Applications \& Psulusfinte Model Theory
Lecture 9 (13 May 2020)
Setting: G scdurath psububsint, $A \leq G$ d\&. + NIP, $B=\langle\{g A h: \sin \in G\}\rangle$

$$
\begin{array}{ll}
G_{A}=G / G_{A}^{\circ \circ} & \pi: G \rightarrow G_{A} \\
\mathbb{E}_{A}=\left\{C \in G_{A}: C \cap A, C \backslash A \text { vide }\right\} & \sigma: S(B) \rightarrow \mathbb{C}_{A} .
\end{array}
$$

Update: We dort need Lemma 8.10
Lemma 9.1 If $p \in S^{0}(B), p F G_{A}^{\circ 0}$, and $X \in B$ then \mathcal{D}_{x}^{p} is posturise large.
Poo $F_{\text {ix open }} U \leq \mathbb{C}_{A}$ st $\exists a G_{A}^{\circ 0} \in \mathbb{D}_{x}^{P} \cap U$. WTS $\eta\left(\mathbb{D}_{x}^{p} \cap U\right)>0$.
Let $K=\sigma^{-1}\left(\left\{a G_{A}^{00}\right\}\right)$ and $V=\sigma^{-1}(U)$. So K is closed, V open, $K \leq V$.
By Exereix $21(d), \exists Y \in B$ st $K \leq[Y] \subseteq V$. We have $X \in$ ap. Also $Y \in a p$ sing ap $\in K$. So $X \cap Y \in a p$. So $X \cap Y$ is generic.
Now $\eta\left(\mathbb{D}_{X}^{p} \cap \mathbb{D}_{y}^{p}\right)=\eta\left(\mathbb{D}_{X \cap Y}^{p}\right)=\eta_{p}(X \cap Y)>0 \quad$ (by $\left.P_{o p} 8.9\right)$
$E T S \mathbb{D}_{y}^{p} \leq U$. $F_{x} g G_{A}^{\circ o} \in \mathbb{D}_{y}^{p}$. Then $Y \in g p$.
So $g G_{A}^{00}=\sigma($ gp $) \in \sigma([Y])=U$.
Proof of $T_{m} 7.4\left(\mathbb{E}_{A}\right.$ is dosed $\left.+\eta\left(\mathbb{E}_{A}\right)=0\right)$.
\mathbb{E}_{A} is cord (8.1). Fix $p \in S^{s}(B)$ st $p \neq G_{A}^{00}(b y 7.6(a))$. Then $\mathbb{E}_{A} \subseteq \partial \mathbb{D}_{A}^{P}(8.3), \boldsymbol{D}_{A}^{P}$ is NIP (8.6), both $\mathcal{D}_{A}^{P}+G_{A} \backslash \mathbb{D}_{A}^{P}$ ae F_{σ} (8.7), are ptuise large (9.1). Since G_{A} is second countable $(G, 6)$, we have $\eta\left(\partial D_{A}^{P}\right)=0$ by $T_{m} 8.5$.

Proposition 9.2 If $K \leq \mathbb{G}_{A}$ is closed then

$$
\eta(k)=\operatorname{in}^{q}\left\{\mu(x): x \in B, \pi^{-1}(k) \leq x\right\}
$$

Prof: There is a (unique) keftinv. regular Boat prob. measure $\tilde{\mu}$ on $S(B)$ st $\tilde{\mu}([X])=\mu(X) \quad \forall X \in B$ (se Misc. Notes B.1, B.2; Exerax 2S).
Given a Bout set $W \subseteq G_{A}$, et $\nu(W)=\tilde{\mu}\left(\sigma^{-1}(W)\right)$.
Then v is a left. -inv. regular Bored prob. measure on G_{A}. So $v=\mu$.
If $K \subseteq G_{A}$ is closed then:

$$
\begin{aligned}
\eta(K) & =v(K)=\tilde{\mu}\left(\sigma^{-1}(K)\right)=\operatorname{in}\left\{\left\{\tilde{\mu}(U): U \text { is clopen, } \sigma^{-1}(K) \leq U\right\}\right. \\
& =\operatorname{in} \&\left\{\tilde{\mu}([x]): X \in B, \sigma^{-1}(K) \leq[x]\right\} \\
& \left.=\operatorname{in} \&\{\mu(x)): X \in B, \pi^{-1}(K) \leq X\right\} \quad\left(E_{x c} 24(b)\right)
\end{aligned}
$$

Covilay 9.3 Let $G_{A}^{\infty}=\bigcap_{n=0}^{\infty} X_{n}$ whee X_{n} is derivable $+X_{n+1} \leq X_{n}$. Then $\forall \varepsilon>0 \exists n \geq 0$ and $Z \in B$ st $\mu(Z)<\varepsilon$ and if $g \in G \backslash Z$ then either $\mu\left(g X_{n} \cap A\right)=0 \sim \mu\left(g X_{n} \backslash A\right)=0$.
Prof: Fix ε. By $T_{m} 7.4+\operatorname{Prop} 9.2, \exists z \in B$ s+ $\pi^{-1}\left(\mathbb{E}_{A}\right) \leq Z+\mu(Z)<\varepsilon$
[Aside: Sadurdion $\Rightarrow \forall g \in G \backslash Z \quad \exists n \geq 0$ st $\mu\left(g X_{n} \cap A\right)=0 \cdots \mu\left(g X_{n} \backslash A\right)=0$.]
Toward a contradiction, suppose $\forall n \geq 0 \quad \exists a_{n} \in G Z$ st $\mu\left(a_{n} X_{n} \wedge A\right) \geq 0$ and $\mu\left(a_{n} X_{n} \backslash A\right)>0$. Let $U=\left\{C \in \mathbb{G}_{A}: C \subseteq Z\right\}$, which is open by Exc $7 d$. Note $\mathbb{E}_{A} \leqslant U, \pi^{-1}(U) \leqslant Z$, and $\forall n \geq 0, a_{n} G_{A}^{\infty} \notin U$ since $a_{n} \notin Z$
Passing to a subsequence, assume $\left(a_{n} G_{A}^{\infty 0}\right) \rightarrow a G_{A}^{\infty} \in \mathbb{G}_{A} \backslash U \subseteq G_{A} \backslash \mathbb{E}_{A}$.
Either $a G_{A}^{\circ 0} \cap A$ is not wide or $a G_{A}^{\infty 0} \backslash A$ is not wide.
By Excise Sa, $\exists n \geq 0$ st $\mu\left(a X_{n} \cap A\right)=0$ ir $\mu\left(a X_{n} \backslash A\right)=0$
By Execix Ga, $\exists i \geq n$ st $X_{i}^{2} \leq X_{n}$. Define $V=\left\{C \in G_{A}: C \leq a X_{i}\right\}$, which is an open ibid of $a G_{A}^{0}$. So $\exists m \geq i$ st $a_{m} G_{A}^{00} \in V$.

Therefore

$$
\begin{gathered}
a_{m} X_{m} \leq a X_{i} X_{m} \leq a X_{i}^{2} \leq a X_{n} \\
\text { So } \mu\left(a_{m} X_{m} \cap A\right)=0 \text { or } \mu\left(a_{m} X_{m} \backslash A\right)=0
\end{gathered}
$$

This cuntalicts the choice if a_{m}.

