Z is a fixed language.
An an Z-theory T is finitely satisfielde if every finite subort of T is satisfielde.
Compactness Theorem satisfielde if every finite subort of T is satisfielde.
Compactness Theorem satisfielde if every finite subort of T is satisfielde.
Pourward Lowenheim-Skolem Theorem Any satisfielde Z-theory har a model
of cardinelity at most
$$|Z| + Ro$$

Lowenheim-Skolem Theorem
Any Stickle II. Theorem Ang Satisfielde Z-theory har a model
Science in theorem
Any Stickle II. Angenties
Angenties
Compactness Theorem
Compactness Theorem
Angenties
Angent

Suppose T is an Z-theory with introducts. Then T has a model of
cardinality
$$\mathcal{K}$$
 for any $\mathcal{K} \ge |Z| + Ro$.
Proof
het $Z^* = Z \cup Rc_i : ic \mathcal{K}]$ where each c_i is a new constant symbol.
Let $T^* = T \cup Rc_i \neq C_j : i \neq j$. Suppose $Z \subseteq T^*$ is Brite.
So $Z \subseteq T \cup Rc_i \neq C_j : i \neq j$. Suppose $Z \subseteq T^*$ is Brite.
So $Z \subseteq T \cup Rc_i \neq C_j : i j \in I$ for some finite set I .
Let $\mathcal{M} \models T$ be intropeding $C_i^{\mathcal{M}^*}$ as clustered elements for $i \in I$,
and interpreting $C_i^{\mathcal{M}^*}$ for $i \notin I$ arbitrarily. Then $\mathcal{M}^* \models Z$.
By Comparatives, T^* is sodisficible. By DLST, T^* has a model
 \mathcal{M}^* if condinality at most $|Z^*| + S_0 = \mathcal{K}$. So \mathcal{N}^* has
cardinality \mathcal{K} . Let \mathcal{N} be the reduct of \mathcal{N}^* of Z .
Then $\mathcal{N} \models T$ and $|\mathcal{N}| = \mathcal{K}$.

Complete Theories <u>Def 1.1</u> Let T be an Z-theory and I an Z-sentence. Then T = P ("T models P", "Timplies P") if any model if T is a model if P. <u>Example 1.2</u> 1) {ep, 4] = PA4 2) If T is consistent than T = Jx (x=x). So p = Jx(x-x)(ie., satisfieble)

Example 1.4
1) The theory of graps is not complete. Consider
$$\forall x \forall y_1 (x * y_2 = y * x)$$

2) ZFC is not complete. Consider the Conditionant Hypothesis.
2) ZFC is not complete. Consider the Conditionant Hypothesis.
2) RFC is not complete. The theory of M is
 $Th(M) = Th_2(M) := EP: P is an Instance + M = P J.$
Note that $Th(M)$ is complete.
28.16 Two Instances M and N are elementarily considered, written $M = N$,
if $Th(M) = Th(W)$.
Note that \equiv is an equivalence relation on X -structures
 $May use \equiv_X for emphasis.$
Exercise (ES) #2) let T be a Integrit $TFAE$
i) T is complete.
ii) For any Integrit P and $T = FP_n : n = 2T$ where
 P_n is $\exists x_1, \dots, \exists x_n \bigwedge_{i \neq 3} x_i \neq x_j$.
 T is "the theory F identic sets"
Then T is complete (ESI #3). So, as Integrities and
 $N = Z \equiv Q \equiv R \equiv C \equiv P(C) \equiv$ any identice and