Part III Model Theory, Lecture 5, 21 Oct

Diagrams & Extensions het M be on Z-structure. Remark 5.8 IF h: $M \rightarrow N$ is an Zembedding then after identifying a M with $h(c) \in N$, we can view M as a substructure of N. Similarly, if h is an elementary embedding, then M^{*} is " an elementary substructure of N. Given AEM, let ZA = ZV Za: a CAT where a is a new constant symbol. Then M is constically an ZA-structure where an = a. $\frac{\text{Pef 5.9}}{\text{Ile diagram & M}}, \text{ withen } \mathcal{D}(\mathcal{M}), \text{ is de } Z_{M} \text{-theory consisting of all guardifier-free } Z_{M} \text{-surfaces } \mathcal{P} \text{ st } \mathcal{M} \neq \mathcal{P}.$ The elementary dissem of M is Thy (M) := Thy (M). Proposition 5.10 Suppose Mis an Z-structure and N* is an ZM-structure st N* = D(M). Let N be the reduct of Nor do Z. Define h: M-N st h(a) = and Then h is on Z-embedding. Moreover, if N* = Thy (M) then h is an elementary embedding. Proof Use Corollary 2.4. Let of (Xy..., Xn) be a guardifier-free Z-formule, and fix $a_1, \dots, a_n \in M$. Then $\mathcal{M} \models \mathcal{P}(a_1, \dots, a_n) : \mathcal{H} = \mathcal{M} \models \mathcal{P}(\underline{a}_1, \dots, \underline{a}_n) : \mathcal{H}$ $P(a_1, a_n) \in D(\mathcal{M})$; $\mathcal{R} = \mathcal{N} \neq P(a_1, a_n)$; $\mathcal{R} = P(h(a_1), \dots, h(a_n))$ The "moreover" is similarly. Application & Groups: Recall that an abelian group G is orderable of there is a linear order < on G st ¥x, y, ZEG, A x-y then x+Z<y+Z. Note that any orderable abelian group is torsion-free. E.g. X>O => X<2X<3X<....

Suppose T has a milet M. Then
$$(M, t^{M}, O^{M}, <^{M})$$
 is an ordered abilitin grapp
and $G \subseteq (M, t^{M}, O^{M})$ by Proposition 5.10. So G is a subgroup of an indered abilities
group, hence is orderable. So it suffices to show that T has a malel.
Fix $\Xi \in T$ Shrike. Let $A = \Xi a \in G : a$ is used in some Z_{G}^{a} -surface in Ξ .
Let $H = . Then $H \cong \mathbb{Z}^{n}$ for some $n \ge 0$ by the structure
theorem for finitely generated abelian groups. View H as an Z_{A}^{a} -structure it
st $a^{H} = a$ and $<^{H}$ is the lexicographic ordering. Then $H \cong Z_{A}^{a} G$ and so
 $H \notin Q$ for any $Q \in D(G)$ using only extra constants from A (by Goollery 2.4)
So $H \notin \Xi$.$

Quandifier Elimination
Idea: Let T be an Z-theory and
$$M \models T$$
. Then $X \in M^n$ is definable if
there is an Z-Rormank $\mathcal{P}(X_1, ..., X_n)$ at $X = \overline{Y}_{\overline{n}} \in M^n$: $M \models \mathcal{P}(\overline{n}) \overline{3}$.
Goal: Shudy definable structs of models of T.
Quandifiers notice this difficult. X wight be nice but the projection
 $Y = \overline{Y}(a_{1}, ..., a_{n-1}) \in M^{n-1}$: $(\overline{n}, b) \in X$ for some be MJ (defined by $\Im X_n \mathcal{P}(\overline{x})$)

might be complicated.

$$\frac{\text{Def 5.12}}{\text{Here is a grantifier-free Z-Bornala } Here is a grantifier-free Z-Bornala } (X_{1,...,X_n}) = T = \sqrt{\pi} \left(\varphi(\pi) \leftrightarrow \psi(\pi) \right).$$

$$(S_0 \ \varphi \text{ and } \psi \text{ define the same set in any } \mathcal{M} \models T \right).$$