
C. LIST OF TOOLS

UPDATED: 13 MAY

In these notes I will collect the results used during lectures as “black boxes”, along with
discussion and citations.

Tools from Lecture 3 (29 April)

Theorem 3.1 (Peter-Weyl 1927 [12]).

(a) Any compact Hausdorff group is topologically isomorphic to an inverse limit of compact
Lie groups.

(b) Any compact Lie group is topologically isomorphic to a closed subgroup of GLn(C) for
some n ≥ 1.

These two results are consequences of the Peter-Weyl Theorem(s), which are more ex-
tensive results in harmonic and functional analysis concerning unitary representations of
compact groups. Any textbook on compact groups or Lie groups will likely cover these the-
orems, and there are also multiple online lecture notes (e.g. Tao has an entry in his blog).
A precise reference is [6, Corollary 2.43] for part (a) and [6, Corollary 2.40] for part (b) (via
[6, Definition 2.41]).

Theorem 3.2 (Jordan 1878 [9]). For any n ≥ 1 there is some d ≥ 1 such that any finite
subgroup of GLn(C) contains an abelian subgroup of index at most d.

This result is sometimes called Jordan’s Lemma or the Jordan-Schur Theorem (due to a
generalization by Schur). Once again, this result is easy to find in textbooks. For further
discussion, and an exposition of Jordan’s original proof, see Breuillard’s online notes [2].

Theorem 3.3 (Turing 1938 [17]). Let C be a compact Lie group with a bi-invariant metric
d. Then there is a real number δ = δ(C, d) such that, for any ε ≤ δ and any ε-approximate
homomorphism f : G → C, with G a finite group, there is a homomorphism τ : G → C
satisfying d(τ(x), f(x)) < 2ε for all x ∈ G.

In this case, the attribution of this result might be debatable, since Turing’s paper fo-
cuses on connected Lie groups and does not formulate ε-approximate homomorphisms in
this precise way. This exact result is proved by Alekseev, Glebskǐi, and Gordon in [1, Theo-
rem 5.13] using “elementary” representation theory for compact Lie groups. These authors
characterize the result as a modification of a similar theorem of Kazhdan [10]. In general,
Section 5 of [1] is a good modern reference for results on finite approximability of compact
Lie groups. For example, [1, Theorem 5.11] is a “standard formulation” of the result that if
C is a compact Lie group then the following are equivalent:

(i) There is a pseudofinite structure G expanding a group and a definable compactification
τ : G→ C.

(ii) For all n > 0, there is a finite group Hn ≤ C which is a 1
n
-net in C.
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We proved (i) ⇒ (ii) during lecture, and (ii) ⇒ (i) almost follows from Exercise 10. In
particular, given (ii), we can construct a surjective homomorphism τ : H → C, where H =∏
U Hn for some non-principal ultrafilter U on Z+. While τ may not be definable with

respect to the group language on H, it is not too difficult to show that it is definable in the
(pseudofinite) expansion of H by all internal subsets.

Tools from Lecture 5 (4 May)

Theorem 5.1 (Vapnik & Chervonenkis 1971 [18]). Suppose X is a finite set and S ⊆ P(X)
is such that VC(S) = d. Then for any ε > 0 there is some n ≥ 1 such that∣∣∣{ā ∈ Xn :

∣∣∣Avā(S)− |S|
|X|

∣∣∣ ≥ ε for some S ∈ S
}∣∣∣ ≤ O(nd)

eε2n/32
|X|n.

This result is also called the VC-Theorem, and gives a “uniform law of large numbers”
for set systems of bounded VC-dimension. It was proved by Vapnik and Chervonenkis for
applications to learning theory. The above formulation follows [14, Theorem 6.6], which also
gives a detailed proof using basic facts from probability. As discussed in lecture, the idea of
the proof is to apply the weak law of large numbers, which says that Avā(S) approximates
|S|/|X| for a fixed S. One then obtains uniform control over all S ∈ S under the assumption
of bounded VC-dimension. In particular, if VC(S) = d then the Sauer-Shelah Lemma,
implies that for any ā ∈ Xn, at most O(nd) subsets of {a1, . . . , an} can be cut out by elements
of S. The Sauer-Shelah Lemma is implicit in the work of Vapnik and Chervonenkis, but
was rediscovered by Sauer, Shelah, and others in various contexts. See [14, Lemma 6.4] for
a proof of this result (which is more elementary compared to the VC Theorem).

Tools from Lecture 8 (11 May)

Theorem (Simon 2015 [15]). Let M∗ be a sufficiently saturated structure in a countable
language. Suppose φ(x̄; ȳ) is an NIP formula and fix a complete φ-type p ∈ Sφ(M∗) such
that p is M-invariant for some countable M ≺M∗. Then

{b̄ ∈ (M∗)ȳ : φ(x̄; b̄) ∈ p} =
⋃∞
n=0 Yn

where each Yn ⊆ (M∗)ȳ is type-definable over M .

This result is sometimes referred to as “Borel definability of invariant φ-types for NIP
formulas”. It is an NIP analogue of “definability of φ-types for stable formulas” (proved by
Shelah [13, Theorem II.2.2]), which says that if φ(x̄; ȳ) is stable and p ∈ Sφ(M∗) then there
is some countable M ≺M∗ such that the set {b̄ ∈ (M∗)ȳ : φ(x̄; b̄) ∈ p} is definable over M .
(In particular, this implies that p is M -invariant.)

The above theorem was first proved by Hrushovski and Pillay [7, Proposition 2.6] under the
stronger assumption that Th(M∗) is NIP (i.e., all partitioned formulas are NIP). However,
some ingredients of the proof are difficult to adapt to the “local setting” of a single formula.
Simon’s proof uses a result of Bourgain, Fremlin, and Talagrand [4], which characterizes
sequential compactness of countable sets in the Banach space C(X,R) (where X is Polish)
using what is essentially a “continuous logic” version of NIP. So the above theorem deepens
the connection between (continuous) model theory and functional analysis. Another remark-
able example of this connection is Grothendieck’s [5] characterization of relatively weakly
compact sets in Banach spaces by means of a continuous version of stability, which was used
by Ben Yaacov [3] to give a short proof of definability of types for stable formulas.
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Theorem 8.5 (Simon 2017 [16]). Suppose G is a second countable compact Hausdorff group
and W ⊆ G is an NIP set such that W and G\W are both Fσ and pointwise large. Then
∂W is Haar null.

The motivation for this result was to fix errors in the proof of what is called generic compact
domination for groups with “finitely satisfiable generics” definable in NIP theories (see [8,
Corollary 5.10]). The notion of “compact domination” was first developed by Hrushovski,
Peterzil, and Pillay [8] for their proof of the Pillay conjectures for definably compact groups
definable in o-minimal theories (which are a special case of NIP groups with fsg). The proof
of Theorem 8.5 combines topological methods with the VC Theorem (Theorem 5.1).

Theorem 8.11 (Matoušek 2004 [11]). Let X be a finite set and suppose S ⊆ P(X) is such
that VC(S) = d. Fix p ≥ q ≥ 2d+1 and suppose that among any p sets in S, there are q with
nontrivial intersection (i.e., S has the (p, q)-property). Then there is a set F ⊆ X, with
|F | ≤ Op,q(1), such that S ∩ F 6= ∅ for all S ∈ S.

This result is sometimes called Matoušek’s (p, q)-Theorem, and has origins in discrete
geometry, especially related to classical work of Helly on families of convex sets in Rd. One
can also view this result as a (qualitative) generalization of the existence of ε-nets for set
systems of bounded VC-dimension, which is an immediate consequence of the VC Theorem.
In particular, suppose X is a finite set and S ⊆ P(X) is such that VC(S) = d. Fix ε > 0
and let Sε = {S ∈ S : |S| ≥ ε|X|}. Then, by the VC Theorem, there is F ⊆ X, with
|F | ≤ Od,ε(1), such that S ∩ F 6= ∅ for all S ∈ Sε. On the other hand, one can show that
for any q ≥ 1, there is p = Oq,ε(1) such that Sε has the (p, q)-property (see Exercise 22). So
Theorem 8.11 yields the same conclusion (taking q = 2d+1).

Update (13 May): The previous result is used to prove that if G is a pseudofinite expansion
of a group, A ⊆ G is definable and NIP, and B is the Boolean algebra generated by all bi-
translates of A, then the restriction of the pseudofinite counting measure to B is the unique
left-invariant finitely additive probability measure on B. It turns out that we don’t need this
for the main results of the course.
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