\alpha}}(\varphi(x, \bar{b}))-\mu(\varphi(x, \bar{b}))\right|<\varepsilon .
$$

Proof: Let $\varphi(x, \bar{y})$ be $\psi(x ; \bar{y}, \bar{c})$ \&or some $\psi(x ; \bar{y}, \bar{z})$ ore ϕ and $\bar{c} \in M^{\bar{z}}$ So $\mu(\varphi(x, \bar{b}))=s t\left(f_{\psi}^{\mu}(b, \bar{c})\right)$. Assume $\varphi(x, \bar{y})$ is k-NIP.
Let $X(\bar{z})$ express " $\psi(x ; \bar{y} ; \bar{z})$ is $k-N \mid P$." So $M=X(\bar{c})$.
Fix $\varepsilon>0$ and let $n=\mathcal{O}_{k-1, \varepsilon}(1)$ be as in Coolly 5.2. Then $\forall M_{i}\left(M \geq \pi_{u} \mu_{i}\right)$

$$
M_{i} k \forall \bar{z}\left(X(\bar{z}) \rightarrow \exists v_{1} \ldots \exists v_{n} \forall \bar{y} \mid A v_{\bar{v}}\left(\psi(x ; \bar{y}, \bar{z})-f_{\psi}(\bar{y}, \bar{z})\right)<\varepsilon\right) .
$$

So M satisfies this by taos's Theorem.
Corollary 5.5 Suppose M is prudofinite ind $\varphi(x, \bar{y})$ is NIP. Then $\forall \varepsilon \geq 0$, \exists finite $F \subseteq M$ st $\forall \bar{b} \in M^{\bar{q}}$ if $\mu(\varphi(x, \bar{b})) \geq \varepsilon$ then $F \cap \varphi(\mu, \bar{b}) \neq \varnothing$.

Def. 5.6: Given a group G and $A \subseteq 6$, call A left (right) generic if $G=F A$ (resp $G=A F)$ for som finite $F \in G$.

Theorem 5.7 Let G be a pradolisite expansion A a grip cal suppose $A \subseteq G$ is delindole and NIP (ie. $\varphi(x ; y):=x \in y A$ is NIP).

TFAE i) A is left generic
ii) A is right gensic
iii) $\mu(A) \geq 0$.

Proof i) \Rightarrow iii), ii) \Rightarrow iii) by finite additivity + invariance of μ.
$(i i i) \Rightarrow(i i)$. Assume $\mu(A)=\varepsilon>0$. By Cor 5.5 (applied to " $x \in y A$ ") \exists
Sinite $F \leq G$ st $\forall g \in G, F \cap g A \neq \phi$. So $G=A F^{-1} \quad\left(g a=f \quad g^{-1}=a q^{-1}\right)$

Exerix 17 NIP is necessary in The 5.7

Def 5.8 Let μ be a structure, and $f(\bar{x} ; \bar{y})$ a formula.

1) A fiformala is "Booleca combination of "instances" $\varphi(\bar{x} ; \bar{b})$ for $\bar{b} \in M^{\dot{y}}$
2) A subset of $M^{\bar{x}}$ is A-definable if its defined by a P-80rmula.
3) Let $f^{*}(\bar{y} ; \bar{x})$ be the same formals $f(\bar{x} ; \bar{y})$ but with the roles of object variables and parameter variables exchanged.

Exercise 18: If $f(\bar{x} ; \bar{y})$ is k-NIP then $f^{*}(\bar{y}, \bar{x})$ is 2^{k}-NIP.
Theorem 5.9 Suppose μ is pendolisite and $P(\bar{x} ; \bar{y})$ is NIP.
Then $\forall \varepsilon>0$, the set $D_{\varepsilon}=\left\{\bar{b} \in \mu^{\bar{y}}: \mu(\varphi(x, \bar{b})) \leq \varepsilon\right\}$ is an interaction of countably many φ^{*}-definable sets.

