Part III Model Theory, Lecture 4, 19 Oct ACF Recell: (K,+,.,0,1) is a field of (K,+, 0) and (K1903,.,1) are delian groups and $\forall x \neq y \forall z (x \cdot (y + z) = x \cdot y + x \cdot z)$ K is algebraically dosed if every non-constant polynomial over K has a rout in K. Let Z= {+, ., 0, 1} Det 5.1 ACF is the Z-theory axiomatizing algebraically closed fields. This contains the field axioms plus for every 221 $\forall v_{b} \forall v_{1} \dots \forall v_{d-1} \exists x (x^{d} + v_{d-1} x^{d-1} + \dots + v_{r} x + v_{o} = o)$ Kennark ACF is not complete since it does not specify characteristic. Per 5.2 For n=1, let X_n be the Z-sentence [+1+...+] = 0 $ACF = ACF \cup \{\neg X_n : n \ge 1\}$ For a prim p, ACFp = ACF u {Xp}. Theorem 5.3 ACF, ACF, are K-categorical Bor all K> Ko. Prof The transcendence degree . & KFACF is the cardinality of the largest algebraically independent subset it K. Eq. troleg $(\overline{Q})=0$, troleg $(\overline{Q}(\overline{T}))=1$, troleg $(\overline{C})=2^{S}$; troleg $(\overline{Q}(\overline{X_i})_{veg})=k$ Facts () Suppose K, L = ACF. Then K = L ; & troleg (K) = troleg (L). chr(K) = chr(L), ch |K| = |L|.(2) If KEACF and KEArdeg (K), then IKIE S.+ K.

Conclusion: If K, L = ACF. Grp) are uncountable + IKI=121, then K=2.

Gentlem S4 ACF, ACF, are complet.
Ref: Varyth's Test.
Remerk ACF, ACF, are not N'- categorical.
Countable modules are precisely the ethle ACF's of trading in Sur in ENUSING.
Ref 55: Let K be a Siell. A brachion
$$\overline{\Psi}: K^m \rightarrow K^n$$
 is a polynomial map of
 $\overline{\Psi} = (P_i(X_1, ..., X_m), P_2(X_2, ..., X_m), ..., P_n(X_2, ..., X_m))$ other $p_i \in K[\overline{x}]$
Theorem 5.6 (Ax-Goldendeck)
Let KFACF and suggest $\overline{\Psi}: K^m \rightarrow K^n$ is an injecture polynomial map.
Then $\overline{\Psi}$ is surgester.
Proof
Fost suppose $K = \overline{F_p}$ for some point p_i . Recall $\overline{F_p} = \bigcup_{k} F_p k$.
Fix in st all coefficients in $\overline{\Psi}$ come from $\overline{F_p}^m$. Note $\overline{F_p} = \bigvee_{k} F_p kn$
For any $k \ge 1$, $\overline{\Psi}$ induces an injecture polynomial Suppose $\overline{F_p}^m$.
 $\overline{\Psi}(\overline{F_p}^n) = \overline{\mathcal{D}}(\bigcup_{k} F_p kn) = \bigcup_{k} \overline{\mathcal{D}}(\overline{F_p} kn) = \bigcup_{k} F_p kn = \overline{F_p}^n$.
Now, given $n, d \ge 1$, let \mathcal{H}_{nd} is the Zisenkare chick soft
in n variables and degree $\le d$, is surgeable. $(\overline{F_p} n) = \mathcal{L}(\overline{F_p} + \mathcal{H}_n)$
We're shown $\overline{F_p} \models \mathcal{H}_n Q$ for all primes $p = \mathcal{A}$ n, d .
So For any prime p , $ACF_p \models \mathcal{H}_n Q$ \mathcal{H} and \mathcal{H}_n since ACF_p is any order.

Consider ACFo. For a contradiction, suppose
$$\exists$$
 n, d at ACFo $\not\in \mathcal{Y}_{n,d}$
Then ACFo $\not\models \neg \mathcal{Y}_{n,d}$ since ACFo is complete. By Compactness, there is
a Strike set $\Xi \subseteq ACFo$ at $\Xi \not\models \neg \mathcal{Y}_{n,d}$. So $\Xi \subseteq ACF \cup \overline{\overline{\overline{2}}} \times \overline{\overline{\chi}_{1,\dots,\overline{\overline{2}}}} \times \overline{\overline{\chi}_{m}} \overline{\overline{\overline{3}}}$
Some m. Choise a prime $p > m$. Then $ACF_p \not\models \overline{\Xi}$.
So $ACF_p \not\models \neg \mathcal{Y}_{n,d}$, which is a contradiction.
D.
Letschetz Principle but $\neg P$ be an Z-sentence. TFAE

1) ACFOFP ie. P is the in every KEACFO. 2) ACFOFPT is consistent, ie. P is the in some KEACFO. 3) There is some NOO St ACFOFPT PON, ie. P is the in

every KFACF & suff. large characteristic.

4) For Il N>0 I p>n st ACF, URP3 is consistent, i.e. P:s true in some KEACF & arbitrarily large characterisdic.