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These notes provide details on several topics that will arise in the course, but which may
be unfamiliar or have varying definitions in the literature. So the purpose of these notes is
to keep everyone up to speed and on the same page. I will continue to update this document
throughout the term. Feel free to send me comments, corrections, and suggestions/requests
for new sections.
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B.1. Probability measures on algebras

Let X be a set.

Definition B.1. A Boolean algebra (on X) is a collection B ⊆ P(X) such that:

(i) X ∈ B,
(ii) if A,B ∈ B then A ∪B ∈ B, and

(iii) if A ∈ B then X\A ∈ B.

Definition B.2. Suppose B is a Boolean algebra on X. A finitely-additive probability
measure on B is a function µ : B → [0, 1] such that µ(X) = 1 and, if A,B ∈ B are disjoint,
then µ(A ∪B) = µ(A) + µ(B).

Definition B.3. A σ-algebra (on X) is a collection A ⊆ P(X) such that:

(i) X ∈ A,
(ii) if A0, A1, A2, . . . ∈ A then

⋃∞
n=0An ∈ A, and

(iii) if A ∈ A then X\A ∈ A.

Definition B.4. Suppose A is a σ-algebra on X. A probability measure on A is a
function µ : A → [0, 1] such that µ(X) = 1 and, if {An : n ∈ N} is a collection of pairwise
disjoint sets in A, then µ(

⋃∞
n=0An) =

∑∞
n=0 µ(An).

Example B.5. Let X be a topological space. Then the Borel σ-algebra is the σ-algebra
A of subsets of X generated by the collection of open sets. A subset of X is Borel if it is in
A. A Borel probability measure on X is a probability measure on A.

Definition B.6. Let X be a topological space and suppose µ is a Borel probability measure
on X. Then µ is regular if for any Borel set W ⊆ X,

µ(W ) = sup{µ(K) : K ⊆ W, K is compact} = inf{µ(U) : W ⊆ U, U is open}.
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B.2. Stone spaces

Let X be a set, and let B be a fixed Boolean algebra on X. Then the notion of an ultrafilter
relativizes nicely to B (see the definition below). These ultrafilters will play a significant role
in the course, but in a manner very different from the construction of ultraproducts. For
example, when using an ultrafilter over an index set to construct an ultraproduct, we only
need to work with a single ultrafilter, which will usually need to be nonprincipal in order
to achieve anything interesting. On the other hand, when working with ultrafilters over
Boolean algebras (e.g., the Boolean algebra of definable subsets of some structure), we will
often be concerned with the collection of all such ultrafilters, and how different ultrafilters
interact with each other. So for pedagogical reasons, we will refer to ultrafilters over B as
B-types, and denote them with letters like p and q.

Definition B.7. A B-type is a collection p ⊆ B such that:

(i) ∅ 6∈ p and X ∈ p,
(ii) if A ∈ p and B ∈ B, with A ⊆ B, then B ∈ p,

(iii) if A,B ∈ p then A ∩B ∈ p, and
(iv) for any A ∈ B, either A ∈ p or X\A ∈ p.

We let S(B) denote the set of B-types.

The letter S in the previous definition is for Stone, and S(B) is referred to as the Stone
space over B. The use of the word “space” is not careless, as S(B) admits a natural
topological structure.

Definition B.8. The Stone topology on S(B) is the topology whose basic open sets are
of the form [A] = {p ∈ S(B) : A ∈ p} for A ∈ B.

Exercise B.9. S(B) is a totally disconnected compact Hausdorff space under the Stone
topology.

One can view the Stone topology as a subspace topology in the following way. View S(B)
as a subset of {0, 1}B by identifying a B-type with its indicator function. If we put the
discrete topology on {0, 1} and the product topology on {0, 1}B, then it is easy to show that
S(B) is closed. The Stone topology on S(B) is precisely the induced subspace topology.

The following classical theorem provides a connection between finitely-additive probability
measures on Boolean algebras and regular Borel probability measures on totally disconnected
compact Hausdorff spaces. We will use this result at a crucial moment later in the course.

Theorem B.10. For any finitely-additive probability measure µ on B there is a unique reg-
ular Borel probability measure µ̂ on S(B) such that µ̂([A]) = µ(A) for any A ∈ B. Moreover,
the map µ 7→ µ̂ is a bijection between finitely-additive probability measures on B and regular
Borel probability measures on S(B).

This theorem will eventually be given as an official exercise. Details can also be found in
[4, Section 7.1] (in a slightly more specific setting) or [1, Proposition 416Q].

B.3. Compact groups

In this section, we list some results about compact topological groups that will be used in
the course. Throughout this section, “compact” means “compact and Hausdorff”.
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B.3.1. Connected components. Recall that a subset C of a topological space X is con-
nected if it cannot be written as the union of two nonempty disjoint sets which are open in
the subspace topology on C. Given x ∈ X, the connected component of x is the maximal
(with respect to inclusion) connected subset of X containing x.

Exercise B.11. Suppose X is a compact space, and fix x ∈ X. Then the connected
component of x coincides with the intersection of all clopen subsets of X containing x.

The identity component of a topological group G is denoted G0.

Exercise B.12.

(a) The identity component of a topological group is a closed normal subgroup.
(b) Suppose K and L are compact groups and π : K → L is a continuous surjective homo-

morphism. Then π(K0) = L0.

Remark B.13. We will use the second part of the previous exercise in the following way.
Suppose K is a compact group, which is obtained as an inverse limit K = lim←−Li of compact
groups (Li)i∈I such that the projection maps K → Li are surjective. Using the second part
of the previous exercise (and other basic properties of inverse/projective limits), it is not
hard to show that K0 = lim←−L

0
i . For further details on inverse limits of topological groups

and spaces, see Chapter 1 of [3] (especially Corollary 1.1.8 for this particular conclusion).

Next we note an easy sufficient condition for the identity component of a compact group
to be abelian. (This will be an important situation for certain parts of the course.)

Proposition B.14. Suppose K is a compact group which has an abelian subgroup of finite
index. Then K0 is abelian.

Proof. Suppose H ≤ K is abelian and finite index. Then the closure H̄ of H is still an
abelian finite-index subgroup. In particular, H̄ is clopen, and thus contains K0 by Exercise
B.11. So K0 is abelian. �

B.3.2. Measures and Metrics.

Theorem B.15. [2, Theorem 2.8] Any compact group admits a unique left-invariant regular
Borel probability measure, called the normalized Haar measure. Moreover, this measure
is also the unique right-invariant regular Borel probability measure.

Theorem B.16. [2, Corollary A4.19] Any compact second countable group admits a bi-
invariant metric compatible with the topology.

B.3.3. Compact Lie groups. In these notes (and in the course), by a Lie group, we mean
a topological group which is also a finite-dimensional real smooth manifold such that the
group operation and the inversion map are smooth. Any finite group is a (0-dimensional)
compact Lie group under the discrete topology. Another example of a compact Lie group,
which we will use frequently, is the n-dimensional torus Tn (for any n ≥ 0). Specifically,
T1 is the circle group S1 = R/Z with the usual topology, and then we endow Tn with the
product topology.

Extensive familiarity with Lie groups will not be necessary for the course. For the most
part, one should just be aware of the previous examples and the following facts.

Exercise B.17. Let K be a compact Lie group.
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(a) K is locally connected, and thus K0 is clopen of finite index.
(b) K is second countable (and thus admits a compatible bi-invariant metric).

Theorem B.18. [2, Proposition 2.42] A compact Lie group is connected and abelian if and
only if it is topologically isomorphic to Tn for some n ≥ 1.

Theorem B.19 (Peter-Weyl). Any compact group K is (topologically isomorphic to) an
inverse limit lim←−Li of some inverse system (Li)i∈I of compact Lie groups, in which the
projection maps K → Li are surjective. Moreover, if K is second countable then one may
assume I is N with the usual ordering.

For the first part of the the previous theorem, see [2, Corollary 2.43]. The moreover
statement can be obtained by combining [2, Corollary 2.36] and [2, Exercise E9.1].
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