Review
Review
A language is a ret Z & kunchin gundols, relation gundols, and constant
Symbols: Each Kunchin /relation symbols have a arity n21
Convention: constant symbols are "Sunction gundols & arity O".
An Z-structure M consists of:
• a varient gundols or "Sunction gundols of arity O".
An Z-structure M consists of:
• a varient gundol of a darity n, a Ruschian
$$\mathcal{P}': \mathcal{M}' \to \mathcal{M}$$

• Survey Runchin symbol & & arity n, a Ruschian $\mathcal{P}': \mathcal{M}' \to \mathcal{M}$
• Survey Runchin symbol & & arity n, a Ruschian $\mathcal{P}': \mathcal{M}' \to \mathcal{M}$
• Survey relation symbol C, a element $\mathcal{C}' \in \mathcal{M}$.
Symbols: We build formulaes using symbols in Z along with
 $\Lambda = \mathcal{V} = (\mathcal{I})$, and ettely may unridde symbols.
Z-kerm (new Runchins)
• constant symbols and variables are torms
• if t₁,..., t_n are torms and f is an arisen function gundol
then $\mathcal{P}(t_1,...,t_n)$ is a term
Given a standare M call a torm t₁ inductionly differe
 $t'': \mathcal{M}' \longrightarrow \mathcal{M}$ for appropriate r
• constant symbol c is c'' (r=o)
• variable x is identify Ranchin (r=i)
• $\mathcal{P}(t_1,...,t_n) \longrightarrow \mathcal{P}''(t_1'',...,t_n'')$

The ti and the are terms,
$$(t_1 = t_2)$$
 is a simula
TR R is an mong relation symbol and t_1, \ldots, t_n are toms, $\begin{cases} atomic then R(t_1, \ldots, t_n) & is a Remula. \end{cases}$
TR P and 4 are formula then so are
 $\neg P$, $(P \land 4)$, and $\forall x P$ for any uniable x
An occurrence of
 $\forall randow k = is Prese in P if x does not occur in the stope of $\forall x$
Otherwise the occurrence is bound.
 $\forall x \neg (f(x) = y)$
Notation: Given a Remula P, write $P(x_1, \ldots, x_n)$ is denote that
 x_{11}, \ldots, x_n are the Free variables in P.
Given a Remula $P(x_1, \ldots, x_n)$, a structure $M \neq P(a_1, \ldots, a_n \in M$ we
define " \overline{a} subsides f in M ", write $M \neq P(\overline{a})$ iff $(\overline{a}) = t_2^M(\overline{a})$
 \cdot If P is $(t_1 = t_2)$ then $M \models P(\overline{a})$ iff $(t_1^M(\overline{a}), \ldots, t_n^M(\overline{a})) \in \mathbb{R}^M$.
 $M \models (P \land 4)(\overline{a})$ iff $M \notin P(\overline{a})$ and $M \models \Psi(\overline{a})$.
 $M \models (P \land 4)(\overline{a})$ iff $M \notin P(\overline{a})$ and $M \models \Psi(\overline{a})$.
 $M \models (P \land 4)(\overline{a})$ iff $M \notin P(\overline{a})$.$

$$\frac{Abbrevindions}{Global:} (9 \vee 4) \text{ is } \neg (\neg 9 \wedge \neg 4) \\ \overset{\text{(a)}}{} (9 \to 4) \text{ is } (\neg 9 \vee 4)$$