Part III Mole Theory, Lecture 6, 23 Oct
(2) Cor $E x$ 5.13) $T=T h(\mathbb{R},+, 0,0,1) . \quad \varphi(x)$ is $\exists y\left(x=y^{2}\right)$. Note φ define $\mathbb{R}^{z 0}$. Suppose $\Psi(x)$:s q.f. So $\Psi(x)$ is a Boles combination \& polynomel equations. So ψ defines a finite or elfinite subset if \mathbb{R}. T does ut have $Q E$.
Later: Th $(\mathbb{R},+, i<, 0,1)$ does have $Q E$. Note $x<y$ if $\exists z\left(z \neq 0 \wedge y-x=z^{2}\right)$. So $(\mathbb{R}, t, \cdots, 0,1)$ and $(\mathbb{R},+, \cdot,<, 0,1)$ have the same clefincble rets.

Lemma 6.1 Suppose T is an \mathcal{Z}-theory st for any g.\&. formal $f\left(x_{1}, \ldots, x_{n}, y\right)$ there is a 2.f. $\psi\left(x_{1}, \ldots, x_{n}\right)$ st $T \vDash \forall \bar{x}\left(\partial_{y} \varphi(\bar{x}, y) \leftrightarrow \psi(\bar{x})\right)$. Then T has $Q E$.
Poof: Induction on Foraker. (Exercix).
Theorem 6.2 let T de an $\mathcal{1}$-theory. TFAE.
i) T has $Q E$.
ii) Suppose $M, N \equiv T$ and $A \subseteq \mathcal{M}, A \subseteq N$! Then \&or any git. Formula $\varphi(\bar{x}, y)$ and any tuple \bar{a} from A, if $\mu_{F} \exists_{y} \varphi(\bar{a}, y)$ then $N_{k} J_{y} \varphi(\bar{a}, y)$.
iii) For any \mathcal{L}-stmeture $A, T \cup D(A)$ is a complete \mathcal{L}_{A}-theory.

Proof $(i) \Rightarrow$ (iii). Assume T has $Q E$. Let A be an L-structure and suppose $\mu, \mathcal{N} F \operatorname{TUD}(\mathcal{A})$. WIS $\mu \equiv_{\mathcal{L}_{A}} \mathcal{N}$. Let σ be an \mathcal{Z}_{A}-sentence st $\mu_{k \sigma}$. WTS $\mathcal{N} F \sigma$. Write σ as $\rho\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right)$ for some \mathcal{Z} - $\left.\mathbb{B}_{\text {mn }}\right) ~ P\left(x_{1}, \ldots, x_{n}\right)$ and $a_{1}, \ldots, a_{n} \in A$. By $Q E$, then is $2^{8 .} \psi\left(x_{1}, \ldots, x_{n}\right)$ st $T F V_{\bar{x}}(\varphi(\bar{x}) \leftrightarrow \psi(\bar{x}))$.
Since $\mu_{F} T$ and $\mu_{F P}(\bar{a})$, we have $\mu_{F} \psi(\bar{a})$. Since $\mu_{F D}(A)$, we have $\psi\left(\underline{a}_{1}, \ldots, a_{n}\right) \in D(A)$. So $\mathcal{N} F \psi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right)_{\uparrow}$ since $\mathcal{N} F T$, $\mathcal{N}=P\left(\underline{a}_{1}, \ldots, a_{n}\right)$, ie. $\quad \mathcal{N}=\sigma$.

$$
\begin{aligned}
& \mathcal{N} \vDash \psi\left(\underline{a}_{1}^{N}, \ldots, \underline{a}_{n}^{N}\right) \\
& \\
& \downarrow \\
& \mathcal{N} \vDash \mathcal{P}\left(\underline{a}_{1}^{N}, \ldots, \underline{a}_{n}^{N}\right) \rightarrow \mathcal{N} \vDash \sigma
\end{aligned}
$$

$(i i i) \Rightarrow(i i)$. Let $\mathcal{M}, \mathcal{N}, \mathcal{A}, \varphi(\bar{x}, y)$, and \bar{a} be as $\left(i_{i}\right)$.
Since $\mathcal{A} \subseteq M$ and $A \subseteq \mathcal{N}$, ae have $M, N \vDash T \cup D(A)$ by Cor 2.4 .

(ii) \Rightarrow (i). Assume (ii). WTS QE. By Lemme G.1, it suffices do fix q.f. $\varphi(\bar{x}, y)$ and find g.\&. $\psi(\bar{x})$ st $T \vDash \forall \bar{x}(\exists y \rho(\bar{x}, y) \leftrightarrow \psi(\bar{x}))$.
Let $\mathcal{Z}^{*}=\mathcal{L} \cup\left\{c_{1}, \ldots, c_{n}\right\}$ weer c_{i} is a res constant symbol.
Let $\Gamma=\left\{\psi(\bar{c}): \psi(\bar{x})\right.$ is - $q^{\text {R }}$ L-Lormak $\left.+T k \forall \bar{x}\left(\exists_{y} \varphi(\bar{x}, y) \rightarrow \psi(\bar{x})\right)\right\}$.
C kim: TUTF $\exists_{y} 9(\bar{c}, y)$.
Frit, assume the claim holds. B_{3} Compactress, J gif. $\Psi_{1}(\bar{x}), \ldots, \psi_{m}(\bar{x})$ st $\downarrow \begin{aligned} & \text { since each } \\ & \Psi_{i}(\bar{z}) \text { is in } \Gamma\end{aligned}$ $T \cup\left\{\psi_{1}(\bar{c}), \ldots, \psi_{m}(\bar{c})\right\} \equiv \exists_{y} P(\bar{c}, y)$. and $\quad T_{F} \forall \bar{x}\left(J_{y} P(\bar{x}, y) \rightarrow \bigwedge_{i=1}^{m} \psi_{i}(\bar{x})\right)$.
Let $\psi(\bar{x})$ be $\bigwedge_{i=1}^{m} \psi_{i}(\bar{x})$. Then $T \vDash\left(\psi(\bar{c}) \rightarrow \exists_{y} \varphi(\bar{c}, y)\right)$.

$$
s_{0} T k \forall \bar{x}\left(\psi(\bar{x}) \leftrightarrow \exists_{y} \varphi(\bar{x}, y)\right) \text {. }
$$

Pros \& \& Claim Suppose not. There is $N=T \cup \Gamma \cup\{\neg \exists y P(\bar{c}, y)\}$.
Let $a_{i}=c_{i}^{N}$ call let $A \subseteq \mathcal{N}$ be the substancture genectid by a_{1}, \ldots, a_{n}.
Then $N F T, \mathcal{A} \subseteq \mathcal{N}$, annul $N F \sim \exists y \varphi(z, y)$.
$B \rightarrow E S 1 \# 7$, any be A is if the form $t^{N}(\bar{a})$ \& som \mathcal{L}-term t.
So are con view $D(A)$ as a L^{*}-theory by replacing b with $t\left(c_{1}, \ldots, c_{n}\right)$.
Let $\sum \vDash T \cup D(A) \cup\left\{\exists_{y} \varphi(\bar{c}, y)\right.$. If we build $\mu \vDash \sum$ then $\mu \neq T, \quad A \leq M$ and $\mu_{\neq} \partial_{y} P(\pi, y)$, entratieting ($i i$).
So it suffices do show \sum has a mall. Suppose not. By Compactness,

Here are q.f. $\psi_{1}(\bar{x}), \ldots, \psi_{m}(\bar{x})$ st $\psi_{1}(\bar{c}), \ldots, \psi_{m}(\bar{c}) \in D(A)$ and $T \cup\left\{\bigwedge_{i=1}^{m} \psi_{i}(\bar{c})\right\} \cup\left\{\exists_{y} \varphi(\bar{c}, y)\right\}$ is unsadisicble. Let $\psi(\bar{x})$ be $\neg \bigwedge_{i=1}^{m} \psi_{i}(\bar{x})$.
Then $T k\left(\exists_{y} \varphi(\bar{c}, y) \rightarrow \psi(\bar{c})\right)$. So $T k \forall \bar{x}\left(\exists_{y} \varphi(\bar{x}, y) \rightarrow \psi(\bar{x})\right)$.
So $\psi(\bar{c}) \in \Gamma$. So $N \neq \psi(\bar{c})$. Since $N \neq P(A)$, we have $\mathcal{N}=\neg \psi(\bar{c})$. Contradiction.

